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Land use and land cover (LULC) changes are one of the main factors contributing
to ecosystem degradation and global climate change. This study used the
Gontougo Region as a study area, which is fast changing in land occupation
and most vulnerable to climate change. The machine learning (ML) method
through Google Earth Engine (GEE) is a widely used technique for the
spatiotemporal evaluation of LULC changes and their effects on land surface
temperature (LST). Using Landsat 8 OLI and TIRS images from 2015 to 2022, we
analyzed vegetation cover using the Normalized Difference Vegetation Index
(NDVI) and computed LST. Their correlation was significant, and the Pearson
correlation (r) was negative for each correlation over the year. The
correspondence of the NDVI and LST reclassifications has also shown that
non-vegetation land corresponds to very high temperatures (34.33°C–45.22°C
in 2015 and 34.26°C–45.81°C in 2022) and that high vegetation land corresponds
to low temperatures (17.33°C–28.77°C in 2015 and 16.53 29.11°C in 2022).
Moreover, using a random forest algorithm (RFA) and Sentinel-2 images for
2015 and 2022, we obtained six LULC classes: bareland and settlement, forest,
waterbody, savannah, annual crops, and perennial crops. The overall accuracy
(OA) of each LULC map was 93.77% and 96.01%, respectively. Similarly, the kappa
was 0.87 in 2015 and 0.92 in 2022. The LULC classes forest and annual crops lost
48.13% and 65.14%, respectively, of their areas for the benefit of perennial crops
from 2015 to 2022. The correlation between LULC and LST showed that the forest
class registered the lowmean temperature (28.69°C in 2015 and 28.46°C in 2022),
and the bareland/settlement registered the highest mean temperature (35.18°C in
2015 and 35.41°C in 2022). The results show that high-resolution images can be
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used for monitoring biophysical parameters in vegetation and surface temperature
and showed benefits for evaluating food security.
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1 Introduction

The sixth report of the Intergovernmental Panel on Climate
Change (IPCC) reveals that most of the observed increase in global
average temperature since the middle of the 20th century most likely
results from the observed increase in anthropogenic greenhouse gas
(GHG) concentrations (IPCC, 2023). All future global climate
projections (near and far future) predict an intensification of
average warming, in addition to rainfall variability and a greater
frequency and intensification of extreme events (Barrie and
Braathen, 2021; IPCC, 2014). The impacts of this climate
variability vary from one region of the globe to another, with
socio-economic consequences, particularly important in
developing countries (Sultan et al., 2015). West Africa is among
the most affected areas (Akpoti et al., 2022; IPCC, 2014; Langsdorf
et al., 2022; Sarr and Camara, 2017; Sultan et al., 2019), where most
critical areas, such as the environment, agriculture, and water
resources, are considered particularly vulnerable to climate
change (Salack et al., 2016). The region faces food shortages
almost every year due to crop failure or low crop yields
(Waongo, 2015). However, agriculture is the main occupation
and source of income for most populations of Sub-Saharan
Africa (SSA) and, therefore, has a great influence on regional
food security (Sultan et al., 2013; World Bank Group, 2019). This
situation contributes significantly to amplifying the region.
Nevertheless, it is known that the observed changes result from
both climate forcing and several other feedbacks, including land use
land cover (LULC). Changes in LULC could be triggered by the
ongoing climate change, thus acting as feedback (Gogoi et al., 2019).
Affected populations will also have to find ways to adapt by using
available natural resources and making maximum use of the land
(Zougmoré et al., 2018; Asselin et al., 2022). In addition to these
natural forcing and feedback cycles, land surface temperature (LST)
is also linked to anthropogenic activities (Kafi et al., 2014;
Benmecheta, 2016; Gogoi et al., 2019; Moisa et al., 2022a).
Indeed, these LULC changes and their effects on LST are most
noticeable in regions where factors such as population density,
urbanization, deforestation, and agricultural activities are highest.
Thus, the most visible effect of anthropogenic activities at the
regional and local level is the modification of LULC, which alters
the energy balance of the surface (Gogoi et al., 2019; Kosari et al.,
2020; Moisa et al., 2022b). This changes surface temperature, the
microclimate of the region, and dwindling agricultural yields,
particularly yams, which are highly dependent on surface
temperature (Aighewi et al., 2015; Benmecheta, 2016; Neina,
2021). In the Gontougo Region, Côte d’Ivoire, there is an
alarming regression of forest and annual crop areas, while
cashew crops are increasing every year, which constitute the
main landscape vegetation in this region (Koulibaly et al., 2016).
Therefore, with this observation, we went to the field to gain a better
understanding of this phenomenon. We put forward several

hypotheses as to why the main food crop (yam) that feeds this
population constantly decreases in yield. The Food and Agriculture
Organization (FAO) statistics show that from 2000 to 2021 in Côte
d’Ivoire, the yams harvested in hectare values ranged from
505,408 to 1,438,153, and the yield was from 88,172 to
54,605 hg/ha. In other words, land increases every year, whereas
yield continuously decreases (https://www.fao.org/faostat/en/
#data). In the same direction, the World Bank Group (World
Bank Group, 2019) conducted a yam yield modeling study in
Côte d’Ivoire using the International Model for Policy Analysis
of Agricultural Commodities and Trade (IMPACT model) and
noticed that the percentage point difference in yield and the area
of production with different levels of climate change for yams will be
reduced negatively in yield under regional climate projection (RCP),
respectively, in 2030 and 2050 (RCP4.5: −09%, −2.3% and RCP8.0:
−1.0%, −2.4%) and increased in production in the same RCP for
2030 and 2050, respectively (RCP4.5: 0.2%, 0.5% and RCP8.0: 0.1%,
0.4%). These results raise issues of food safety that need to be
addressed. Therefore, with these statistics showing high use of land,
fertile land will certainly be in short supply due to overexploitation,
canopy degradation, and the expansion of cash crops, which over
time have changed the agricultural landscape (Sharifi and Amini,
2015; Sharifi et al., 2016; Ghaderizadeh et al., 2022). Previous studies
(Phan et al., 2018; Moisa et al., 2022c; Syawalina et al., 2022) have
mentioned that these actions directly lead to changes in soil surface
temperature. However, surface temperature causes the soil in which
the yam is grown to warm up. As a result, the yam could rot after
sowing under such conditions. This is what drew our attention to this
subject. Moreover, we have not found a single study in the literature
addressing this topic in this part of Côte d’Ivoire that analyzes the
effects of LULC change and their effects on LST.Most of the studies in
this region are about cashew nuts. Diulyale et al. (2019a) and Diulyale
et al. (2019b) investigated cashew industry structuring, the diversity of
cashew uses by farmers, and the evaluation of grafting techniques for
the renewal of aging cashew orchards. Some of them again focused on
the inventory of insect pests of the cashew orchard (Félicia et al.,
2017). By addressing the yam cropping system in Côte d’Ivoire,
Kouakou et al. (2019) determined yam species and varieties
cultivated in some regions in Côte d’Ivoire, including the
Gontougo Region. Therefore, this novel study is important for
maintaining food security and draws the attention of researchers
and yam farmers to invest in these aspects, which are also primordial
in the success of yam cropping and the fight against food security. We
investigated this aspect to understand the effect of LULC changes and
the real state of the vegetation using the Normalized Difference
Vegetation Index (NDVI) on LST in the Gontougo Region in Côte
d’Ivoire. The LST is the brightness temperature of the ground and
therefore determines the surface temperature (Rajendran and Mani,
2015). Increased LST is related to many factors, including changes
in LULC, changes in NDVI, and land surface parameters (Rajendran
and Mani, 2015; Syawalina et al., 2022). According to some authors
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(Phan et al., 2018; Moisa et al., 2022a; Syawalina et al., 2022), the LST
increases as a result of a decrease in NDVI. Thus, the NDVI has a
strong negative association with LST. In the environmental
monitoring of natural resources, more specifically, agricultural
land monitoring, it is critical to examine the relationship
between vegetation dynamics through NDVI, LULC, and LST
(Wu et al., 2019; Moisa et al., 2022b). Therefore, today, with
the evolution of technology and the advent of artificial
intelligence (AI), many processes are automated. This is the
case with Google Earth Engine (GEE), a machine learning (ML)
tool that allows the automated processing of remote sensing data
through algorithms, such as random forest (RF). GEE is a
geospatial processing platform based on geo-information
applications in the “cloud.” This platform provides free access
to huge volumes of satellite data for computing and offers support
tools to monitor and analyze environmental features on a large
scale (Tamiminia et al., 2020; Ghosh et al., 2022; Pérez-Cutillas
et al., 2023). For this work, through GEE, we used RF, which is an
ML algorithm commonly used to improve classifications in remote
sensing applications for LULC classification and change detection
(Teluguntla et al., 2018; Phalke et al., 2020; Suryono et al., 2021;
Tariq et al., 2022; Yan et al., 2022; Ashane et al., 2023; Zhao et al.,
2023) to compute and run the LULC using JavaScript (JS) as
a code.

2 Methodology

2.1 Study area

The Gontougo Region is one of the 31 regions of Ivory Coast.
Since its establishment in 2011, it has been one of two regions in
Zanzan District. The seat of the region is Bondoukou, and its area is
16,100 km2. The population in the 2021 census was 917,828.
Gontougo is currently divided into five departments: Bondoukou,
Koun-Fao, Sandégué, Tanda, and Transua (RGPH-CI, 2021). It is
located between 4°00′ and 2°50′W longitudes and 6°30′ and 8°50′ N
latitudes (Figure 1).

The soils of the region are generally ferritic, more or less
desaturated, deep sandy-clay, and very suitable for cash crops
(cashew, cocoa, coffee, and rubber) and food crops (e.g., yams,
cassava, rice, maize, and tomatoes) (République de Côte d’Ivoire,
2019). According to the climatic division of Côte d’Ivoire, there
are three climatic zones (Kouame, 2021; Kouame et al., 2020):
northern, central, and southern zones. The central zone, of which
the study area is a part, presents a bimodal seasonal cycle with less
pronounced rainfall maximums in June and September. It has
four seasons: a long rainy season with frequent rainfall and
numerous thunderstorms from April to July, a small dry
season in which the sky can remain overcast from August to

FIGURE 1
Geographic situation of the Gontougo Region.
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September, a short rainy season with some small rainfall from
September to November, and a long dry season from December
to March.

2.2 Material and data description

The present study focused on satellite images and field training
reference data collected between November and December 2022 in
the Gontougo Region to examine LULC change and assess the
correlation between NDVI, LULC, and LST. Satellite images include
Landsat-8 Oli/Tirs and Sentinel-2 Msi.

2.2.1 Satellite image description
2.2.1.1 Landsat-8

The Landsat data used are from the United States Geological
Surveys (USGS) and consist of Landsat 8 Collection 2 Tier 1 top
of atmosphere (TOA) Reflectance. This dataset’s availability at
the time of use is from March 2013 to April 2023. We used them
through GEE to calculate NDVI and LST. From 2015 to 2022,
we used eight images at a rate of one image per year from the
same collection (https://developers.google.com/earth-engine/
datasets/catalog/LANDSAT_LC08_C02_T1_TOA).

2.2.1.2 Sentinel-2
The Sentinel-2 data used are from Copernicus and consist of

Harmonized Sentinel-2, MultiSpectral Instrument (MSI), Level-
1C. This dataset’s availability at the time of use is from 23 June
2015 to April 2023 (Table 2). We used them through GEE to
perform classification and compute the LULC and its changes
(change detection). We used two of these images, one in 2015 and
the other in 2022 (https://developers.google.com/earth-engine/
datasets/catalog/COPERNICUS_S2_HARMONIZED).

2.2.2 Google Earth Engine description
GEE is a geospatial cloud platform for data analysis and geo-

information application processing. This platform provides free
access to huge volumes of satellite data for computing and offers
support tools to monitor and analyze environmental features on
a large scale. Such facilities have been widely used in numerous
studies on land management and planning (Amani et al., 2020;
Tamiminia et al., 2020; Ghosh et al., 2022; Pérez-Cutillas et al.,
2023). Several programming languages are used for data
processing on GEE, including JavaScript coding. Therefore,
using the GEE-integrated code editor, we computed and ran
our data with the JS application programming interface (API).

2.3 Computing of the NDVI and LST using
Landsat 8 OLI/TIRS images from 2015 to
2022

According to America’s space agency [Nasa Earth Observation
(https://earthobservatory.nasa.gov/)], LST is how hot the “surface”
of the Earth would feel to a touch in a particular location, and NDVI
is used to quantify vegetation greenness and density and is useful in
understanding plant health. Calculations of NDVI for a given pixel

always result in a number that ranges from minus one (−1) to plus
one (+1); however, no green leaves give a value close to zero. A zero
means no vegetation, and close to +1 (0.8–0.9) indicates the highest
possible density of green leaves.

2.3.1 Retrieval of LST
The thermal bands of Landsat images from OLI/TIRS were used

to calculate the LST. Single-channel Landsat 8 images were utilized
to derive LST (band 10 for each year). For determining LST, it
employs the brightness temperature of one band of thermal infrared
(TIR), as well as the mean and differential in land surface emissivity
(Benmecheta, 2016; Schmugge et al., 2020; Abulibdeh, 2021; Moisa
et al., 2022c).

2.3.2 Conversion of digital number into radiance
The first step in calculating LST from the metadata of Landsat

image files was to convert the digital number to radiance for Landsat
OLI/TIRS before calculating brightness temperature (Schmugge
et al., 2020; Moisa et al., 2022a; Moisa et al., 2022b). The Landsat
8 OLI digital numbers (DNs) of band 10 were first converted to
spectral radiance:

Lλ � ML × QCal( ) + AL, (1)
where Lλ is the top of atmosphere (TOA) spectral radiance in watts/
(meter squared ster µm), ML is a band-specific multiplicative
rescaling factor from the metadata (RADIANCE_MULT_BAND_
x, where x is the band number), AL is the band-specific additive
rescaling factor from the metadata (RADIANCE_ADD_BAND_x,
where x is the band number), QCal corresponds to band 10 and has
quantized and calibrated standard product pixel values (DN);
TOA = 0.0003342 * “Band 10” + 0.1.

2.3.3 TOA to brightness temperature conversion
Based on land surface emissivity, atmospheric trans-emissivity,

brightness temperature, and average atmospheric temperature, the
mono-window algorithm is used to determine LST (Benmecheta,
2016; Huang et al., 2020; Moisa et al., 2022c):

BT � K2

ln K1
Lλ( ) + 1

− 273, 5, (2)

where BT is an effective at-sensor brightness temperature (K);
K1 indicates band-specific thermal conversion constant from the
metadata (K1_CONSTANT_BAND_x, where x is the thermal band
number) (W/(m2 sr μm)); K2 is band-specific thermal conversion
constant from the metadata (K2_CONSTANT_BAND_x, where x is
the thermal band number) (K); Lλ is spectral radiance at the sensor’s
aperture (W/(m2 sr μm)), Lλ = TOA.

Therefore, to obtain the results in Celsius, the radiant temperature
is adjusted by adding absolute zero (approx. −273.15°C).

BT = (1321.0789/Ln ((774.8853/“%TOA%”) + 1))—273.15.

2.3.4 Calculation of NDVI
The NDVI formula is written according to Aka et al. (2022), Dibi

N’da et al. (2008), and Sharifi (2018) as follows:

NDVI � NIR − R

NIR + R
, (3)

Frontiers in Remote Sensing frontiersin.org04

Aka et al. 10.3389/frsen.2023.1221757

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_TOA
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_TOA
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_HARMONIZED
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_HARMONIZED
https://earthobservatory.nasa.gov/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1221757


where NIR means near-infrared, corresponding to band B5, and R
indicates red, corresponding to band B4.

Not4e that the calculation of the NDVI is important because,
subsequently, the proportion of vegetation (PV), which is highly
related to the NDVI, and emissivity (ε), which is related to the PV,
must be calculated.

2.3.5 Calculation of the proportion of vegetation
PV is the vegetation proportion acquired according to the

formula of Carlson and Riziley (1997) as follows:

PV � NDVI –NDVImin

NDVImax –NDVImin
[ ]2. (4)

2.3.6 Calculation of emissivity ε
According to Sobrino et al. (2004) and Gogoi et al. (2019), the

land surface emissivity was computed as follows:

ε � 0.004 * PV + 0.986. (5)
The value of 0.986 corresponds to the correction value of the

equation.

2.3.7 Calculation of the land surface temperature
Finally, the LST equation is applied to obtain the surface

temperature maps. The calculated radiant surface temperatures
were corrected for emissivity as follows (Moisa et al., 2022):

LST � BT

1 + λ BT
ρ( ) ln ε − 273, 5. (6)

LST = [BT/((1 + (0.00115 * BT/1.4388) * Ln (&epsi)—273.5)]
where LST means land surface temperature (in Kelvin); BT
indicates brightness surface temperature (in Kelvin); λ is the

wavelength of emitted radiance (10.8 μm); ρ means h × c/σ
(1.438 × 10–2 mK), in which h is Planck’s constant (6.26 ×
10–34 J s), c is the velocity of light (2.998 × 108 m/s), and σ is
Stefan Boltzmann’s constant (1.38 × 10–23 J/K); and ε is land
surface emissivity.

2.4 Computing LULC using Sentinel-2
MultiSpectral Instrument of 2015 and 2022

2.4.1 Collection of field training data and adoption
of the legend

A 3-week field mission in the Gontougo Region collected
390 samples of training points distributed over each land use
unit. These data were used to classify the two (2) Sentinel-2
images by training the RFA on 60% of these data and 40% for
testing. The spatial distribution of the data collected on the ground
on the 2022 Sentinel-2 image is as follows (Figure 2).

This step led us to define and adopt the legend according to the
major LULC units found in the field. Thus, six classes were retained,
as described in Table 1.

2.4.2 Loading of Sentinel-2 images
We loaded the Sentinel-2 image collection and applied the filters

to them to select the images of the study area. Subsequently, we
applied the mask and the mosaic and made the clip. The filters are
filter date, filter bounds, cloud cover, cloud pixel, and select bands.

2.4.3 Index computation and creation of the image
composite

Before moving on to the classification, it is important to calculate
the biophysical indices in order to highlight the spectral
characteristics of the LULC units according to their reflectance
(Aka et al., 2022; Dibi N’da et al., 2008; Kadio et al., 2022).
Therefore, we automatically calculated four indices: Soil Index
(SI), NDVI, Enhanced Vegetation Index (EVI), and Soil Adjusted
Vegetation Index (SAVI) (Morawitz et al., 2006; Zheng et al., 2014;
Barriguinha et al., 2022). Then, we combined them with the clipped
images of the study area to create new channels; stacked them
together to enhance the reflectance of the units present; and achieved
less confusion, better classification, and good accuracy. They were
calculated according to the following scripts:

//Soil index (SI)
var SI = image. expression (’ ((65536-Green)*(65536-Blue)

*(65536-Red))’, { ’Red’:image.select ([’B4’]), ’Green’:
image.select([’B3’]), ’Blue’:image.select([’B2’]) }

//Normalized Difference Vegetation Index (NDVI)
var NDVI = image.normalizedDifference([’B8′,

’B4’]).rename(’NDVI’);
//Enhanced Vegetation Index (EVI)
var EVI = S2.expression(’2.5 * ((NIR -RED)/(NIR +6 * RED -7.5 *

BLUE +1))’,
//Soil Adjusted Vegetation Index (SAVI)
var SAVI = S2. expression (’float (((NIR - RED)/(NIR + RED +

L))* (1 + L))’,{ ’L’: 0.5}
//Compilation of Sentinel-2 bands and calculated indices
var compositeS2SS = S2. addBands (si). addBands (ndvi).

addBands (evi). addBands (savi).

FIGURE 2
Distribution of point samples collected for classification.
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TABLE 1 Description of land occupation units according to the field.

Code LULC class Description of the classes LULC unit reflectance

0 Annual crops This class includes cultivated land, fallow land, sparsely wooded land, and
clearings with some wood that serve as stakes for yam growth

1 Perennial crops They are essentially cash crops with a very strong presence of cashew nuts
and very low representations of hevea and cocoa

2 Savannah These are continuous grassland formations over large areas with the
presence of shrubs and savannah trees

3 Forest There are mostly gallery and islets forests, which are more or less sacred and
protected by the populations; there are also degraded forests and the
presence of teak wood

4 Bareland and
settlement

These are mainly dwellings or human constructions, urban patches, roads,
denuded soils, and rock slabs

(Continued on following page)
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Map.addLayer (compositeS2, viparams, "compositeSS");

2.4.4 Setting up input parameters for classification
using the Random Forest algorithm

Random Forest (RF) is an ML algorithm used for satellite image
classification and geo-information processing. It is a powerful
algorithm for feature selection as it ranks the importance of
each input variable based on how much it contributes to the
overall accuracy (OA) of the classification (Teluguntla et al.,
2018; Suryono et al., 2021; Yan et al., 2022; Ashane et al., 2023;
Zhao et al., 2023).

2.4.4.1 Classification features setup
We defined the code of each class and gave it the name of the

LULC units. Subsequently, the points of the LULC samples collected
were distributed: 60% were used for training and 40% for testing:

//Classification functions
Class code = [0, 1, 2, 3, 4, 5]
Class code rename = OCS = ["Annual crops”, "Perennial crops”,

"Savannah”, "Forest”, "Bareland and Settlement”, "Waterbody"];
//Distribution of training and testing points

//Training 60%
var training_22 = RedRegions_S2SS.filter (ee.Filter.lt

(’random’, 0.6));
//Testing 40%
var testing_22 = RedRegions_S2SS.filter (ee.Filter.gte

(’random’, 0.4));

2.4.4.2 Defining Random Forest function for classification
The RFA (smileRandomForest) was applied to the set of stacker

images for 2022 and 2015, and then, the algorithm was executed:
var Classification = function (training, label, bands, image,

testing) {}
var trainedRF = ee. Classifier.smileRandomForest (100). train ({

features: training, classProperty: label, inputProperties: bands, }); var
classifiedRF = S2. select (bands). classify (trainedRF)

2.4.5 Computing the LULC changes: change
detection

The analysis of the changes that occurred over the entire study
period was conducted using the two Sentinel-2 images. It produced a
change detection matrix from the comparison between the maps of
the two dates. Therefore, once the two LULC years have been
obtained, we identified the difference between the two dates (Kafi
et al., 2014; Gou et al., 2022; Aniah et al., 2023) and then obtained the
change according to the following script:

//Define a function to compute change detection using the
LULC maps

function compute_change (lulc1, lulc2) {
var change = lulc2. subtract (lulc1);
//Mask out areas where the LULC did not change
var mask = change. neq (0);
change = change. updateMask (mask);
//Return the change map
return change; }
//Compute change maps for 2015 and 2022
var change_2015_2022 = compute_change (lulc_2015, lulc_

2022);
Notably, the LULC results obtained from GEE have been geo-

processed using ArcGIS software to give the best possible
representation of the different land uses and land cover that the
Gontougo Region reflects, which is one of the limitations to this
study.

2.4.6 Definition and generation of accuracy
assessment

The classification details and accuracy are generated using the
RFA functions. The function that displays them on GEE is "print”
(Ghayour et al., 2021; Aniah et al., 2023). There are error matrix,
kappa, OA, producer accuracy, user accuracy, and the classification
score for each LULC class:

print (′Training Results RF′,TrainingResults_RF);
print (′RF Matrice Confusion: ′, cmRF);

TABLE 1 (Continued) Description of land occupation units according to the field.

Code LULC class Description of the classes LULC unit reflectance

5 Waterbody Waterbody includes the form of streams, puddles, watercourses, rivers, and
swamp

TABLE 2 NDVI minimum, maximum, and mean values per year.

Year 2015 2016 2017 2018 2019 2020 2021 2022 NDVI change (2015–2022)

Minimum NDVI −0.046 −0.030 −0.108 −0.064 −0.081 −0.040 −0.105 −0.090 −0.044

Maximum NDVI 0.567 0.415 0.416 0.431 0.482 0.454 0.557 0.414 −0.153

Mean NDVI 0.215 0.205 0.214 0.221 0.240 0.244 0.246 0.243 0.029
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print (′RF Produceers accuracy: ′, paRF);
print (′RF Users/Cons accuracy: ′, caRF);
print (′Validation Results RF′,results_RF);

2.5 Analysis of the LULC change rate

The overall change rate (Tg) is used to estimate the overall
progress (the proportion of gain or loss) of the areas of LULC units
(Dahan et al., 2021; Aka et al., 2022). It is obtained from the
following mathematical formula:

Tg � S2 – S1( )/ S1[ ]*100, (7)

where Tg is the overall rate of change (%); S1 represents the area of
the class on date t₁ (initial date); S2 is the area of the class on the date
t₂ (final date), and t₂ ˃ t₁.

2.6 Correlation analysis between NDVI
and LST

We used the Pearson correlation coefficient, also known as the
Pearson R statistical test, to measure the strength between the different
variables and their relationships (Eq. (8)). Here, we measured a
statistical test between two variables (NDVI and LST). Therefore,
according to previous studies (Zheng et al., 2014; Peng et al., 2020),
the calculation of the correlation coefficient value enables
comprehension of the strength of the relationship between the two
variables. Pearson correlation coefficient can range from +1 to −1,
where +1 indicates the perfect positive relationship between the
variables considered, −1 indicates the perfect negative relationship
between the variables considered, and 0 indicates no relationship
between the variables considered (Zheng et al., 2014; Njoku and
Tenenbaum, 2022):

rxy � n∑xiyi −∑xi∑yi������������
n∑x2

i − ∑xi( )2√ ������������
n∑y2

i − ∑yi( )2√ , (8)

where rxy is Pearson r correlation coefficient between x and y, n
represents the number of observations, xi means the value of x
(for ith observation), and yi indicates the value of y (for ith
observation).

2.7 Correlations analysis between LULC
and LST

Throughqualitativeandquantitativecomparisonof thechange, the
LULC types were compared with the LST values over the classification
years based on their respective changes (Moisa et al., 2022a).

3 Results

3.1 NDVI analysis

Over the study period, between 2015 and 2022, the NDVI of the
Gontougo Region was determined according to the NIR and Red

multispectral bands of the Landsat images. We noticed that the year
2021 presented the highest NDVI mean value with 0.246 and the
year 2016 presented the lowest with 0.205 (Table 2). Each NDVI
value per year of study was statistically presented in a histogram.
These histograms show the distribution of vegetation cover
according to the channel in which the NDVI value is high,
medium, or low (Figure 3). The distribution of NDVI revolves
around the mean values where the highest peaks are observed.

Qualitatively, the results show that the northeast, northwest, and
west parts are much more devoid of vegetation than the other parts
of the study area. The central and southern areas have some
greenery. Overall, the values vary from −0.108 to 0.566
(Figure 4). The mean values of each NDVI were extracted to
appreciate the trend of the vegetation (Figure 5), and the years
2019–2022 showed higher average vegetation than the years
2015–2018, in which the trend was lower.

3.2 LST analysis

The LST is used to monitor the temperature and surface
processing of land features. In the present study, LST is
calculated using thermal bands from Landsat images from
2015 to 2022. Table 5 reveals that the maximum temperature
peaked at 50.11°C in 2021, whereas the minimum temperature
was recorded at 9.21°C in 2019. Overall, LSTs are around 31°C
when consideringmean values. Similarly, at the mean level, there has
been a temperature decrease of 0.19°C from 2015 to 2022 (Table 3).

To better appreciate these values, we generated histograms for
each year of LST. These histograms show the distribution of LST
values. The horizontal axis shows the minimum values at the
beginning and middle, and the mean and maximum values at the
end. On the vertical axis, we can see the evolution, especially the
concentration of the LST values from the diagonal line (Figure 6).
For all years, the distribution of LST is more or less concentrated on
the mean in which the highest peaks are observed.

The findings of the study revealed that the northeastern and
some western parts of the study area had high LST except in the year
2019, when the western part was not high, whereas the southern and
center-eastern parts had low LST (Figure 7).

Based on themean values, we represented the trend of the LST. The
year 2017 recorded the lowest temperature at 30.47°C, and the year
2016 had the highest temperature at 32.73°C. The overall trend shows a
constant and slight evolution along the LST trend line (Figure 8).

3.3 Land use land cover changes

All the results in this section were obtained from the
classification of Sentinel-2 images using GEE. Therefore, we used
the following abbreviations: UA, user accuracy; PA, producer
accuracy; OA, overall accuracy; Acrops, annual crops; Pcrops,
perennial crops; Sav, savannah; Forest, forest; BarSet, bareland
and settlement; Wb, waterbody.

3.3.1 Accuracy assessment
Accuracy assessment is a process that evaluates the accuracy of a

LULC classification map (the classified data) by comparing it to
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reference data (Olofsson et al., 2013; Aniah et al., 2023). The field
sample of the LULC units serves as our reference data. Accuracy
assessment provides a quantitative measure of the classification’s
OA and identifies the LULC classes where errors are prevalent. Thus,

we determined the following precision statistics for each
classification: F1 score, PA, and UA (Table 4). The F1 score
considers precision (PA and UA) and recall so that the two
reach the highest values at the same time and balance (Zhang

FIGURE 3
NDVI histograms per year.

FIGURE 4
NDVI maps from 2015 to 2022.

Frontiers in Remote Sensing frontiersin.org09

Aka et al. 10.3389/frsen.2023.1221757

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1221757


FIGURE 5
Gontougo NDVI mean over time.

TABLE 3 LST minimum, maximum, and mean values per year.

Year 2015 2016 2017 2018 2019 2020 2021 2022 LST change (2015–2022)

Minimum LST (°C) 17.33 12.48 12.47 8.71 9.21 16.69 9.71 16.53 −0.79

Maximum LST (°C) 45.22 46.35 44.95 46.37 46.27 49.32 50.11 45.81 0.58

Mean LST (°C) 31.05 32.73 30.47 31.01 31.98 32.52 32.15 30.86 −0.19

FIGURE 6
LST histograms per year.
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et al., 2023). In our situation, the BarSet class has the greatest score
for the year 2015 (0.98), whereas Acrops has the lowest (0.70). For
the year 2022, the highest score is the Wb class (1.00) and the lowest
is Acrops (0.83). The percentage of pixels in each correctly classified

class to all the pixels in that class in the reference data determines the
producer accuracy in Table 6. It evaluates how accurately a
classification can identify a given class. Subsequently, user
accuracy is the proportion of correctly classified pixels in each

FIGURE 7
LST maps from 2015 to 2022.

FIGURE 8
Gontougo LST mean over time.
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class to the total number of pixels in that class in the classification
map. It measures the accuracy of classification in correctly assigning
pixels to a particular class (Jensen J. R., 1986; Congalton, 1991;
Olofsson et al., 2013; Rwanga and Ndambuki, 2017; Aniah et al.,
2023; Zhang et al., 2023). In our situation, we had low values of PA
and UA in 2015 of 0.73 and 0.67, respectively, which belonged to
classes Acrops and Sav. In addition, high values of 0.96 and
1.00 belong to classes Pcrops and Wb, respectively. Following the
year 2022, the trend was better, and we had low values of PA and UA
of 0.80 and 0.81, belonging, respectively, to the Savannah and
Acrops classes, and a high value of 1.00 of each side belonging to
classes Wb and BarSet for PA and Wb for UA. Figure 9 graphically
shows the precision with all the different values on the vertical axis.

The overall cartographic accuracy and kappa coefficient of the
classification process on the two Sentinel-2 images are presented in
Tables 5, 6 (error matrices). For each year’s classification, we
calculated the OA and kappa to evaluate the accuracy of the
classification results. OA is the proportion of correctly classified
pixels to the total number of pixels in the image. It provides a
measure of the classification’s OA. The kappa coefficient is a

measure of agreement between the classification map and the
reference data that considers the possibility of chance agreement.
It ranges from −1 to 1, with one indicating perfect agreement and
0 indicating no agreement beyond chance (Congalton, 1991; Banko,
1998; Rwanga and Ndambuki, 2017; Aka et al., 2022; Zhang et al.,
2023). In the 2015 LULC classification, the OA was 0.94%, and the
kappa was 0.87. However, in the year 2022, the OA was 0.96% and
the kappa 0.92. The diagonal values in the gray font represent the
well-classified pixels between UA and PA, and the other values
represent the commission and omission errors. Both errors occur
during LULC mapping. Indeed, an error of omission refers to when
a feature that should have been mapped was missed, whereas an
error of commission occurs when a feature is mapped that should
not have been included in the LULC classification (Congalton, 1991;
Banko, 1998; Akomolafe and Rosazlina, 2022).

3.3.2 LULC mapping
The LULC mapping of the study area led to two maps, each

showing the following six classes: annual crops, bareland and
settlement, forest, perennial crops, savannah, and waterbody

TABLE 4 Sample training data classification precision by LULC class.

LULC class 2015 2022

F1 score (%) Producer
accuracy (%)

User accuracy (%) F1 score (%) Producer
accuracy (%)

User
accuracy (%)

Acrops 0.70 0.73 0.67 0.83 0.85 0.81

Pcrops 0.97 0.96 0.98 0.98 0.99 0.97

Sav 0.75 0.86 0.67 0.86 0.80 0.94

Forest 0.85 0.85 0.85 0.92 0.85 1.00

BarSet 0.98 1.00 0.96 0.98 1.00 0.96

Wb 0.89 0.80 1.00 1.00 1.00 1.00

FIGURE 9
Samples precision of the LULC mapping for 2 years.
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(Figure 10). At first glance, we can see the regression of forest and
annual crop classes between the two dates. The savannah class is more
present in the northeast and the extreme west, and little represented in
the central region where the forest is dominant. The waterbody class is
very thin and almost invisible. However, it can be observed on the
western side in the year 2015, where a river flows, of which the study
area is the limit. Generally, water in the research region is mostly in the
form of puddles, ponds, and wetlands, which dries up during the dry
season leaving bare soil. The bareland and settlement class is
disseminated and more present in the northwest on both images
and accentuated in 2022. Finally, the perennial crop class, the most
obvious and visible in both images, occupies the largest area (63% in
2015% and 67% in 2022) of all LULC classes (Table 7).

3.3.3 Assessment of the LULC changes
The overall rate of LULC changes made it possible to estimate

the overall increase in the gain and loss proportion of LULC areas

(Aka et al., 2022). Analysis of the rate of change shows that BarSet,
Sav, and Pcrops have positive values and indicate a “gain or
progression in the area.” Forest, Wb, and Acrops have negative
values, thus indicating a “loss or regression in the area” (Figure 11).
The critical loss is Wb (−47.52%), and the most gain is for the BarSet
(35.76%) class.

The assessment of the overall LULC change rate led us to set up
and calculate the LULC change matrix, also called the transition
matrix. The LULC change matrix is used to quantify changes in the
distribution of LULC types over time. We used it to monitor and
analyze changes between the 2015 and 2022 LULCmaps. Thematrix
rows represent the LULC types in the earlier period, whereas the
columns represent the LULC types in the later time. The matrix cells
show the areas converted from one LULC type to another. However,
the diagonal values in gray color represent the percentages of LULC
classes that remained stable. Only 13.40% of the Acrops areas have
remained stable, and 65.14% have been converted into Pcrops,

TABLE 5 LULC error matrix, 2015.

Overall accuracy = 93.77%

Kappa = 0.87

Data classified

2015

Acrops Pcrops Sav Forest BarSet Wb Row total

Acrops 66.67 1.25 0.00 0.00 4.35 0.00 72

Pcrops 25.00 97.50 22.22 7.69 0.00 0.00 152

Sav 0.00 0.63 66.67 0.00 0.00 0.00 67

Forest 8.33 0.00 11.11 84.62 0.00 0.00 104

BarSet 0.00 0.00 0.00 0.00 95.65 0.00 96

Wb 0.00 0.63 0.00 7.69 0.00 100.00 108

Column total 100 100 100 100 100 100 600

Bold values represent row or column totals.

TABLE 6 LULC error matrix, 2022.

Overall accuracy = 96.01%

Kappa = 0.92

Data classified

2022

Acrops Pcrops Sav Forest BarSet Wb Row total

Acrops 80.95 0.53 5.88 0.00 4.17 0.00 92

Pcrops 9.52 97.37 0.00 0.00 0.00 0.00 107

Sav 9.52 1.05 94.12 0.00 0.00 0.00 105

Forest 0.00 1.05 0.00 100.00 0.00 0.00 101

BarSet 0.00 0.00 0.00 0.00 95.83 0.00 96

Wb 0.00 0.00 0.00 0.00 0.00 100.00 100

Column total 100 100 100 100 100 100 600

Bold values represent row or column totals.
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which is alarming (Table 8). These statistics can be seen in detail
with the overall area in hectares, the percentage of each LULC type,
and the changes it has experienced from 2015 to 2022 in Table 9. As
shown in the area column (in percentage), the values in gray color
stand for LULC classes that remained stable, and the other values
have undergone mutations by moving from one class to another.

3.4 Correlation between NDVI and LST

The relationship between LST and NDVI was examined using
Pearson correlation analysis. Pearson correlation is a measure of the
linear relationship between two variables. It ranges from −1 to 1,
where −1 indicates a perfectly negative correlation, 0 indicates no
correlation, and one indicates a perfectly positive correlation. It is
used in statistics to examine the strength and direction of the

relationship between two variables (Zheng et al., 2014; Abulibdeh,
2021). We performed statistical analysis by comparing the LST and
NDVI values after reclassification in which both variables had the same
number of classes. We had eight images on each side; therefore, eight
matches were made per pair (LST and NDVI together). The LST values
ranged from maximum (50.11°C) to minimum (9.21°C) temperatures,
whereas the NDVI values ranged from 0.567 to −0.108, frommaximum
to minimum. The results show that LST and NDVI have a strong
negative correlation each year (Table 10). Following Table 12, which
shows the type of correlation between NDVI and LST, we investigated
the plots generated by these tables, which show how the regression line
declines at each correlation (Figure 12). This indicates a negative
correlation between NDVI and LST. Hence, the Pearson correlation
coefficient (r) recorded at each correlation indicates negative values
from 2015 to 2022. These values
are −0.992, −0.982, −0.975, −0.977, −0.966, −0.994, −0.990,
and −0.978, respectively, from 2015 to 2022.

3.5 Correlation between LULC and LST

The distributions of spatial LST values for the different LULC
classes were reclassified and mapped for the two LULC years,
2015 and 2022, to depict temperature differences on the maps
and show the LULC areas that are more or less heated
(Figure 13). These LST values reclassify maps to show that the
hottest areas are the savannah and the bareland and settlement. The
results are similar for the low-temperature areas, which are more or
less forest areas. In addition, there is a significant spread of LULC
classes and temperatures that vary immensely over the whole area on
both maps. Furthermore, the surface temperatures varied between
17.33°C and 45.22°C in 2015 and 16.53°C and 45.81°C in 2022. These
values can be observed on the map through the legend.

FIGURE 10
Gontougo LULC map of 2015 and 2022.

TABLE 7 LULC area in hectares and percentage.

LULC class 2015 2022

Area (Ha) Area (%) Area (Ha) Area (%)

BarSet 32,958.91 2.03 44,745.25 2.76

Forest 158052.47 9.74 89,220.32 5.50

Wb 10396.58 0.64 5455.90 0.34

Sav 236322.41 14.56 271900.00 16.75

Acrops 155524.34 9.58 123,500.00 7.61

Pcrops 1029566.75 63.44 1088000 67.04

Total 1622821.48 100.00 1622821.48 100.00

Bold values represent row or column totals.
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Subsequently, the mean LST values were matched to the LULC
classes. In 2015, the bareland and settlement class recorded the
highest surface temperature (35.18°C), followed by the Savannah
class (34.60°C). The forest class recorded the lowest temperature
(28.69°C) (Table 11). In 2022, still with the mean LST values, the
correlation showed again that the bareland and settlement class
recorded the highest LST at 35.41°C, and the lowest LST was
recorded for the forest class (28.46°C). The differences in mean
temperature are a decrease in LST of 0.23 for the forest class and an
increase for the bareland and waterbody classes.

4 Discussion

4.1 Mutation and change in LULC in the
Gontougo Region

The spatiotemporal analysis of the Gontougo LULC change made
it possible to categorize six LULC classes each year: annual crops,
perennial crops, savannah, forest, bareland and settlement, and
waterbody. The OA obtained is 93.77% with a kappa coefficient of
0.87 for the year 2015map and 96.01%OA and 0.92 kappa coefficient
for the year 2022 map. These results are close to those obtained by

Kadio et al. (2022), who mapped the Sentinel-2 image and compared
it with Landsat-8 Oli in the Azagny site Ramsar in Côte d’Ivoire. The
OA was 90.63%, and the kappa was 0.94. In addition, Zhang et al.
(2023) used GEE and RF with three Sentinel-2 images in the crop
mapping type for agronomic purposes to quantify cultivated areas and
determine yields in China. They obtained 95.72%, 97.21%, and
98.13%, respectively, as OA and 0.94, 0.96, and 0.98 as kappa for
the years 2017, 2018, and 2020. This latter study is somewhat similar
to ours in the sense that it discusses the use of ML and RFA and
highlights all the cartographic precision obtained in this study. In
remote sensing, a classification is deemed acceptable when the kappa
coefficient value is greater than 75% (Jensen J. R., 1986; Congalton,
1991; Zhang et al., 2023). It confirms that the results of this analysis
are statistically acceptable. Currently, RFA is widely used in satellite
image classification because it gives better results (Teluguntla et al.,
2018; Phalke et al., 2020; Yan et al., 2022; Zhao et al., 2023). We are
increasingly turning to ML technology, such as GEE, to implement
LULC change. These authors also performed the same in their LULC
study using Landsat collection images (Teluguntla et al., 2018; Phalke
et al., 2020; Suryono et al., 2021; Yan et al., 2022; Ashane et al., 2023;
Zhao et al., 2023). The particularity of our study here is to use
Sentinel-2, which is one of the studies that has so far mapped the
LULC change in the entire Gontougo Region and assessed the LST

FIGURE 11
Overall rate of LULC changes in the study area between 2015 and 2022.

TABLE 8 LULC change matrix in percentage between 2015 and 2022.

LULC class 2015

Acrops BarSet Forest Pcrops Sav Wb

2022 Acrops 13.40 26.04 0.87 5.93 12.94 9.80

BarSet 2.26 43.22 0.05 0.57 8.78 2.40

Forest 0.10 0.00 37.81 2.39 1.06 2.25

Pcrops 65.14 12.30 48.13 83.23 19.99 20.68

Sav 18.79 18.32 13.02 7.79 56.16 51.51

Wb 0.31 0.12 0.12 0.08 1.06 13.36
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TABLE 9 LULC change matrix details between 2015 and 2022.

LULC change (2015–2022) Area (Ha) LULC class change (Ha) Area (%)

BarSet–Forest 1.258 32,958.91 0.00

BarSet–BarSet 14,246.437 43.22

BarSet–Pcrops 4,052.67 12.30

BarSet–Acrops 8,583.481 26.04

BarSet–Sav 6,036.728 18.32

BarSet–Wb 38.336 0.12

Forest–Forest 59,761.825 158,052.474 37.81

Forest–BarSet 74.705 0.05

Forest–Pcrops 76,077.739 48.13

Forest–Acrops 1,376.897 0.87

Forest–Sav 20,575.849 13.02

Forest–Wb 185.459 0.12

Wb–Forest 233.771 10,396.586 2.25

Wb–BarSet 249.596 2.40

Wb–Pcrops 2,149.912 20.68

Wb–Acrops 1,018.358 9.80

Wb–Sav 5,355.618 51.51

Wb–Wb 1,389.331 13.36

Sav–Forest 2,507.408 236,322.412 1.06

Sav–BarSet 2,0760.611 8.78

Sav–Pcrops 47,252.3 19.99

Sav–Acrops 30,580.906 12.94

Sav–Sav 132,720.742 56.16

Sav–Wb 2,500.445 1.06

Acrops–Forest 162.239 155,524.344 0.10

Acrops–BarSet 3,515.856 2.26

Acrops–Pcrops 101,314.754 65.14

Acrops–Acrops 20,834.644 13.40

Acrops–Sav 29,216.859 18.79

Acrops–Wb 479.992 0.31

Pcrops–Forest 24,590.075 1,029,566.746 2.39

Pcrops–BarSet 5,900.056 0.57

Pcrops–Pcrops 856,922.474 83.23

Pcrops–Acrops 61,093.983 5.93

Pcrops–Sav 80,197.774 7.79

Pcrops–Wb 862.384 0.08

Total 1,622,821.47 1,622,821.47 600

Bold values represent row or column totals.
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using ML technology (GEE) and RFA. However, it should be noted
that Sentinel-2A was launched in June 2015, and the first images were
available on 23 June 2015. These early images of the Sentinel-2
mission over our study area showed quite a bit of artifact and
constituted bits of images with continuous haze. The mosaicking
and speckle cleaning gave us a homogeneous image from which the
2015 classification was made. This justified the low precision obtained
compared to 2022, when the filter interval search was conducted over
a full year.

The other striking aspect of our research is the drastic loss of
forests and the dramatic decrease in annual crop areas. Indeed, from
2015 to 2022, forests lost 62.19% of their area, and annual crops lost
86.6% of their area. These various losses benefit perennial crops by
up to 48.13% for the forest and 65.14% for annual crops. Indeed,
according to a study conducted in the region on the re-profiling of
roads by the State of Cote d’Ivoire, and according to the latest census
of the population and habitat, the Gontougo Region’s potential
economy is based primarily on agriculture, and the reputation of this
region is based on the famous variety of yam called “Kponan”
(République de Côte d’Ivoire, 2019; RGPH-CI, 2021). The current
situation shows a landscape strongly dominated by perennial crops,
with cashew nuts in the lead. The region is one of the largest cashew
producers in Côte d’Ivoire, with 65,018 tons in 2022, according to
the Cashew Cotton Council (CCA). In detail, at the level of each
Gontougo department, it is 49,735 t in Bondoukou, 3,315 t in Koun
Fao, 7,725 t in Sandégué, 4,094 t in Tanda, and 194 t in Transua.
These statistics are given by the Agence Ivoirienne de Presse (AIP) in
an article published on 3 February 2023 at 8:01 GMT entitled «Côte
d’Ivoire—AIP/Noix de cajou: L’Indénié-djuablin et le Gontougo ont
réalisé une production annuelle de 68,697 tonnes en 2022» and

edited by Memel Franck Niagnely1. This necessitates the availability
of a large production area and explains why the vegetation cover and
yearly crop area have been drastically reduced. As for the yam crop,
in most cases, it is used to prepare or lay out the soil for the next
cashew season. According to the yam farmers themselves, they
transplant small cashew seedlings into their producing yam fields.
After the yam harvest, the cashew field takes over completely, and
new annual crop areas are sought for the following year. This is one
of the factors contributing to the annual decline in the area planted
for annual crops. The fact that annual crops are not grown in
isolation and that it is important to leave trees in the fields of annual
crops, particularly yam, to encourage the growth of yam buds, also
serves to justify the low precision of mapping technically and
discrimination of the annual crops class1.

4.2 Effect of LULC changes and NDVI on LST

Land surface heating is the cumulative effect of LULC change and
global atmospheric warming (Moisa et al., 2022b; Moisa et al., 2022c).
The decline in vegetation cover driven by agricultural expansion in the
study area substantially increases the LST. Indeed, the results show
that the lowest observed temperatures are in areas where forests are
present. Respectively, the LULC forest areas of 2015 and
2022 recorded the lowest mean LST of 28.69°C and 28.46°C. This
translates into a slight decrease in temperature over the year. This
trend is verifiedwithin NDVI calculations. According to some authors
(Carlson and Riziley, 1997; Davi et al., 2006; Morawitz et al., 2006; Du
et al., 2017; Wu et al., 2019; Syawalina et al., 2022), healthy vegetation
absorbs most of the visible light that hits it and reflects a large portion
of the near-infrared light. Unhealthy or sparse vegetation reflects
more visible and less near-infrared light (Davi et al., 2006; Dibi N’da
et al., 2008; Khan et al., 2010; Phan et al., 2021). Therefore, NDVI has a
huge influence on LST calculation and the surface temperature content.
Therefore, we used it to correlate with the LST. Similar to the LST,
NDVI was reclassified into four classes and was well-corrected with the
LST (Table 12). This NDVI classification corresponds to the vegetation
standards from sub-Saharan humid tropical countries because the
definition of the forest depends on the forestry code of each country
(Dibi N’da et al., 2008; RCI-Code Forestier, 2019b; RCI-Code Forestier,
2019a). Accordingly, the negative NDVI values corresponding to the
“non-vegetation land” description recorded the highest temperatures.
This can also be perceived with the Pearson correlation coefficient (r)
for each year (Figure 12) and confirms that the absence of vegetation
induces a high surface temperature compared to the vegetated land,
which records a low temperature (Zheng et al., 2014). However, the
negative Pearson correlation coefficient values found in the relationship
between the LST and NDVI indicate that the presence of green areas
mitigates the surface temperature effect because the vegetation is wet
and contains water almost throughoutmostmonths of the year through
the leaves compared to other types of LULC. Therefore, it moistens the
surface and absorbs more and reflects less solar radiation (Davi et al.,
2006; Morawitz et al., 2006).

TABLE 10 Pearson’s correlation coefficient (r) between NDVI and LST.

Pearson correlation Pearson correlation

Pearson r, p Pearson r, p

NDVI 2015–LST 2015 −0.992*** <001 NDVI 2016–LST 2016 −0.982*** 0.003

*; **; *** *; **; ***

Pearson correlations Pearson correlations

Pearson r, p Pearson r, p

NDVI 2017–LST 2017 M.975** 0.005 NDVI 2018–LST 2018 −0.977 ** 0.004

*• **• *** **• ***

Pearson correlations Pearson correlations

Pearson r, p Pearson r, p

NDVI 2019–LST 2019 −0.966 ** 0.007 NDVI 2020–LST 2020 −0.994 *** <0.001

**• *** **• ***

Pearson correlations Pearson correlations

Pearson r, p Pearson r, p

NDVI 2021–LST 2021 −0.990 ** 0.001 NDVI 2021–LST 2021−0.990 ** 0.001

**• *** **• ***

Note: *p < 0.5; **p < 0.1; ***p < 0.01.

1 https://www.aip.ci/cote-divoire-aip-noix-de-cajou-lindenie-djuablin-et-
le-gontougo-ont-realise-une-production-annuelle-de-68-697-tonnes-
en-2022/

Frontiers in Remote Sensing frontiersin.org17

Aka et al. 10.3389/frsen.2023.1221757

https://www.aip.ci/cote-divoire-aip-noix-de-cajou-lindenie-djuablin-et-le-gontougo-ont-realise-une-production-annuelle-de-68-697-tonnes-en-2022/
https://www.aip.ci/cote-divoire-aip-noix-de-cajou-lindenie-djuablin-et-le-gontougo-ont-realise-une-production-annuelle-de-68-697-tonnes-en-2022/
https://www.aip.ci/cote-divoire-aip-noix-de-cajou-lindenie-djuablin-et-le-gontougo-ont-realise-une-production-annuelle-de-68-697-tonnes-en-2022/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1221757


In contrast, water surfaces have often recorded high
temperatures (33.74°C in 2015 and 34.54°C in 2022 for the mean
temperature). In fact, the waterbody class is not a large river or big
stream. It comprises puddles, backwaters, small lakes, ponds, and
swamps. As noticed, it is the class with the smallest extent and
represents less than 1% of the total area of the classes in 2015 and
exactly 0.34% in 2022. This means that water dries up, especially in
the dry season, and becomes bareland. As a result, the temperatures
will be very high, like in the bareland and savannah areas. Indeed,
our study has shown that the hottest surfaces with the highest
temperatures are the bareland/settlement and savannah. The mean
temperatures of these LULC classes are 35.18°C and 35.41°C for
bareland and settlement, respectively, in 2015 and 2022 and 34.60°C

and 33.44°C for savannah, respectively, in 2015 and 2022. The
bareland and settlements are devoid of vegetation, and the
savannah is dominated by grasses and shrubs, which cannot
strongly absorb sun rays. Therefore, reflections are strong, which
justifies the high temperatures recorded at these LULC classes. A
recent study (Moisa et al., 2022a; Moisa et al., 2022b; Moisa et al.,
2022c) on the wettest parts of Ethiopia, covered in the present study,
confirmed that the increasing trend of temperature is driven by weak
NDVI values and LULC conversion. One of their outputs concerns
the great variation between daytime and nighttime temperatures,
which can influence the LST. As highlighted by the same authors, the
LST increases during the daytime more than at night. Akomolafe
and Rosazlina. (2022) found a moderate negative relationship

FIGURE 12
Pearson correlation (scatter plots) between NDVI and LST.
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between NDVI and LST in Penang Island, Peninsular Malaysia. This
shows that higher LSTs correspond to lower vegetation cover and
vice versa, as our results also show. Through the urban heat island
characteristics and mitigation strategy analysis of eight arid and
semi-arid gulf region cities, Abulibdeh (2021) stated that vegetation,
particularly trees, can prevent direct surface heat as a result of solar
radiation by providing shade, cooling the air by generating cool
island effects, evapotranspiration and emissivity processes, and
reducing the wind speed under the canopies. In the Pearson

correlation coefficient analysis, the same author (Abulibdeh,
2021) stated that the LST has a significant relationship with
NDVI but in different directions. The relationship between the
LST and NDVI is negative, indicating that the presence of green
areas mitigates the LST preponderance effect. All these claims by
different authors confirm our results and demonstrate once again
the importance of LULC changes and their effects on the LST
modification.

5 Conclusion

This study examined LULC change analysis and its effects on LST
using ML through GEE in the Gontougo Region. Regarding LULC, we
could discriminate six classes: annual crops, perennial crops, savannah,
forest, bareland/settlement, and waterbody. From 2015 to 2022, the OA
values for each LULC map were 93.77% and 96.01%, respectively.
Similarly, the kappa was 0.87 in 2015 and 0.92 in 2022. The
prevailing LULC class is perennial crops. It occupies more than 60%

FIGURE 13
LST reclassification.

TABLE 11 Correlation between LULC and LST.

2015 2022 (2015–2022)

LULC class LST mean (°C) LST level (°C) LST mean (°C) LST level (°C) Change in LST mean (°C)

Bareland and settlement 35.18 Very high 35.41 Very high 0.23

Forest 28.69 Low 28.46 Low -0.23

Waterbody 33.74 High 34.54 Very high 0.80

Savannah 34.60 Very high 33.44 High −1.17

Annual crops 31.67 High 32.93 High 1.26

Perennial crops 30.35 Medium 29.98 Medium -0.37

TABLE 12 NDVI classification in correlation with LST.

NDVI value NDVI description LST correspondence

− 1 < NDVI < 0.00 Non-vegetation land Very high

0.00 < NDVI < 0.20 Low-vegetation land High

0.20 < NDVI < 0.40 Medium-vegetation land Medium

0.40 < NDVI < 1 High-vegetation land Low
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of the area of each LULC map. LULC change found that the forest and
annual crop classes lost 48.13% and 65.14%, respectively, of their areas
for the benefit of perennial crops from 2015 to 2022. TheNDVI and LST
reclassification correspondences have shown that non-vegetation land
corresponds to very high temperature, low vegetation land corresponds
to high temperature, medium vegetation land corresponds to medium
temperature, and high vegetation land corresponds to low temperature.
Similarly, their correlation using Pearson coefficient (r) gave a significant
relationship, and negative coefficients were obtained for each correlation.
In terms of the LST–LULC correlation, the forest class recorded the
lowest temperatures each year. In 2015, themean temperatures recorded
were 28.69 °C and 28.46 °C in 2022. Conversely, the highest temperatures
were recorded by the bareland/settlement class. A mean of 35.18°C in
2015 and 35.41°C in 2022 were recorded. Therefore, the existence of
vegetation coverage was indispensable for decreasing surface
temperature. It was recommended that natural resource managers
and environmental experts should create awareness and
environmental conservation to minimize LST in the study area.
Furthermore, the decline in the annual crop area each year to
perennial crops should be aware of all decision-makers and farmers
in the region that this will lead to a real food security issue.Wemust raise
the alarm so that the crops that feed us directly are brought to the
forefront in our choice of crops to be food self-sufficient. This study has
benefits for monitoring and evaluating food security in Côte d’Ivoire,
adding to the evidence base of other studies on the use of remote sensing
to identify crop types and cropping patterns in other countries. However,
it should be noted that one of the limitations to this study is that it was
not possible to map the yam crop specifically. This would have enabled
us to assess the impact of LSTs on yams directly. This aspect will be
addressed in future work using very high spatial-resolution images. The
results of this study are a response to the food security challenges related
to land use in the area. Based on these study results, we plan to conduct a
future socio-economic study in which we will gather yam farmers’
perceptions of climate change, the difficulties they face in yam
production, and available solutions. In addition, a soil sampling and
analysis study is planned to solve the soil fertility problems faced by
people in the Gontougo Region.
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