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Soil moisture variability caused by soil erosion, weather extremes, and spatial
variations in soil health is a limiting factor for crop growth and productivity. Crop
evapotranspiration (ET) is significant for irrigation water management systems.
The variability in crop water requirements at various growth stages is a common
concern at a global level. In Canada’s Prince Edward Island (PEI), where agriculture
is particularly prominent, this concern is predominantly evident. The island’s most
prominent business, agriculture, finds it challenging to predict agricultural water
needs due to shifting climate extremes, weather patterns, and precipitation
patterns. Thus, accurate estimations for irrigation water requirements are
essential for water conservation and precision farming. This work used a
satellite-based normalized difference vegetation index (NDVI) technique to
simulate the crop coefficient (Kc) and crop evapotranspiration (ETc) for field-
scale potato cultivation at various crop growth stages for the growing seasons of
2021 and 2022. The standard FAO Penman–Monteith equation was used to
estimate the reference evapotranspiration (ETr) using weather data from the
nearest weather stations. The findings showed a statistically significant (p <
0.05) positive association between NDVI and tabulated Kc values extracted
from all three satellites (Landsat 8, Sentinel-2A, and Planet) for the
2021 season. However, the correlation weakened in the subsequent year,
particularly for Sentinel-2A and Planet data, while the association with Landsat
8 data became statistically insignificant (p > 0.05). Sentinel-2A outperformed
Landsat 8 and Planet overall. The Kc values peaked at the halfway stage, fell before
the maturity period, and were at their lowest at the start of the season. A similar
pattern was observed for ETc (mm/day), which peaked at midseason and
decreased with each developmental stage of the potato crop. Similar trends
were observed for ETc (mm/day), which peaked at the mid-stage with mean
values of 4.0 (2021) and 3.7 (2022), was the lowest in the initial phase with mean
values of 1.8 (2021) and 1.5 (2022), and grewwith each developmental stage of the
potato crop. The study’s ET maps show how agricultural water use varies
throughout a growing season. Farmers in Prince Edward Island may find the
applied technique helpful in creating sustainable growth plans at different phases
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of crop development. Integrating high-resolution imagery with soil health, yield
mapping, and crop growth parameters can help develop a decision support system
to tailor sustainable management practices to improve profit margins, crop yield,
and quality.

KEYWORDS

crop evapotranspiration, irrigation scheduling, high-resolution imagery, sustainable
agriculture, soil and water conservation

1 Introduction

Water availability and accessibility pose a considerable challenge
to maintaining sustainable agriculture. The future risk of water
scarcity stems from catastrophic climate projections and
environmental degradation of water and natural resources.
Additionally, the ever-growing population intensifies the
problem’s complexity, increasing the demand for water for food
production and other uses. Thus, it is affecting the long-term
sustainability of irrigation-based agriculture. Canada’s
vulnerability to the effects of climate change has grown in recent
years. For instance, in Prince Edward Island (PEI), there are
currently more high-temperature days, fewer snowy days, and a
shift in rainfall patterns. These climate changes could profoundly
affect agriculture in the area, highlighting how urgent it is to address
water-related problems for sustainable food production. Agriculture
is a significant industry in PEI. The province is particularly famous
for its potato production, with approximately 25% of the Canadian
output (Canada, 2023). They contribute $1 billion every year to the
PEI’s economy. Potatoes are relatively trickier to cultivate than other
crops as the final yield remains underground and susceptible to
restricted or excess water conditions, lowering tuber output, grade,
and quality. Therefore, it is crucial to understand crop water
requirements and adopt effective water management strategies
(Barrett et al., 2023; Ierna, 2023). Evapotranspiration (ET)
monitoring is critical for allocating water to the agricultural
sector. Crop evapotranspiration reflects crop water need, which
consists of water lost by transpiration from plant leaves and
evaporation from the soil surface.

Crop ET evaluation is vital for sustainable agriculture to ensure
the efficient use of water resources, boost crop yield, and lessen
agriculture’s detrimental effects on the environment; hence,
determining this parameter’s precise value is critical to regulating
water consumption for irrigation (Mokhtari et al., 2019). PEI relies
on rain-fed agriculture; however, changing rainfall patterns deeply
threaten this type of farming. Farmers adopt supplemental
irrigation, particularly in dry summer, to overcome this issue.
Thus, accurate estimation of irrigation water is significant to
maintaining groundwater sustainability, preventing farmers from
over- or under-irrigation, which can lead to water waste or crop
failure (Abbas et al., 2020).

Agriculture has long employed traditional techniques of crop ET
estimation, such as the Penman–Monteith approach, the Hargreaves
method, and the use of lysimeters or eddy covariance towers, which
demand expensive equipment and installation. However, their
accuracy depends on the accessibility of meteorological
information, crop characteristics, and other site-specific factors.
Recently, more modern approaches based on remote sensing and

modeling techniques are gaining popularity because of their
potential to produce more precise and spatially explicit
estimations of crop ET. In addition, these remote sensing-based
methods are cost-effective, easy to implement, and provide good
coverage for even large-scale areas (Liou and Kar, 2014). Existing
research indicates several techniques and tools for evaluating
agricultural ET, but most research studies were limited to
crop–weather models in PEI. Although some researchers have
combined these models with machine learning, satellite-based
remote sensing has not been investigated yet to estimate crop
evapotranspiration (Farooque et al., 2021; Maqsood et al., 2022).
To fill this gap, it is essential to utilize satellite-based observations for
this region.

Using satellite imagery provides an alternative approach to
traditional methods of estimating crop water requirements.
Moreover, it also gives its distribution in space and time on a
field and regional scale. Implementing the water balance theory
on satellite-based vegetation indices helps assess actual crop
evapotranspiration (ETc) (Maselli et al., 2020). These vegetation
indices are also helpful in determining crop coefficient Kc and
reference evapotranspiration (ETr). The Penman–Monteith
equation is the principal method for computing ETr. The
multiplication of ETr with crop coefficient (Kc) gives ETc. When
evaluating the crop’s water requirements, Kc is an important
quantity to consider. Its value can be obtained from the literature
or any agriculture manual for a particular crop. Estimating reference
crop evapotranspiration using the FAO-56 Penman–Monteith
equation is a standard practice, and many researchers have used
it in past works to obtain reliable findings (Ji et al., 2017; Hashemi
and Sepaskhah, 2019; Moratiel et al., 2020; Liu et al., 2021; Ndulue
and Ranjan, 2021). The fact behind this is that it includes all the
critical metrological parameters, which are crucial for generating
reliable results.

The normalized difference vegetation index (NDVI) is the most
widely used of all vegetation indices (VIs) (Glenn et al., 2011). In
healthy vegetation, near-infrared light is extremely reflective, partly
because of the interior cellular structure of leaves. Apart from that,
chlorophyll in plant cells absorbs red light to facilitate
photosynthesis. Thus, the difference in red and near-infrared
(NIR) light is reflected in the vegetation and shows the plant’s
overall health. The amount of green vegetation reduces with
increasing water stress, which causes a drop in NDVI. Moreover,
NDVI may be used to track, assess, and locate water stress zones in
crops. Since crop coefficients derived from VIs describe the
conditions for crop growth and the spatial variability of that
development, the computation of ETc is more accurate and real-
time compared to tabular Kc (Daryanto et al., 2017; Romero-
Trigueros et al., 2017). This information is helpful for the
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shareholders as they can spatially characterize the areas with
significant differences in production and yield and make the
right decisions in response to these variations (Atzberger, 2013;
Tang et al., 2015).

The literature suggests that remotely sensed multispectral
vegetation indices help quantify accurate ETc in croplands and at
local scales (Virnodkar et al., 2020). Ihuoma and Madramootoo
(2021) studied Sentinel-2A and 2B satellite mission data to
estimate ETc based on crop vegetation indices. They used the
FAO-56 Penman–Monteith module of AquaCrop software and
validated it by achieving real-time results. Mahmoud and Gan
(2019) estimated crop evapotranspiration using a MODIS
satellite and developed a relationship between NDVI and Kc.
Furthermore, they applied this relationship in soil–water balance
models. Their results showed that these types of models and maps
are helpful in sustainable water management for different crops.
Hence, using this methodology can significantly increase the
efficiency of water usage. This study aims to (i) develop a
relationship between the Kc value from the FAO-56 handbook
and NDVI derived from multispectral remotely sensed images at
different spatial and temporal resolutions and (ii) determine the
evapotranspiration for potato fields in PEI based on high-
resolution imagery. The linear regression model was applied
to generate field-level Kc maps. The standard
Penman–Monteith method was used to determine ETr. Finally,
the potato ETc maps were generated. The developed ETc maps
will help growers estimate the water requirements of potato

production in space and time at the local scale. Consequently,
farmers are better equipped to decide when and how much water
to apply to their crops, increasing resource efficiency. Moreover,
policymakers will assess total irrigation water requirements for
various crops.

2 Materials and methods

2.1 Study area

The study was conducted in PEI for the growing season of
2021 and 2022. The mean temperatures in January and July
were −8°C and 19°C, respectively (PEI Climate and Weather,
2022). Four potato fields, denoted as field 1(46° 27′ 51.948″N
and 63° 40′ 23.124″W), field 2 (46° 20′ 42.972″ N and 63° 45′
29.592″W), field 3 (46°27′55.56″N and −63°40′9.70″W), and field 4
(46°18′29.43″N and 63°34′51.46″ W) located in PEI, Canada, were
selected for this study (Figure 1; 2). All four fields belong to
commercial agricultural farms.

2.2 Satellite imagery

This study uses satellite imagery from Landsat 8, Sentinel-
2A, and Planet acquired through the growing season. The
attributes of all three satellites are stated in Table 1. Six

FIGURE 1
Study area location with an indication of selected potato fields (stars) and weather stations (triangles) in PEI. The natural color composition of Planet
imagery was acquired in September 2021.
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cloud-free Landsat 8 images were downloaded during two crop
seasons with a level correction of 2T from the USGS
EarthExplorer site (https://earthexplorer.usgs.gov/). The
spatial resolution of visible bands was 30 m. Sentinel-2A
imagery was obtained from ESA’s website through
Copernicus; 10 images at different growth stages were
downloaded. High-resolution imagery covering 23 overpass
dates (42 images) was obtained from Planet (www.planet.
com) at 3 m spatial resolution for the 2021 and 2022 seasons.
Table 2 displays the acquisition date, growth stage, and days
after plantation for each year. To avoid data loss, all imagery was
selected in this study based on criteria with less than 10% cloud.
The processing of all imagery and NDVI calculation was carried
out in ArcGIS Pro version 10.3.1 by ESRI.

2.3 Meteorological data

The data from twometeorological stations, namely, Summerside
(46° 26′ 20″ N and 63° 50′ 17″ W) and Maple Plains (46° 18′ 10″N
and 63° 34′ 32″W), located at elevations of 12.20 m and 45.70 m,
respectively, were downloaded from the Environment Canada
historical database for the 2021 and 2022 growing seasons. All
four fields are located approximately 10–15 km from these
stations. The daily Tmax, Tmin, Tmean, relative humidity, and wind
speed were obtained to estimate reference evapotranspiration. The
missing data values were calculated using the linear regression
model on the related data from adjacent stations.

2.4 NDVI calculation

NDVI was calculated for all three satellites for the two growing
seasons using ArcGIS Pro, as presented in the following equations:

For Landsat 8, NDVI was estimated as follows:

NDVI � NIRband5 − Redband4

NIRband5 + Redband4
. (1)

FIGURE 2
Field-scale layout of the selected potato fields. Field 1 (A) and field 2 (B) for the 2021 growing season; field 3 (C) and field 4 (D) for the 2022 growing
season.

TABLE 1 Attributes of Landsat 8, Sentinel-2A, and Planet imagery.

Attribute Planet Sentinel-2A Landsat 8

Spatial resolution 3 m 10 m 30 m

Temporal resolution Daily 10 days 16 days

Source: Mansaray et al. (2021).
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For Sentinel-2A, NDVI was estimated as follows:

NDVI � NIRband8 − Redband4

NIRband8 + Redband4
. (2)

For Planet, NDVI was estimated as follows:

NDVI � NIRband4 − Redband3

NIRband4 + Redband3
. (3)

2.5 Association between NDVI and Kc

As for each study field, three different sensors were used,
having different spatial grids and resolutions. It is not possible
to make comparisons on a pixel-by-pixel basis. Therefore, the
mean NDVI value was extracted from all the resulting NDVI
maps to present the entire potato field to avoid uncertainty and

TABLE 2 Satellite name, image acquisition dates, potato growth stages, and the day after plantation (DAP) when images were captured for the 2021 and
2022 growing seasons.

Year Acquisition date Growth stage Days after plantation (DAP) Satellite name

2021 02 June Initial stage 8 Planet and Sentinel-2A

13 June 19 Landsat 8

18 June 24 Planet

13 July Developmental stage 50 Planet

01 August Midseason 68 Sentinel-2A

16 August 85 Planet and Landsat 8

21 August 88 Sentinel-2A

26 August 95 Planet

31 August 100 Sentinel-2A

17 September Late stage 117 Landsat 8

20 September 120 Sentinel-2A

24 September 124 Planet

2022 02 June Initial stage 8 Planet

07 June 13 Sentinel-2A

10 June 16 Planet and Landsat 8

15 June 21 Planet

23 June 29 Planet

29 June 35 Planet

05 July Developmental stage 40 Planet

07 July 42 Sentinel-2A

18 July 53 Planet and Landsat 8

23 July 58 Planet

27 July 62 Planet and Sentinel-2A

04 August Midseason 70 Planet

06 August 72 Sentinel-2A

07 August 73 Planet

21 August 87 Planet

01 September Late stage 98 Planet

04 September 101 Landsat 8

10 September 107 Planet

25 September 120 Planet and Sentinel-2A

30 September 126 Planet
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error in the results. These values were later used to develop a
relationship between Kc and NDVI. The Kc values were adjusted
according to the FAO manual for various potato growth phases
through the crop season. In the FAO manual, potato-growing
season has five stages with varying values of Kc. At the initial
stage (20–30 days), Kc is 0.4–0.5; at the development stage
(30–40 days), it is between 0.7 and 0.8, with an average value
of 0.75; at the midseason stage (30–60 days), the values range
between 1.05 and 1.2, with a mean value of 1.15; at the late-
season stage (20–35 days), it is 0.85–0.95, with an average value
of 0.85; and at maturity, the value is 0.7–0.75, with a mean value
of 0.72. The value for a specific day in each growth stage was
determined and adjusted according to the FAO manual (Allen
et al., 1998). The relationship between NDVI obtained from
each satellite image and the adjusted Kc values taken from FAO
was established by applying a linear regression model for the
growing seasons. An ANOVA (analysis of variance) was
conducted at a 5% probability level to assess the model’s
statistical significance and overall fit. The coefficient of
determination R2 was used to determine the magnitude of

variance between NDVI and Kc. The actual values of Kc were
ascertained using the output regression equation. Accordingly,
Kc maps were developed based on this relationship.

2.6 Reference evapotranspiration (ETr)
calculation

Based on the selected weather parameters, the FAO
Penman–Monteith equation (Equation 4) was used to quantify
reference evapotranspiration (mm day−1) (Mahmoud and Gan,
2019):

ET.r � 0.48Δ Rn − G( ) + γ(900/ T + 273( ))μ2 es − ea( )
Δ + γ 1 + 0.34μ2( )

, (4)

where
Rn = net radiation at the crop surface (MJm−2 day−1).
G = soil heat flux density (MJm−2 day−1).
T = air temperature at 2 m height (℃).
μ2 = wind speed at 2 m height (ms−1).

FIGURE 3
Flowchart of vegetation index-based evapotranspiration calculation for the potato crop.
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es = vapor pressure of the air at saturation (kPa).
ea = actual vapor pressure (kPa).
Δ = slope of the vapor pressure curve (kPa℃−1).
γ = psychrometric constant (kPa℃−1).

2.7 Crop evapotranspiration (ETc) estimation

The multiplication of Kc values by ETr (equation 5) was
performed to generate field-scale ETc maps in ArcGIS Pro. The

FIGURE 4
Linear relationship between NDVI derived from three different satellites and FAO-suggested Kc for two growing seasons. Field 1 (A), field 2 (B), field
3 (C), and field 4 (D).

TABLE 3 Descriptive statistics for Kc values obtained from Landsat 8, Sentinel-2A, and Planet images for the 2021 growing season (field 1).

Landsat 8 Sentinel-2A Planet

DAP 19 85 117 8 68 88 100 120 8 24 50 85 95 124

Mean 0.51 1.10 0.83 0.25 1.18 1.08 1.20 0.87 0.55 0.49 0.83 1.17 1.18 0.94

Median 0.48 1.14 0.83 0.21 1.20 1.09 1.23 0.87 0.55 0.49 0.84 1.20 1.21 0.95

Std. Dev. 0.07 0.07 0.02 0.08 0.04 0.03 0.06 0.06 0.01 0.01 0.05 0.09 0.10 0.04

Min 0.44 0.97 0.79 0.19 1.10 1.04 1.07 0.77 0.53 0.48 0.72 0.91 0.90 0.84

Max 0.62 1.17 0.87 0.43 1.22 1.10 1.24 0.95 0.57 0.51 0.88 1.21 1.23 0.99
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resultant ETc maps were generated to observe crop water needs in
space and time during the season.

ETc � ETr × Kc . (5)

2.8 Flowchart of ETc calculation

The methodological framework for this study is shown in
Figure 3. The two major inputs in the vegetation index method
are satellite imagery and meteorological data.

3 Results

3.1 Relationship between NDVI and FAO-
suggested Kc

NDVI maps produced as an output using Landsat 8, Sentinel-2A,
and Planet were used to extract NDVI values. In contrast, Kc values

were derived from the FAOmanual for the two potato growing seasons.
Figure 4 illustrates the association between Kc values and NDVI of four
potato fields for the 2021 and 2022 growing seasons. Strong correlations
were noted for the two fields in the 2021 season, with the R2 value equal
to (field 1 = 1, field 2 = 1, p < 0.05) for Landsat 8, (field 1 = 0.94, field 2 =
0.91, p < 0.05) for Sentinel-2A, and (field 1 = 0.93, field 2 = 0.85, p <
0.05) for Planet. However, strong to moderate correlations were
observed for the selected fields in 2022, with the R2 value equal to
(field 3 = 0.8, field 4 = 0.73, p > 0.05) for Landsat 8, (field 3 = 0.88, field
4 = 0.89, p < 0.05) for Sentinel-2A, and (field 3 = 0.69, field 4 = 0.69, p <
0.05) for Planet. The resulting equations were employed to prepare Kc

maps for the 2021 and 2022 growing seasons at different potato growth
stages.

3.2 Estimated Kc values

The seasonal Kc values were obtained using the previously
described regression equation. The stages of evolution of

TABLE 4 Descriptive statistics for Kc values obtained from Landsat 8, Sentinel-2A, and Planet images for the 2021 growing season (field 2).

Landsat 8 Sentinel-2A Planet

DAP 19 85 117 8 68 88 100 120 8 24 50 85 95 124

Mean 0.49 1.08 0.85 0.289 1.181 1.083 1.178 0.90 0.46 0.48 0.99 1.170 1.09 0.90

Median 0.46 1.17 0.85 0.289 1.192 1.101 1.192 0.90 0.46 0.47 0.99 1.172 1.10 0.88

Std. Dev. 0.06 0.17 0.05 0.017 0.036 0.047 0.067 0.08 0.008 0.007 0.01 0.012 0.005 0.03

Min 0.43 0.75 0.75 0.257 1.086 0.987 1.063 0.78 0.455 0.473 0.97 1.142 1.092 0.86

Max 0.63 1.25 0.92 0.320 1.209 1.119 1.257 1.01 0.481 0.493 1.00 1.184 1.107 0.96

TABLE 5 Descriptive statistics for Kc values obtained from Landsat 8, Sentinel-2A, and Planet images for the 2022 growing season (field 3).

Landsat 8 Sentinel-2A Planet

DAP 22 53 102 12 45 64 74 125 8 35 40 70 87 98 125

Mean 0.48 0.84 0.78 0.44 0.72 0.98 0.96 0.59 0.4 0.5 0.65 0.96 0.96 0.96 0.62

Median 0.48 0.84 0.79 0.41 0.72 1 0.96 0.63 0.3 0.4 0.62 0.96 0.98 1 0.65

Std. Dev. 0.02 0.01 0.08 0.08 0.03 0.04 0.045 0.11 0.07 0.108 0.085 0.01 0.02 0.05 0.1

Min 0.45 0.8 0.67 0.4 0.68 0.84 0.84 0.45 0.36 0.4 0.57 0.91 0.92 0.88 0.46

Max 0.53 0.86 0.87 0.68 0.78 1.02 1 0.72 0.62 0.7 0.83 0.97 0.99 1 0.8

TABLE 6 Descriptive statistics for Kc values obtained from Landsat 8, Sentinel-2A, and Planet images for the 2022 growing season (field 4).

Landsat 8 Sentinel-2A Planet

DAP 22 53 102 12 45 64 74 125 8 35 40 70 87 98 125

Mean 0.54 0.84 0.8 0.4 0.81 0.98 0.96 0.68 0.39 0.52 0.74 0.94 0.98 0.97 0.58

Median 0.51 0.84 0.8 0.4 0.82 0.98 0.96 0.67 0.39 0.52 0.75 0.97 1 0.98 0.58

Std. Dev. 0.04 0.005 0.01 0.004 0.02 0.003 0.008 0.03 0.01 0.02 0.03 0.073 0.04 0.038 0.03

Min 0.5 0.83 0.79 0.4 0.77 0.98 0.95 0.6 0.37 0.49 0.68 0.77 0.87 0.88 0.54

Max 0.62 0.84 0.81 0.5 0.85 0.99 0.98 0.7 0.4 0.57 0.77 0.98 1 1 0.64
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calculated Kc for the growing season 2021 for field 1 and field 2 are
reported in Tables 3 and 4, respectively. For both areas, the overall
trend of Kc evolution was similar in the estimation carried out with
all three satellites. At the initial stage, the mean Kc values were low
(May and June), with maximum values at the midseason stage (July
and August), and the values declined afterward (September). The
trends of calculated Kc values in terms of date after plantation (DAP)
for the growing season 2022 for fields 3 and 4 are reported in Tables
5 and 6, respectively. In June, the mean Kc values were low at the
initial stage of potato growth. Maximum mean Kc values were
observed at development and midseason (July and August), and
the values decreased afterward (September). These descriptive value
tables represent the evolution of Kc over 2 years. It is clear from these
tables that Kc values are different for different satellites. For example,
in Table 3, the value at DAP 8 for Sentinel-2A is lower than that for

Planet. Similarly, in Table 6, at DAP 125, the Kc value for Sentinel-
2A is greater than that for Planet.

Unfortunately, some images with over 10% cloud cover were
skipped since the variation in the temporal resolutions of the three
satellites prevented them from being captured. Comparing data
from the three satellites for dates of a similar overpass remains
challenging. However, data from three satellites provided ample
coverage for the whole season. For the two growing seasons, the
time-series maps for one field from each year are presented in the
paper, as there was no significant difference in the fields throughout
one season. Figures 5 and 6 show spatial and temporal variability in
Kc for field 1 (2021) and field 3 (2022), respectively. In Figure 6, at
the initial growth stage (DAP 8, DAP 10, and DAP 35), the Kc values
were minimum, which gradually increased at the development stage
(DAP 40 and DAP 62). Afterward, in midseason (DAP 70, DAP 72,

FIGURE 5
Kc time-series maps for the 2021 growth season, generated using Landsat 8 (DAP 19 and DAP 117), Sentinel-2A (DAP 68 and DAP 100), and Planet
(DAP 8, DAP 50, DAP 85, and DAP 124) imagery for field 1.
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and DAP 77), the Kc values reached maximum (light to dark apple
green). After all, at a late stage, Kc values started to decline again
(DAP 98 and 101), with minimum values at DAP 120 and DAP 125.
The maps generated from Planet imagery are smoother and more
information-rich than those generated from Sentinel-2A and
Landsat 8. This is undoubtedly due to the difference in spatial
and temporal resolutions.

3.3 Kc calculated versus Kc tabulated

Figure 7 displays the linear relationship between Kc from the
table and Kc estimated from Kc maps. The selected fields showed a
significant correlation for the growing season of 2021, with R2 = 1,
p < 0.05 (Landsat 8), R2 = 0.97, p < 0.05 (Sentinel-2A), and R2 = 0.9,
p < 0.05 (Planet). For the growth season of 2022, Landsat 8 and

Sentinel-2A showed a notable but statistically insignificant
association, with R2 = 0.79, p > 0.05 and R2 = 0.64, p > 0.05,
respectively. This could be caused by insufficient soil moisture, other
crop characteristics, and climatic factors. For the 2022 season, the
findings from Planet imagery showed a positive connection, with
R2 = 0.72, p < 0.05.

3.4 Crop evapotranspiration maps at a field
scale

The field-scale ETc maps explain crop water requirement’s
spatial and temporal variability at different growth stages.
Farmers and water managers may identify regions of high or low
water consumption within a field by developing ETc maps, which
can help them better manage irrigation and water resources. ETc

FIGURE 6
Kc time-series maps for the potato crop generated using Landsat 8 (DAP 10 and DAP 101), Sentinel-2A (DAP 62 and DAP 72 and DAP 120), and Planet
(DAP 8, DAP 35, DAP 40, DAP 70, DAP 87, DAP 98, and DAP 125) imagery for field 3 during the 2022 growth season.
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maps in a time series (Figure 8) explain evapotranspiration
variability at different growth stages for field 1 during the
2021 season. DAP 8 and DAP 19 represent the initial stage (light
to dark blue). At DAP 50, ETc (mm/day) values increased, and the
development stage (green and yellow color) started. At midseason,
the values reached maximum (DAP 68, DAP 85, and DAP 100)
(orange color). The values declined again at a late stage (DAP
117 and DAP 124). For the 2022 season, Figure 9 shows the
variation in evapotranspiration values for field 3. ETc (mm/day)
values were lower at the initial stage (DAP 8, DAP 10, and DAP 35),
blue to green, indicating that the crop transpires less water. The
value started to increase at the development stage (DAP 40 and DAP
62) and reached its peak at the midseason stage (DAP 70, DAP 72,
and DAP 87), shown in brown color. In the late season (DAP 98,
DAP 101, DAP 120, and DAP 125), the values declined again (green
to blue color).

Consequently, at the initial stage, water requirement is low as
ETc values are minimum, and at midseason, water requirement is
high to compensate for water loss because ETc is high. The
comparison of average evapotranspiration values determined
using different satellites for two growing seasons is shown in
Table 7. ETc values were slightly lower in the 2022 season
compared to 2021. The values at the development stage in 2021

(Landsat 8 and Sentinel-2A) and the midseason stage in 2022
(Landsat 8) are missing because no imagery was available on
those stages as per the criteria.

4 Discussion

This study employed and evaluated the vegetation index-based
method to estimate ETc for the potato crop in PEI for two growing
seasons. The use of satellite-based models to calculate crop
evapotranspiration offers the possibility of simplifying and
improving water management and irrigation scheduling. Notably,
there is limited work addressing the implementation of such models
using three different sensors in the context of PEI. Most of the
previous analyses were based on traditional methods like the
Hargreaves and Penman–Monteith methods. However, some
studies have pointed out digital agriculture and the use of new
technology (Afzaal et al., 2019; Zebarth et al., 2021), but there is still
a lot to explore. It is essential to incorporate remote sensing-based
crop monitoring with high spatial–temporal resolution for potato
crops in Prince Edward Island.

In comparison to Planet NDVI data, Sentinel-2A and Landsat
8 data demonstrated a stronger alignment with FAO-recommended

FIGURE 7
Relationship between Kc tabulated and Kc estimated for the two seasons. 2021 (A) and 2022 (B).
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Kc for the 2021 season; these results are in agreement with Zebarth
et al. (2021) who created a linear relationship between NDVI and Kc

using remote sensing imagery for Leamington, Ontario, Canada.
Their study assessed Planet and Sentinel-2A and 2B images for
estimating the crop coefficient (Kc) and developed a connection
between Kc and NDVI to calculate crop evapotranspiration. The
accuracy of remote sensing-derived evapotranspiration estimations
was confirmed by comparing them with evapotranspiration data
obtained from the AquaCrop simulation model. The findings
indicate that combining data from satellite imagery with
metrological data can produce a more accurate estimate of crop
water requirements. Singha and Swain (2022) reported a similar
relationship as they studied rice and potato crops in India. In this
study, the coefficient representing the relationship between NDVI
and Kc for the 2022 season decreased significantly, notably for

Sentinel-2A and Planet satellite imagery. This decrease in the
coefficient might be linked to the influence of Hurricane Fiona,
which hit Prince Edward Island (PEI) toward the end of September,
right at the time of the potato-harvesting season. Indeed, it is
imperative that the harvest must be taken out from the field
before the occurrence of the first frost. However, the saturated
conditions in the fields hampered the harvesting process,
resulting in delayed potato extraction. Furthermore, as stated by
authoritative sources, this weather phenomenon resulted in an issue
of excessive moisture (Admin, 2022). The post-storm images from
Sentinel-2A and Planet showed crop damage and poor NDVI.
However, for Landsat 8, the study showed no statistically
significant association between Kc and NDVI (p > 0.05), possibly
due to limited variation in Kc or NDVI within the dataset. Overall, in
the two growing seasons, the relationship between NDVI and Kc was

FIGURE 8
Potato ETc (mm/day) time-series maps for the 2021 growth season generated using Landsat 8 (DAP 19 and DAP 117), Sentinel-2A (DAP 68 and DAP
100), and Planet (DAP 8, DAP 50, DAP 85, and DAP 124) imagery for field 1.
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linear because both NDVI and Kc values were lower at the beginning
of the season, reached the maximum in the mid-stage, and declined
afterward. The difference in R2 values from this relationship
might be due to some variation in climatic conditions like the
moisture of the soil surface because sufficient soil moisture
promotes healthy vegetation and interacts with rainfall,
temperature, and solar radiation, all of which affect plant
development and the NDVI–Kc relationship (Duarte, 2022). A
similar linear relationship is reported by Hassan et al. (2022). The
Kc values estimated from this relationship can be a solid
parameter for calculating crop evapotranspiration. Georgios
et al. (2010) developed a potato crop coefficient based on the
spectral vegetation index and found similar results. The Kc values
estimated from the vegetation reflectance from NDVI maps
showed the same evolution trend for both potato fields as
FAO-suggested Kc. Similar results were reported by Paredes

et al. (2018), Georgios et al. (2010), Allen et al. (2020), and
Kadam et al. (2021).

The estimated Kc values and ETr were used to create field-
scale ETc maps. Similar field-scale ETc maps for a variety of crops
were reported by Vanino et al. (2018), Nocco et al. (2019), and
Farg et al. (2012) who also found a similar trend of crop
evapotranspiration in different crops. The peak
evapotranspiration rates were observed at the midseason,
while the lowest evapotranspiration rates were observed at the
initial growth stage. When the satellite readings were analyzed,
the correlation between Kc and NDVI was found to be positive for
all three satellites. There is no discernible difference in R2 values
across the three satellites in 2021; however, in 2022, Landsat
8 showed an insignificant relationship. Overall, the study
revealed that the Sentinel-2A platform outperformed Landsat
8 and Planet. This is because a different number of images

FIGURE 9
Potato ETc (mm/day) time-series maps for the 2022 growth season generated using Landsat 8 (DAP 10 and DAP 101), Sentinel-2A (DAP 62, DAP 72,
and DAP 120), and Planet (DAP 8, DAP 35, DAP 40, DAP 70, DAP 87, DAP 98, and DAP 125) imagery for field 3.
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represented each growth stage, and the overpass dates were not
the same. A good comparison may be established if the overpass
dates are the same. However, owing to cloud cover, this remains a
challenge. The findings show that crop water requirements vary
significantly in space and time throughout the growing season,
which recommends using a satellite-based process to check
plants’ development conditions.

The use of vegetation indices generated from multispectral
satellite images demonstrated its effectiveness in this study.
However, it is critical to recognize certain limitations of
multispectral sensors. One such limitation is its spatial
resolution, which is generally in the meter range. This
resolution inadequately addresses the demands of crops with
clustered structures, such as vines and trees. Furthermore, as
previously observed (Liou and Kar, 2014; Niu et al., 2019), the
temporal limitations imposed by the infrequent satellite overpass
might hamper thorough data collection. To address these
constraints, our approach integrated the imagery from three
sensors with different spatial and temporal resolutions.
Futuristic research should emphasize the integration of drone
images along with satellite imagery to increase the frequency of
observations. Furthermore, modern data fusion techniques, such
as BESS-STAIR (Jiang et al., 2020) and satellite data fusion with
eddy covariance (Mbabazi et al., 2023), as well as the use of
hyperspectral and thermal bands, have the potential to improve
the approach (Ghaderizadeh et al., 2022). Furthermore, non-crop
elements, such as soil type (Zamani et al., 2022), soil moisture,
and background vegetation, can all alter NDVI readings,
introducing noise into the ET calculation process. To address
these issues and enhance the method’s universality, it is
important to extend its application across diverse regions and
crop types, ensuring its effectiveness in a broader context.

5 Conclusion

This study used a satellite-based vegetation index approach to
create field-scale ETc (crop evapotranspiration) maps for potato
farming in Prince Edward Island, Canada. The results of the study
showed that for both growing seasons under consideration, there
was a significant correlation between NDVI, which was obtained
from three different satellite images, and Kc (crop coefficient) values
obtained from the FAO manual. Results from the three sensors used
in this study were real-time and showed slight fluctuations. Notably,
Sentinel-2A surpassed all others during the 2022 season, whereas
Landsat 8 produced statistically insignificant results. In addition,
this study supported NDVI as a reliable indicator for measuring
agricultural water stress, among other metrics considered. Notably,
the field-scale ETc maps created for this study revealed different
values for each developmental stage, with noticeably lower ETc levels
at the beginning and higher ETc levels in the midseason. These maps
help assess the variability in crop water consumption throughout the
growing season.

According to our results, we may infer that ETc maps
generated using multispectral remote sensing techniques are
an excellent tool for precise crop water consumption
estimation. The effective use of these maps can improve
irrigation scheduling techniques, increasing water efficiency.TA
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Such improvements could provide significant advantages to the
agriculture industry in Prince Edward Island.
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