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The Southeastern United States has high landscape heterogeneity, with heavily
managed forestlands, developed agriculture, andmultiplemetropolitan areas. The
spatial pattern of land use is dynamic. Expansion of urban areas convert forested
and agricultural land, scrub forests are converted to citrus groves, and some
croplands transition to pine plantations. Previous studies have recognized that
forest management is the predominant factor in structural and functional changes
forests, but little is known about how forest management practices interact with
surrounding land uses at the regional scale. The first step in studying the spatial
relationships of forest management with surrounding landscapes is to be able to
map management practices and describe their proximity to various land uses.
There are two major difficulties in generating land use and land management
maps at the regional scale by any method: the necessity of large training data sets
and expensive computation. The combination of crowdsourced, citizen-science
mapping and cloud-based computing may help overcome those difficulties. In
this study, OpenStreetMap is incorporated into mapping land use and shows great
potential for justifying and monitoring land use at a regional scale. Google Earth
Engine enables large-scale spatial analysis and imagery processing by providing a
variety of Earth observation datasets and computational resources. By
incorporating the OpenStreetMap dataset into Earth observation images to
map forest land management practices and determine the distribution of other
nearby land uses, we develop a robust regional land-use mapping approach and
describe the patterns of how different land uses may affect forest management
and vice versa. We find that cropland is more likely to be near ecological forest
management patches; few close spatial relationships exist between land uses and
preservation forest management, which fulfills the preservation management
strategy of sustaining the forests, and production forests have the strongest
spatial relationships with croplands. This approach leads to increased
understanding of land-use patterns and management practices at local to
regional scales.

KEYWORDS

citizen science,machine learning, land use, land cover change, google earth engine (GEE),
VGI (volunteered geographic information), forest management, landscape ecology

OPEN ACCESS

EDITED BY

Rajesh Bahadur Thapa,
International Centre for Integrated
Mountain Development, Nepal

REVIEWED BY

Chengcheng Gang,
Chinese Academy of Sciences (CAS),
China
Likai Zhu,
East China Normal University, China

*CORRESPONDENCE

Di Yang,
dyang1@uwyo.edu

RECEIVED 31 March 2023
ACCEPTED 04 July 2023
PUBLISHED 13 July 2023

CITATION

Yang D, Fu C-S, Herrero HV,
Southworth J and Binford M (2023),
Linking forest management to
surrounding lands: a citizen-based
approach towards the regional
understanding of land-use transitions.
Front. Remote Sens. 4:1197523.
doi: 10.3389/frsen.2023.1197523

COPYRIGHT

© 2023 Yang, Fu, Herrero, Southworth
and Binford. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Remote Sensing frontiersin.org01

TYPE Original Research
PUBLISHED 13 July 2023
DOI 10.3389/frsen.2023.1197523

https://www.frontiersin.org/articles/10.3389/frsen.2023.1197523/full
https://www.frontiersin.org/articles/10.3389/frsen.2023.1197523/full
https://www.frontiersin.org/articles/10.3389/frsen.2023.1197523/full
https://www.frontiersin.org/articles/10.3389/frsen.2023.1197523/full
https://www.frontiersin.org/articles/10.3389/frsen.2023.1197523/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2023.1197523&domain=pdf&date_stamp=2023-07-13
mailto:dyang1@uwyo.edu
mailto:dyang1@uwyo.edu
https://doi.org/10.3389/frsen.2023.1197523
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2023.1197523


1 Introduction

Land-use change is greatly altering terrestrial ecosystems
(Lambin and Meyfroidt, 2011; Forman, 2014). In the
Southeastern United States (SEUS), land-use changes are
responses to a wide array of socio-economic, environmental, and
climate drivers. Not only land conversions but also land
management changes alter large proportions of land over time
(Wear and Greis, 2013). Land-use change, which is a local-scale
land practice, has regional, continental, and global ecosystem
consequences. Forest ecosystems are strongly affected by
anthropogenic factors both inside and outside the forest, such as
timber extraction and suburban growth and cultivation (Radeloff
et al., 2010; Wear and Greis, 2012). Forest management practices,
which are forest land uses, are one of the major drivers of changes in
forest structure and function (Becknell et al., 2015; Marsik et al.,
2018).

Forests play an important role in the ecological and social
conditions of the SEUS. They provide critical habitat for a wide
variety of plant and animal species, including many that are
threatened or endangered. Forests also regulate local and regional
water cycles, help control flooding and soil erosion, and contribute
to the overall health of the landscape (Riitters et al., 2002). In
addition to their ecological importance, forests are also an important
part of the region’s social and economic fabric (Marsik et al., 2018).
They provide recreation opportunities for residents and tourists
alike, support a thriving timber industry, and offer a host of other
economic benefits. With all these benefits, it is clear that forests are a
vital part of the SEUS. However, they are also under threat from a
variety of sources, including development, pollution, and climate
change (Becknell et al., 2015). It is important to work to protect and
restore forests in the region so that they can continue to provide
these important benefits for generations to come.

The interactions among different land-use types may be forces of
landscape-wide and even global importance. Land-use transitions
from one type to another are more likely in areas already close to the
second land uses (Fischlin et al., 2007). For example, in the SEUS
significant expansions of urban areas often convert forested land to
urban uses, especially as urban land spreads outwards from the
already urbanized areas, and cropland has been converted to pine
plantations in areas where plantations are nearby (Wear and Greis,
2002; 2013). These kinds of landscape transitions may represent
macrosystem changes depending on their scale and extent and can
have immediate local social and ecological implications for
landowners and their management practices (Schulte et al., 2007;
Wassenaar et al., 2007). As such, understanding the relationships
between various land-use patterns and forest management at a
macrosystem level is of utmost importance. The current body of
knowledge regarding the influence of different land-use patterns’
proximity on forest management practices, and vice versa, remains
limited. To address this gap, we undertake an investigation that will
contribute to the study of effective forest management strategies and
to understanding of the influence of the proximity of various land-
use types on land-use and land-cover transitions.

One way to protect and restore forests is to understand better the
land-use patterns around them. In many cases, human activities
such as cultivation, housing developments, and industrial
development, can influence forest ecosystems (Kramer and

Doran, 2010; Wear and Greis, 2012; Wear and Greis, 2013).
However, if we study these land uses and their effects on forest
ecosystems, we can develop practices for mitigating the impacts.
This will help to ensure that forests in the SEUS are healthy and
thriving. Also, differently managed forests can spur developments
and land-use changes in different ways (Kramer and Doran, 2010;
Wear and Greis, 2012; Wear and Greis, 2013). For example,
landscapes in proximity to preserved forested regions have more
potential to be converted to residential areas (Kramer and Doran,
2010) and residential property close to protected areas is usually
more valuable.

As implied by the material and energy flows and organism and
gene exchanges that occur between them, forest ecosystems and the
land use that surround them have an intricate relationship. While
the interactions between protected forests and adjacent land uses
have been extensively studied, our understanding of the effects of
non-protected forest land conversion on adjacent land uses remains
limited. Despite the fact that a number of theoretical interactions
have been proposed (Groenveld et al., 2017; Briassoulis, 2020), the
lack of generalizability in case studies has contributed to a paucity of
knowledge regarding the mechanisms underlying these interactions.
Effective land management strategies require a comprehensive and
nuanced understanding of the relationship between non-protected
forest land conversion and nearby land uses. Hansen and Ruth
(2007) review on the ecological mechanisms linking protected areas
to surrounding lands provides a valuable starting point for such
investigations.

Changes in land use over time are also of critical importance.
Land-use changes are associated with social and biophysical system
changes (Turner et al., 1996). For example, land-use change can lead
to the fragmentation of forests which can then impact ecosystem
function (Riitters et al., 2002). Additionally, land-use change can
also alter hydrological regimes and water quality. As such, it is
important to consider land-use change when planning for the future
of forest ecosystems in the SEUS. Changes in land-use intensity and
land-use types influence nearby and even distant forest ecosystems
(Dunford and Freemark, 2005; Fahrig, 2013). Most land change
studies focus only on the transitions among the land covers at the
class level across the landscape (e.g., the conversion between forest
and cropland) (Verburg et al., 2002; Sohl and Sayler, 2008; Verburg
et al., 2009), rather than the within-class transitions. e.g., an area
stays forested but may change use from a natural forest area to
silviculture or an agricultural cropping system, i.e., agroforestry.
Researchers also focus on projecting land-use changes and
trajectories based on past patterns (Lawler et al., 2014). In
addition, ground-reference data related to land-use temporal
changes are often omitted, most often due to lack of availability
(Hurskainen et al., 2019).

The principles of mapping land use do not share the same
assumptions as those of mapping land cover. Land cover refers to the
physical land cover on the Earth’s surface, including both natural
and man-made features (Comber, 2008). Land cover is the physical
land cover type, such as buildings, roads, forests, grassland, or
wetland. It can be monitored using satellite remote-sensing
techniques. Forest cover is one type of land cover that is of
particular interest for many reasons, including the support it
provides for biodiversity, ecohydrological processes, other
environmental services, and combating climate change. By
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monitoring forest cover, we can better understand the health of these
ecosystems and take action to protect them (Becknell et al., 2015).

Land use is the human adoption of land cover to meet specific
needs. Land use refers to the way humans use land cover, such as for
agriculture, housing, or recreation (Comber, 2008). Land-use
features are decided and driven by people’s land-management
behaviors. We can monitor land-use change by looking at both
land-cover and land-use information. There are many ways to
monitor land-use changes. One common method is remote
sensing, which uses satellites or aircraft to collect images of the
Earth’s surface. This can be used to track changes in land cover over
time (DeFries et al., 2007). Another common method is ground-
reference data collection, which involves physically visiting sites on
the ground to observe and document changes. Ground-reference
data are often used in combination with remote sensing to verify and
interpret satellite data (Sanchez-Azofeifa, 1996; Marsik et al., 2018).
It can be difficult to distinguish land use from land cover using
remote sensing alone, so ground-reference data are an important
part of land-use monitoring.

There are many challenges to monitoring land-use change. One
challenge is that land use can be hidden by land cover. For example,
a forest may still be a forest even if it will soon be logged or is part of a
protected area. Another challenge is that land use can vary greatly
over short distances. For example, a field may be used for agriculture
on one side and housing on large parcels on the other. This canmake
it difficult to create accurate maps of land use. Despite these
challenges, it is important to monitor land-use change. Land use
has a major impact on the environment and understanding how it is
changing is essential for effective environmental management
(Turner, 1994; Schulte et al., 2007).

In the phrase “social-ecological Earth observation dataset”, the
term “social” relates to information about human social systems and
includes citizen-contributed data, satellite-collected Lights at Night
data (Sutton et al., 2009; Li et al., 2017) and land ownership data. To
map regional land management practices, we utilized ground data
such as ownership information, long-term phenological patterns
and their changes, and the structure of the surrounding landscape to
infer forest management classes (Marsik et al., 2018). We use the
Earth observation datasets, which have close relationships with
human activities, such as the night light (VIIRS Stray Light
Corrected Nighttime Day/Night) and land ownership (Marsik
et al., 2018) databases. Citizen science is a term used for
scientific research that is conducted by members of the public,
rather than professional scientists (Goodchild, 2007). Citizen science
projects can be used to collect data on a wide variety of topics, from
environmental conditions to astronomical events (Goodchild and
Glennon, 2010; Haklay, 2010). Citizen science has been used in land-
use mapping for many years (Goodchild, 2007; Antoniou et al.,
2016). These maps are important tools for conservation planning, as
they can help decision-makers understand where different types of
ecosystems are located. Citizen science projects can contribute to the
creation of these maps by collecting data on the location and extent
of different types of land cover (Yang et al., 2017). Recent advances
in technology have made it possible for citizen science projects to
collect data more efficiently and accurately than ever before (Haklay
and Weber, 2008; Neis and Zielstra, 2014; Yang et al., 2017). For
example, the use of GPS devices and smartphones can allow citizen
scientists to quickly and easily record the location of different types

of land cover and use. In addition, online mapping tools can be used
to share data with other project participants and mapmakers.
Citizen science projects like these are important and useful for
creating accurate and up-to-date land-use maps. Citizen science can
increase our understanding of land-use patterns and management
practices while engaging the public at local, regional, and global
scales to study their environment (Goodchild, 2007; Haklay and
Weber, 2008; Goodchild and Glennon, 2010; Theobald et al., 2015).
For example, citizen-contributed data fromNew York Breeding Bird
Atlas detected the potential for colonization, extinction, and the
absence of bird species due to forest fragmentation (Zuckerberg and
Porter, 2010). Involving citizen science to inform land-use
management and conservation practices can usually lead to a
more effective outcome of research success and land
management practices, because it raises awareness and garners
support for the project among the public (Dickinson et al., 2012;
Yang et al., 2017).

Open Street Map® (OSM) (www.OpenStreetMap.org) is a
collaborative project to create a free, editable map of the world.
The maps are created by volunteer contributors using GPS devices,
aerial photography, and other sources. OSM is used by individuals
and organizations for a variety of purposes, including land-use
planning, disaster response, and route planning (Haklay and
Weber, 2008; Neis and Zielstra, 2014; Yang et al., 2017). OSM is
one example of a citizen science project that relies on the voluntary
contributions of its participants to create a useful resource for the
community. Organizations such as the Red Cross and the United
Nations Office for Coordination of Humanitarian Affairs use OSM
data to plan relief efforts and respond to natural disasters. Businesses
such as Foursquare and Craigslist use OSM data to provide location-
based services. Non-profit groups such as Mapbox and
OpenStreetMap US use OSM data to create maps and apps that
are available to the public. The success of OSM depends on the
continued participation of its contributors.

In this research, we collect historical crowdsourced data from
OSM to map regional land use and then generate a land-use change
map over a 5-year period to determine how land use and thus land
management have changed. We then examine the proximity of
different land uses to areas with four different forest management
approaches to determine the spatial relationships of forest
management with land uses. We focus on the SEUS region,
which has high landscape heterogeneity, heavily managed
forestlands, developed agriculture, and multiple metropolitan areas.

There are twomain types of forest ownership in the southeastern
United States: public and private. Public forests are owned by
governments and are managed for the benefit of the public.
Private forests are owned by individuals or companies and are
managed for their own benefit. In SEUS, we define forest
management types in four categories: production forestry,
ecological forestry, wilderness or preservation, and passive
forestry (Becknell et al., 2015; Marsik et al., 2018). Ecological
management involves managing the forest in such a way as to
not only realize gains from timber harvest but also maintain or
improve the forest’s ecological health (Franklin et al., 2018). This
may include activities such as planting native species, maintaining
an uneven age structure so that forest structure will be more diverse,
thinning non-native or invasive species, and reducing pollution.
Passive management is a hands-off approach that generally involves
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leaving the forest to its own devices. This approach is often used in
areas where the forest is not actively threatened by human activity or
natural disasters, is in soils too wet, such as riparian areas, to support
harvesting machinery, or belongs to owners who simply want to
have an intact forest. Wilderness or preservation management, in
contrast, seeks to protect the forest in its natural state and may be
used in certain public forests where conservation is the primary goal.
Each of these management approaches comes with its unique set of
consequences and complexities on the landscape, affecting not only
the biodiversity within the forests but also the patterns of land use in
surrounding regions. Recent developments in cloud computing,
collaborative mapping, and user-generated content platforms,
such as volunteered geographic information (VGI), have spawned
a new era in geographic visualization (geo-visualization or mapping
and visualizing the world), such that the combination of
crowdsourced mapping and cloud-based computing may
overcome these difficulties (Southworth and Muir, 2021).

In this study, OSM is incorporated into mapping land use to
identify and monitor land use at a regional scale. We use Google
Earth Engine (GEE) to enable large-scale spatial analysis and image
processing by providing a variety of Earth observation datasets and
powerful computational resources (Haklay and Weber, 2008;
Southworth and Muir., 2021). By focusing our prime objective
on the mapping of landmanagement practices, a robust, automated
regional land-use mapping approach is developed by incorporating
the OSM dataset with GEE’s available Earth observation imagery.
Since the SEUS is heavily forested, the diverse land-use
characteristics are often hidden under the canopy, which results
in the land-use patterns of the SEUS not being visible with routine
remote sensing methods. In this analysis, we incorporate

anthropogenic Earth observation datasets (such as nightlight
and ownership) with the crowdsourced OSM database to first
create land-use maps for two dates: 2013 and 2018, across our
study area, and to then create a land-use change analysis or
transition image from these products. We then use these
individual land-use maps for 2013 and 2018 to identify all
forest patches, indicating forest management type as part of the
patch type record, and highlight the fragmented nature of forest
cover across this region as a function of extensive road networks
(Reed et al., 1996; Heilman et al., 2002; Riitters et al., 2002). Finally,
we then study the spatial relationships among these managed forest
patches and the land use surrounding these patches as we increase
in distance from the forest patch edge. By proposing a land-use
change mapping framework, we aim to increase the accuracy of
mapping land use and expand the ability to map land use at the
regional scale. This analysis examines how the four dominant
forest management types interact with the surrounding land use
in the SEUS. In the heavily forested SEUS, we examine the spatial
patterns of land uses surrounding forest ecosystem patches by
asking the research question: “What are the land-use patterns
extending outwards from differently managed forestlands and
how do these change over time?”

2 Data sources and methods

The methods used within this study are highlighted in the
flowchart (Figure 1) indicating the multiple input data and steps
taken as part of this research. The specific data and details on the
analysis are outlined below.

FIGURE 1
Flowchart detailing analysis steps for the study.
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2.1 Study area

As a case for classifying land use and monitoring land-use change
around public and private forests, we chose an area of the Southeastern
U.S. Coastal Plain corresponding approximately with the Worldwide
Reference Systems II (WRS-2) path 17 row 39 (P17 R39), with
bounding latitude and longitude coordinates of approximately
31°13′N, 83°10′W (northwest corner), and 29°20′N, 81°41′W
(southeast corner) (Figure 2). The study area covers an area of
about 34,000 km2. The study area has a good representation of all
types of land uses and forest management practices in the SEUS. This
heterogeneous landscape consists of a mixture of natural and plantation
forests, large and small wetlands, several rivers with extensive riparian
areas, urban centers, urban and rural residential areas, and commercial
and small-scale agricultural operations. This diversity of land-cover
types is spatially heterogeneous, and patch sizes within the vegetation
classes vary across a wide range of scales.

2.2 Land-use change mapping strategy
design

The integration of remote sensing and GIS presents a robust tool
to monitor, quantify, and characterize landscape features in both

time and space (Reed et al., 1996; Heilman et al., 2002; Riitters et al.,
2002; Hawbaker and Radeloff, 2004; Espirito-Santo et al., 2014),
making it a promising approach to land-use change mapping
strategy design. The advent of Volunteered Geographic
Information (VGI) platforms has ushered in a new era of
mapping and visualizing land systems (Neis et al., 2011; Neils
and Zielstra, 2014; Hakley, 2010). Notably, OpenStreetMap
(OSM) is an excellent example of a VGI platform that facilitates
the rapid expansion of big data and cloud-based computing while
providing a more extensive range of applications than official
geographic road databases (Zielstra and Hochmair, 2013). The
use of OSM allows for the creation of more current and
comprehensive maps that reflect temporal changes (Girres and
Touya, 2010; Estima and Painho, 2013). Our land-use change
mapping strategy design focuses on creating multi-functional
management units, with urban areas being excluded from the
study using urban boundaries from the TIGER database (TIGER,
2015).

2.3 Historical OSM

There are several definitions made by OSM ODbL that need to
be clarified, namely,: objects, tags, and keys. The attributes of OSM

FIGURE 2
The map outlining the study region and the spatial distribution of forest-management types within the study region. The light gray part represents
non-forest regions. Forest management classes were mapped by Marsik et al. (2018).
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are called “tags”, and the major features stored in OSM are called
“keys”. An OSM “object”, e.g., a building, a road, or a parcel, is
composed of geographic location information and a set of “tags”.
Each object in the OSM must have at least one tag, but there is no
limit to the number of tags a specified object can have. The official
list of OSM tags is available on the map features wiki page: https://
wiki.OpenStreetMap.org/wiki/Map_Features. The tag taxonomy has
been agreed upon over years of experience and is still being updated,
which reflects a folksonomy approach based on a negotiation
process among OSM contributors (Ballatore and Mooney, 2015).
The “tags” can be reorganized, combined, and grouped in various
semantic ways to highlight the geospatial distribution of different
topics, and as such, they can be utilized in different research projects.

The full historical OSM database is available at https://planet.
osm.org. In this study, historical OSM was accessed through the
OSMAPI (https://wiki.OpenStreetMap.org/wiki/API), which allows
us to fetch, save, and analyze the raw data from OSM over time. In
our study area in 2013, there were 1,199 objects representing
buildings on the OSM in our study area, the number changed to
66,488 by October 2018. By 2018, there were more than
486 contributors who updated and edited the roads feature in the
study area, 230 contributors fixed the building features OSM and
262 contributors to amenities features.

2.4 OSM land-use classification semantics

In OSM the land-use tags are often marked with different
understandings of the land, e.g., for rangeland, it was marked as
“yellow field” or “farm” and even “grass”. The relationship between
OSM tags and labels was built based on the land-use classification
strategy with a framed dictionary (Table 1). To achieve this, we
converted OSM tags to five land-use classes: cropland/rangeland,
commercial/industrial, managed forest, residential areas and water
body. We then regrouped the OSM tags into those targeted classes
based on the framed dictionary (Table 1).

The OSM condensed land use definitions in this study are:

1) Cropland/rangeland—A land-use category, which is used to
produce crops or has the potential for sustainable grazing
(native grasses, grass-like vegetation, shrubs).

2) Commercial/Industrial—A land-use category consisting of
industrial, commercial, and institutional land, construction
sites, public administrative sites, railroad yards, cemeteries,
airports, golf courses, quarries, water control structures (Wear
and Greis, 2013).

3) Managed Forests—A land-use category that is covered with
forest. The categories of forest management are generally
consistent with the forest management type map produced by
the MANDIFORE group (Marsik et al., 2018). We also included
the areas that showed evidence of the natural regeneration of
trees and not currently developed for non-forest use.

4) Residential—A land-use category consisting of single- or multi-
family residential, apartment buildings, and small parks within
the urban and built-up areas.

5) Waterbody—Open water

2.5 Earth observation data

Several different Earth observation datasets were used in the
analysis, including.

1. We used Landsat data for 1/1/2013 and 8/1/2018, available on the
GEE API (Google Earth engine ID: LANDSAT/LC8_L1T_
ANNUAL_GREENEST_TOA). These Collection 2 Landsat
8 Operational Land Imager (OLI) data have a spatial
resolution of 30-m and are Top-of-atmosphere (TOA) and
Landsat 5 TOA reflectances (Chander et al., 2009).

2. We used global forest canopy height, version 2005 (Simard et al.,
2011): This dataset represents the canopy height at a global level
by incorporating the Geoscience Laser Altimeter System (GLAS)

TABLE 1 Crosswalk dictionary between natural and land-use classes and OSM labels.

This paper
land-use type

OSM labels

Key: Natural Key: Landuse Key: Amenities and places

Cropland/
Rangeland

Grassland, agricultural, or
USER_DEFINED

Farmland, farmyard, grass, greenfield,
greenhouse_horticulture, meadow, orchard, pasture,
plant_nursery, recreation_ground, vineyard, or
USER_DEFINED

Commercial/
Industrial

Commercial, retail, cemetery, depot, garages, religious,
Industrial, quarry, port, salt_pond, or USER_DEFINED

Bar, bbq, café, fast_food, food_court, restrurant,
college, kindergarten, archive, school, university,
boat_rental, car_rental, bus_station, parking, bank,
clinic, dentist, casino, cinema, nightclub, studio,
post_office, prison, or USER_DEFINED

Managed forests Wood, tree_row, scrub, or
USER_DEFINED

Forest, conservation, reservoir, or USER_DEFINED

Residential Residential, allotments, or USER_DEFINED House, apartment

Water body Water, wetland, bay, lake,
springs, or USER_DEFINED

Basin, pond, or USER_DEFINED

User-defined: Many land-use features are already on Map Features, but users are flexible in defining the features. https://taginfo.OpenStreetMap.org/.
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and ancillary data (Google Earth engine ID: NASA/JPL/global_
forest_canopy_height_2005)

3. Nighttime satellite imagery was used as proxies of mapping
human wellbeing and urban development (Sutton et al., 2009;
Li et al., 2017) (Google Earth engine ID: NOAA/VIIRS/DNB/
MONTHLY_V1/VCMSLCFG). VIIRS Stray Light Corrected
Nighttime Day/Night Band Composites Version 1 (Miller
et al., 2013): The dataset of nighttime has the global monthly
aggregated nightlight time data.

4. Land ownership is one of the key factors delineating land use
and forest management, especially under the currently
ongoing rapid urbanization and increasing rural
development, which may affect and alter the forest
management patterns. Landowners are classified as public
and private. There are six sub-types of public ownership,
which are federally protected, federal, state protected, state,
military, and local. Also, there are four sub-types of private
ownership: non-government organization, private, family,
and corporate. The ownership classification strategy is
made based on different management objectives, as well as
landowner skills, budgets, and interests. The Protected Area
Database for the United States (PAD-US) is the primary data
source to identify public ownership (USGS-PADUS-2.0).

2.6 Random Forest classification

We built a Random Forest (RF) classifier by incorporating
multiple remote sensing datasets as covariates, using GEE as the
mapping platform, and crowdsourcing-derived geotags as
training sample databases. We used OSM derived data as
training points to extract spectral statistics for use in the RF
classifier (Breiman, 2001). The efficiency and accuracy of the RF
classifier have been widely tested and recorded throughout
regional landscape mapping. The principle of RF is to apply a
bootstrapping aggregated sampling technique to build a series of
individual decision trees for the classifier. The major advantages
of the RF classifier are the capability of handling a large number
of training samples, its efficiency in dealing with the large
regional database, and its robustness to outliers and noise. To
remove the noise from the classification outputs, we used a 3 ×
3 cell majority filter for all land-use classes, except for
waterbodies for both the 2013 and 2018 images. All images
were resampled to 30 m spatial resolution using the nearest-
neighbor filter algorithm.

The total number of OSM-derived training samples are
3,150 and 3,870 for 2013 and 2018, respectively. We specified
two sets of 10-fold cross internal validations for the RF classifier
and assessed the individual contribution from each land-use type to
the overall accuracy of the land-use pattern maps. To optimize the
RF algorithm, we utilized 500 trees, a 70/30 split for training/
validation, and modified other parameters. These parameters
were carefully selected to balance model complexity and accuracy
and to avoid overfitting. Our results demonstrate the effectiveness of
the RF algorithm in accurately classifying land use from remote
sensing data. Furthermore, we present a novel approach for
generating training data using existing land use features, which
enhances the accuracy and efficiency of the classification process.

Overall, it highlights the potential of the RF algorithm for land use
classification in complex and diverse landscapes.

2.7 Forest patch analysis

First the forest patches, defined as groups of contiguous pixels of the
same management type separated from other groups by other
management types or non-forest pixels, were identified spatially, and
the size characteristics of each patch were determined for both 2013 and
2018, as follows: For each forest patch the forest management type
(ecological, passive, preservation or production) was recorded. To test
the land-use variations around each type of managed forest, a series of
spatial analyses were conducted. We created nine buffers at increasing
distances from the edge of the forest patches, from 500 m to 5,000 m at
an interval of 500 m. The reason to pick a buffer size ranging from
500 m to 5,000 m is based on the average patch size from the
management map (Figure 2; Table 2). In the study area, the overall
average management patch size is 26.6 ha, which leads to the
appropriate minimum buffer rings starting at around 360 m,
according to the methods in Defries et al. (2007). However, from
Table 2, as the size range of management patches is variable, we set nine
other increasing buffers to allow for an improved analysis of the
landscape. The land-use combinations of 2013 and 2018 of
cropland, residential areas, and commercial/industrial areas were
compared by plotting the proportion of each land-use type in the
different buffer distances. At larger scales of analysis, buffer overlap
could influence the independence of samples; however, after calculating
the maximum buffer overlap with other forested patches, which was
6.8% of the total study areas, we assume a minimal impact of buffer
overlap regionally.

3 Results

3.1 Land-use compositions and dynamics

Land use maps for 2013 (Figure 3) and 2018 (Figure 4) are given
here. Since the urban areas were masked, residential areas represent the
exurban and rural residential areas. There are significant differences
between the two study dates, despite their only being 5 years apart. The
proportion of the landscape in the residential area increased from 4.93%
to 8.87%. For the commercial/industrial class, an increase from 0.59% to
2.97% was found, and a similar trend was found with the cropland/
rangeland class with an increase of 6.22%–10.32% (Table 3).

TABLE 2 Management Patch size statistics of characteristics within the study
area.

Unit (ha) Min Max Mean Std

Total area 5.37 194,137.30 26.60 718.08

Ecological 5.37 2,683.23 19.37 92.03

Passive 5.37 7,700.88 22.48 95.95

Preservation 5.37 194,137.30 40.73 2,208.42

Production 5.37 12,992.22 41.54 275.10
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FIGURE 3
Land-Use Composition of the study area in 2013. Because the urban areas were subtracted, the residential and commercial/industrial areas are
those located in the suburban and rural residential areas.

FIGURE 4
Land-Use Composition of the study area in 2018. Because the urban areas were subtracted, the residential and commercial/industrial areas are
those located in the suburban and rural residential areas.
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From Figure 5 and Table 3, we found a strong trend of
deforestation and rural residential/suburban development, which
increased by 80%. There was also a 66%increase in cropland area
and a 407% increase in commercial/industrial area in the study area
from 2013 to 2018.

3.2 Accuracy assessment

Building the RF classifier is the starting point of our landscape
analysis; the results of the accuracy of land-use classification for both
2013 and 2018 are shown in Table 4. The land-use classification out-
of-bag (OOB) overall accuracy was close to 97%, with corresponding
Kappa values of 0.97 for both 2013 and 2018. Considering that land-
use patterns of 2013 and 2018 were extracted using the same
classification method and original image collections, we assumed
that the classification accuracies of this land-use change dataset are
comparable.

At the class level, the precision, or comparison of the true and
false classifications, ranges from 94% to 99%. Overall, the RF
classification rules, when coupled with crowd-sourced land-use
training samples show a strong potential to classify land-use type
well. In land-use mosaics from 2013, it was shown that the most
complex land-use changes occur at cropland/rangeland and

residential areas. This reflects the existence of rural residential
areas as well as their continued development. The residential
regions and the commercial/industrial areas are the classes in the
2018 land-use mosaics that have the most confusion. This indicates
that it is difficult to differentiate between those two classes due to the
high similarity of spectral signals in remote sensing imagery.

3.3 Adjacent land-use development

The percentage coverage of the five land uses adjacent to andwithin
different buffers for each type of forest management approach from
2013 to 2018 is individually shown in Figures 3, 4 and is compared
across the buffered region. We set the distance zones surrounding
patches of each management from 500 m to 5,000 m with a 500 m
interval, as those distances will cover enough spatial information to
show the subtle land-use change at a landscape level (Sanchez Azofeifa,
1996; Carey et al., 2011). Adjacent land-uses surrounding each forest
management type were analyzed. The results gave us an indication of
the distribution of each land-use class immediately around different
managed forest patches.

For the landscapes in proximity to ecological forests, there is not
a strong spatial relationship between the ecologically managed forest
and the surrounding lands, although there is more residential land

TABLE 3 Land-Use Change of Residential, commercial/industrial, and cropland/rangeland from 2013 to 2018.

2013 2018

Land-use type Area (Ha) Area percentage (%) Area (Ha) Area percentage (%)

Cropland/rangeland 184,519.17 6.22 306,119.70 10.32

Commercial/Industrial 17,367.66 0.59 88,159.05 2.97

Residential 146,158.2 4.93 263,094.12 8.87

FIGURE 5
Land-Use Change of Residential, commercial/industrial, and cropland/rangeland from 2013 to 2018.
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near ecological forests and that cropland is more likely to be near
ecological forest management patches (Figure 6). The proportions of
cropland, commercial/industrial and residential land uses decrease
within 1,500 m and then are stable out to 5,000 m. For landscapes in
proximity to passively managed forests, the surrounding land uses
are quite stable surrounding the passive management forests, except
for the croplands.

In Figure 6, few spatial relationships between land uses and
management are found within 500 m of preservation forestry, which
fulfills the preservation management strategy of sustaining the forests.
From 2013 to 2018, cropland and residential area proportions increased
with increasing distance from the preservation forests. Among all four
types of management approaches, production forests have the strongest
spatial relationships with croplands (Figure 6). The proportion of the
croplands surrounding production forests reached a peak of 20% at a
distance of 1,000 m, and then decreased rapidly. When the distance
from production forests is about 3,500 m, the residential proportion did
not change from 2013 to 2018.

As evident in Figure 6, there tends to be a sharp increase in land-use
proportion among different types of land use adjacent to each
management forest patch (except for cropland in 4,000–5,000 m
proximity of production forests). In 2013, cropland land uses
showed the strongest spatial relationships with production forest,
followed by passively managed forest, ecological forest, and finally,
preservation forest. However, in 2018, the order changed significantly

with the strongest spatial relationships with production forests, followed
by ecological forest, and then passivelymanaged forest and preservation
forests. In 2013, the proportion of cropland surrounding production
forest patches increased from 3.3% to 8.6%. However, the trend in
2018 shows an exponential decrease with increasing distance,
particularly from 1,000 m to 3,500 m.

3.4 Land-use change in SEUS from 2013 to
2018

Land use transitions are important to map and understand
(Figure 7). Table 5 shows the different transitions possible across the
study area with the associated land change. Notably, the dominant land
transitions were identified into seven major categories: stability (no
change (stability), commercialization, afforestation, cultivation, and
rural residential and suburban growth. Table 5 also shows the land-
use conversion matrix used by the spatial allocation procedure by
determining the possible land-use transition sequences. Just four types
from the land-use patterns map were used in this analysis: cropland,
commercial/industrial, managed forest, and residential.

We created a land transition analysis by combining the OSM
derived land-use maps for 2013 and 2018 to produce the land-use
transition patterns over the study area with a 30 m resolution. This
regional land-use pattern analysis seeks to identify the dominant

TABLE 4 Out-Of-Bag (OOB) error matrices for five land-uses classes in 2013 and 2018 in the study area.

2013 Classified data

Class Cropland Commercial/
Industrial

Forests Residential Water Producer’s accuracy (%)

References Data Cropland 373 1 6 7 2 95.89

Commercial/
Industrial

2 447 0 2 1 98.89

Forests 12 3 1,377 5 0 98.57

Residential 7 5 17 657 0 95.77

Waterbody 0 0 2 9 215 95.13

User’s Accuracy (%) 94.67 98.03 98.22 96.62 98.62 Overall Accuracy: 97.43%

2018 Classified data

Class Cropland Commercial/
Industrial

Forests Residential Water Producer’s accuracy (%)

References Data Cropland 468 1 12 7 2 95.51

Commercial/
Industrial

2 539 1 25 2 94.73

Forests 18 2 1,377 9 2 97.80

Residential 0 4 1 792 3 99.00

Waterbody 0 2 3 6 592 98.18

User’s Accuracy (%) 95.90 98.36 98.78 94.40 98.50 Overall Accuracy: 97.36%

Kappa coefficients k) of 2013 and 2018 are K2013 = 0.97 and K2018 = 0.97, respectively.
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patterns of land use change. Across the study area, several major
change patterns are recognized, together comprising a majority of
suburban growth, commercialization, and cultivation.

4 Discussion

4.1 Land-use mapping with OSM as training
samples

OSM was incorporated into mapping land use and showed great
potential for justifying and monitoring land use at a regional scale.
The results identified the spatial land-use patterns and the variations
around each type of managed forest with buffers ranging from 500 m
to 5,000 m for 2013 and 2018 (Figures 3, 4). Over the 34,000 km2

study area, there has been a large amount of land-use conversion from
2013 to 2018 (Figure 7). Deforestation is a clear trend in the study
area, despite economically valuable managed forests.

The nightlight remotely sensed images do a relatively better job
representing and mapping human footprints (Li et al., 2017) when
compared to using only the spectral imagery alone. The results of
this study support the use of nightlight imagery when mapping land
use. For example, Yang et al., 2017 used a variety of physical features

from Earth observation datasets (i.e., forest canopy height, DEM,
and EVI) to map regional land use in the same study area with an
accuracy of 95% (internal validation) and 74% (external validation).

In this study, land-use classifiers’ training sample sets were
extracted from historical OSM and resulted in high internal
validation accuracy (97% for 2013 and 97% for 2018). OSM
provides different data collection mechanisms than the traditional
authoritative geographic information obtained from official or
governmental institutions, agencies, or Earth observations. The
results demonstrate that OSM and citizen science data have
potential for mapping regional human footprints (represented as
land use in this study). In this study, the training samples
extracted from OSM were randomly selected. The error matrices
are based on internal validation. Based on our results, the classification
methods presented in this study are recommended mainly for
mapping broad land-use classes. Further accuracy testing through
external validation requires a large amount of historical land-use
documentary data, which can be a project for further study.

The data quality of OSM and its public participatory geospatial
database has always been recognized as a major concern by researchers
(Antoniou and Skopeliti., 2015; Mobasheri et al., 2018). The
contribution of OSM mappers is often based on perceptions rather
than scientific measurements, which makes it complex to measure the

FIGURE 6
The percentage of different land use based on the distances from the nearest forest patches under different management types (ecological, passive,
preservation, and production forest).
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mapping quality and positional accuracy. However, there are some
strategies to overcome the credibility challenges of those participatory
mapping databases. Firstly, there are always “superusers” in VGI
mapping projects. Those “superusers” make tremendous
contributions by providing a large amount of near-real time
accurate information. In addition, the quality control of OSM itself
is also a multi-user environmental validation process. Based on its
“wiki” principle, the community of OSM mappers can act as quality
filters, which means the dataset is self-validated by the other
contributors’ numerous times. In this analysis, we applied this
strategy to the point of self-validation. Finally, because of the vast
amount of OSM data, mapping effects are mostly aggregated based on
the ground truth data provided by OSM mappers.

4.2 Proximity analysis

Due to the lack of precision in delineating boundaries that surround
various ecosystems, there is much that cannot be clearly understood
from the perspective of land management or the management of
natural resources (Duncker et al., 2012). Our results show that there
are similar trends in management for lands around ecological forests
and passively managed forest, i.e., no significant increase or decrease of
different land-use types in surrounding landscapes. We also found that
for passively and ecologically managed forests, as the distances of
specific land-use types from the nearest forest patches increase, the
variance of the proportion of that specific land use to the total land
becomes smaller, and finally levels off. Preservation forestry covers over

FIGURE 7
Land-use change derived from OSM from 2013 to 2018.

TABLE 5 Land-use changes in the study area and the associated land change are delineated. These categories include changes that may rarely or never occur (e.g.,
residential to managed forest or commercial/industrial or residential to croplands).

Land use in 2013 Land use in 2018

Cropland Commercial/Industrial Managed forest Residential

Cropland Stability Commercialization Afforestation Rural/Suburban Growth

Commercial/Industrial Cultivation Stability Afforestation Rural/Suburban Growth

Managed Forest Cultivation Commercialization Stability Rural/Suburban Growth

Residential Cultivation Commercialization Afforestation Stability
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thirty percent of the total forest in the study area (Marsik et al., 2018).
For surrounding land uses of production forests, we found patterns that
imply interactions between production forests and cropland in the
1,500 m buffer. Land policy may contribute to this phenomenon as
production forests, pasture, cropland, and citrus all belong to the same
tax code (i.e., Commercial Agriculture Uses) in Florida, which lowers
the property tax rate. There are several hypotheses to explain this
phenomenon: 1) the landscapes are built out over a distance greater
than 3,500 m; and 2) those areas belong to urban areas and are thus not
included in the analysis. Moreover, the State of Florida does not have a
minimum land area requirement for agricultural and timberland
classification, which increases the potential for cropland—timberland
two-way flows.

Residential developments also show a strong effect of land-use
transitions on the surrounding lands, such as forests transformed
into croplands or rangeland areas. As we found the increasing trend
on both residential and commercial/industrial lands, nearly 45.9% of
new residential lands in the study area were created from forests,
with most of the rest resulting from the conversion of agricultural
land. From 2013 to 2018, one of the most influential drivers of forest
area change was the expansion and contraction of agricultural land.
These patterns also point out how fast the rural residential areas are
being developed in the heavily forested study area, especially near
passive and production management forest patches (Figure 6).

The study area also experienced rapid population growth, based
on the gridded population of the world v4/population count, there
was a 170,130 increase from 2010 to 2020 (GPWv4). Most of the
time this led to deforestation (the transfer of forest lands to
developed lands). As the population increased, the potential need
for residential areas, roads, commercial and industrial sites
increased. The development of rural residential developments
significantly contributed to land-use dynamics. The increasing
rural residential areas show a strong signal of urbanization and
deforestation, as most newly developed residential areas are
developed on forested land. For the rural/suburban residential
areas surrounding ecological forests, preservation forests, and
passively managed forests, the trends of rural/suburban coverage
all increased from 2013 to 2018.

5 Conclusion

The land uses in SEUS have been heavily transformed according to
a variety of factors, such as population growth and economic growth.
The forest ecosystems in the SEUS have been largely influenced by these
land-use changes. The results of this study show that land-use patterns
in the vicinity of forest under different management strategies vary
substantially with the occurrences of forest patch isolation due to the
proximity of agricultural development, rural residential development,
and commercialization. Such land-use transitions alter the SEUS
landscapes and may affect ecosystem functions. We infer the land-
use information at the regional scales by using VGI from a diverse array
of stand-level studies and other ancillary information.

By developing a crowdsourcing-based land-use change mapping
framework over the SEUS wemeasured and calculated the proportion
of land area that was located within nine increasing distance buffers
from the nearest managed forest patches of any type of forest
management, and mapped the results reclassified by land-use

transitions. For lands surrounding preservation forests, we found
the effectiveness of preservation in maintaining the forest cover in the
first 500–1,000 m boundary buffers. However, rural residential
developments are changing the lands surrounding the preservation
areas. The lands surrounding production forestry, comprising
important spatial relationships with croplands, show the strongest
potential for land conversion between forests and croplands. For the
passively managed forest surrounding landscapes, the land-use
patterns represent a relatively neutral status because of the low
management intensity with little interaction with croplands, which
is the opposite for the production forest surroundings. For the lands
surrounding ecologically managed forests, there are the least variances
of land-use composition based on distances. This also supports the
idea that the major principle of ecological forestry is to maintain the
social-ecological functions.

Citizen science is contributing to land-change science, in ways
that increase the magnitude of observations far beyond those that
can be done by individual scientific projects. From a mapping land-
use perspective, citizen science can be used to extend the training
sample database, which is considered a huge challenge for large scale
landscape classification processes. The proposed strategies seek
contributions that demonstrate the application of citizen science
projects supporting human-environment related research by
complementing satellite observations and discussing novel
methods for the collection of land management data.

The challenge of the work is that the rapid growth of OSM only
started in 2013, and as such, the database has improved from both user
numbers and quality perspectives, across the study period. From 2013 to
2018 is a relatively short time, only 5 years, to make a significant
conclusion or assessment about any types of longer-term changes or
drivers. Despite this limitation due to the short time-duration of this
data source, however, this study shows a strong potential for mapping
land change and human footprints at the regional scale by using VGI
derived datasets as land-use indicators and proxies.
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