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Continuous characterizations of forest structure are critical for modeling wildlife
habitat as well as for assessing trade-offs with additional ecosystem services. To
overcome the spatial and temporal limitations of airborne lidar data for studying
wide-ranging animals and for monitoring wildlife habitat through time, novel
sampling data sources, including the space-borne Global Ecosystem Dynamics
Investigation (GEDI) lidar instrument, may be incorporated within data fusion
frameworks to scale up satellite-based estimates of forest structure across
continuous spatial extents. The objectives of this study were to: 1) investigate
the value and limitations of satellite data sources for generating GEDI-fusion
models and 30m resolution predictive maps of eight forest structure measures
across six western U.S. states (Colorado, Wyoming, Idaho, Oregon, Washington,
and Montana); 2) evaluate the suitability of GEDI as a reference data source and
assess any spatiotemporal biases of GEDI-fusion maps using samples of airborne
lidar data; and 3) examine differences in GEDI-fusion products for inclusion within
wildlife habitat models for three keystone woodpecker species with varying forest
structure needs. We focused on two fusion models, one that combined Landsat,
Sentinel-1 Synthetic Aperture Radar, disturbance, topographic, and bioclimatic
predictor information (combined model), and one that was restricted to Landsat,
topographic, and bioclimatic predictors (Landsat/topo/bio model). Model
performance varied across the eight GEDI structure measures although all
representing moderate to high predictive performance (model testing R2 values
ranging from 0.36 to 0.76). Results were similar between fusion models, as well as
for map validations for years of model creation (2019–2020) and hindcasted years
(2016–2018). Within our wildlife case studies, modeling encounter rates of the
three woodpecker species using GEDI-fusion inputs yielded AUC values ranging
from 0.76–0.87 with observed relationships that followed our ecological
understanding of the species. While our results show promise for the use of
remote sensing data fusions for scaling up GEDI structure metrics of value for
habitat modeling and other applications across broad continuous extents, further
assessments are needed to test their performance within habitat modeling for
additional species of conservation interest as well as biodiversity assessments.
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1 Introduction

The current generation of spatiotemporal representations of
ecological patterns provide a critical component for conservation
and management of ecosystem services. Spatial information of
vegetation structure is incorporated in the identification and
management of biodiversity hotspots (Roll et al., 2017; Thom
et al., 2017; Donald et al., 2019), distribution maps of endangered
species (Dunk et al., 2019; Colyn et al., 2020), and relationships
between carbon sequestration and patterns of biodiversity (Buotte
et al., 2020; Soto-Navarro et al., 2020). Forest planning, in particular,
often requires assessing the trade-offs and synergies associated with
maintaining biodiversity compared to meeting single species habitat
needs (Wilson et al., 2019), while also considering additional, often
conflicting, ecosystem services such as carbon sequestration and the
supply of timber resources (Kline et al., 2016). With ever increasing
human populations, habitat loss, invasive species, climate change,
and a myriad of other threats to the loss of species and ecosystem
function (Ceballos et al., 2017; Ceballos et al., 2020), the need for
spatiotemporal data to describe a wide variety of ecological patterns
and processes becomes increasingly salient.

Complex multi-use forest planning draws great benefit from
spatial and temporal mapping products at resolutions and extents
that reflect the patterns and processes important for balancing
silvicultural activities with environmental characteristics that are
critical for maintenance of quality animal habitat and biodiversity.
Vertical forest structure is among the more important remotely
sensed characteristics that can provide relevant information for
studies of carbon sequestration, species habitat modeling, and
biodiversity patterns at local scales, and airborne lidar is
frequently the source of those vertical structure data (Vierling
et al., 2008; Davies and Asner, 2014; Vogeler and Cohen, 2016).
At local scales, the use of airborne lidar data, also referred to as
airborne laser scanning (ALS), has improved our understanding of
species distributions for organisms that range in size from beetles
and spiders (Müller and Brandl, 2009; Vierling et al., 2011) to
elephants (Davies et al., 2018), and ALS has been incorporated in
studies of biodiversity that address patterns of alpha, beta, and
functional diversity perspectives (Asner et al., 2017; Bae et al., 2018).

As central as ALS has been for multiple ecological studies, it is
limited in spatial extent, and acquisitions across areas often vary in
point densities and other collection parameters, raising concerns
about comparing spatial products derived from different
acquisitions (Hudak et al., 2012; Eitel et al., 2016). Additionally,
the cost of ALS data often precludes multiple acquisitions across
short time frames, and the time lags between ALS acquisition and
wildlife data collection are important considerations of studies
relating ALS structure variables to patterns of animal habitat
and/or diversity (Vierling et al., 2014; Hill and Hinsley, 2015).
Recent spaceborne lidar missions, such as the Global Ecosystems
Dynamics Investigation (GEDI), may provide an opportunity for
characterizing forest structure across broad extents, although the
moderate resolution footprints along orbital tracks of the
International Space Station on which the sensor is mounted, do
not constitute continuous coverage across landscapes and are
temporally restricted through the limited mission lifespan
(Dubayah et al., 2020). What GEDI footprints do provide are a
consistent sample of forest architectures across near global extents

(Dubayah et al., 2020), including countries and forested regions
which are often lacking in reliable forest sampling efforts. GEDI data
also represent a free publicly available, easily accessible, and
consistently collected forest plot data base for regional to near-
global summaries of forest patterns (Dubayah et al., 2020), or for use
in scaling up forest structure information to continuous extents
using additional earth observation imagery sources (Healey et al.,
2020; Sothe et al., 2022).

Data fusion frameworks that expand high resolution
depictions of forest structure to greater spatiotemporal extents
using moderate resolution spectral data sources, such as Landsat,
have been widely applied across different forest types and regions
with varying success (Matasci et al., 2018; Filippelli et al., 2020).
Single date or annual composites of Landsat-derived spectral
indices may be able to predict some vertical structure
components, such as canopy cover (Coulston et al., 2012;
Vogeler et al., 2018), but the 2-D nature of spectral data may
fall short for characterizing more complex aspects of the canopy
profile and variability in heights (Zald et al., 2016; Matasci et al.,
2018), which are often important for identifying habitat (Burns
et al., 2020) or biodiversity patterns (Vogeler et al., 2014). While
single date Landsat-derived information may have some
limitations for predicting forest structure, studies are finding
improvements in such efforts by incorporating the value of the
long-running Landsat archive for characterizing disturbance
histories which often drive current forest structure
(Pflugmacher et al., 2012; Vogeler et al., 2016). In addition,
Synthetic Aperture Radar (SAR) systems like Sentinel-1 are
often more limited in temporal extents than the Landsat
archive but may capture some aspects of 3-D structure that
optical data are less sensitive to, providing more accurate
forest structure mapping.

Data fusion frameworks that are based on freely available public
data, such as those from the GEDI, Landsat, and Sentinel-1
programs, support the implementation of methodologies for a
wide variety of conservation and management applications across
regions where financial resources for acquiring imagery may be
limited. If such data sources are available through time, there may
also be opportunities to hindcast spatial prediction models of forest
variables (Matasci et al., 2018; Vogeler et al., 2018) to monitor
sources of change in habitat as well as better match the timing of
wildlife data collections. Testing data fusions for scaling up GEDI
information within the diverse forest systems of the western U.S.
provides the opportunity to evaluate GEDI as a reference data
source. This western U.S. region is also rich in ALS collections
which can serve as a validation baseline to inform future efforts
across international regions which may not have similar validation
data availabilities.

Lidar data have been incorporated within wildlife or biodiversity
applications across a wide variety of species, spatial scales, and with a
diverse set of lidar technologies (Davies and Asner, 2014; Müller and
Vierling, 2014; Olsoy et al., 2015; Stitt et al., 2019; Acebes et al., 2021;
Smith et al., 2022; Shokirov et al., 2023). The potential benefit of
GEDI data for wildlife applications is therefore exciting, and as with
other remotely sensed products used for wildlife and biodiversity
applications, it is important to understand how different accuracies
and biases in spatial vegetation data could possibly affect wildlife
model outcomes. For example, the use of a forest height metric is
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common in wildlife studies because tall trees (and associated
diameters) are a critical habitat component for many species of
management concern (Acebes et al., 2021); understanding the biases
and accuracies of the spatial layers that depict forest height (or other
GEDI structure metrics) can have implications for models developed
for the management of sensitive species if those metrics are over- or
underestimated within certain environmental conditions.

Within our study, we tested the value and trade-offs of free
publicly available continuous remote sensing data products for
producing wall-to-wall predictions of GEDI-derived forest
structure metrics (referred to as “GEDI-fusion” maps here
forward) relevant for wildlife and biodiversity applications.
The objectives of this study were to: 1) investigate the value
and limitations of satellite data sources for generating GEDI-
fusion models and 30 m resolution predictive maps of eight

forest structure measures (representing height and vegetation
profile information) across six western U.S. states (Colorado,
Wyoming, Idaho, Oregon, Washington, and Montana); 2)
evaluate the suitability of GEDI footprint data as a reference
data source and assess any spatiotemporal biases of GEDI-fusion
maps using samples of airborne lidar data; and 3) examine
differences in GEDI-fusion products for inclusion within
wildlife habitat models for three keystone wildlife species. We
selected three cavity excavating case study species with varying
forest structure needs that operate at three different spatial
scales. Tree cavity excavators (e.g., woodpeckers) facilitate
habitat for a diversity of species within communities of
forest-dwelling animals, so understanding woodpecker-habitat
relationships can have implications for other species (Martin
et al., 2004).

FIGURE 1
Western U.S. study region divided by EPA Level III Ecoregions with locations of validation ALS units designated by stars: orange stars depict validation
collections for the years of model creation, and blue stars represent validation collections for years of model hindcasting.
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2 Materials and methods

2.1 Study area

We focused on six western U.S. states that represent a range of
forest types and ecoregions (Figure 1). Tree species composition
ranged from subalpine forests dominated by subalpine fir (Abies
lasiocarpa), Englemann spruce (Picea englemannii) and lodgepole
pine (Pinus contorta) to more xeric forests dominated by ponderosa
pine (Pinus ponderosa). The study area transitions from wetter
climate forests in the Pacific Northwest to the drier southern
Rocky Mountain range, and thus captures a wide variety of
climatic conditions, forest disturbance dynamics, and
compositional gradients. Disturbance regimes within the study
area range in their patterns of severities and frequencies, but
dominant change agents across the area include timber harvest,
fire (natural and prescribed), insect mortality or defoliation, and
weather-driven events (e.g., drought, wind blow-down).

2.2 Remote sensing model data

2.2.1 GEDI data
Forest wildlife habitat modeling efforts often include measures

of forest height, canopy cover, foliage height diversity, and/or the
availability of vegetation within specific strata of the forest (e.g.,
understory or upper canopy); these measures often correlate with
important structure components necessary to meet life history needs
for species, or to promote overall diversity of habitat niches (Bergen
et al., 2009). After preliminary evaluations of available GEDI metrics
in the context of frequently identified forest structure measures of
value for habitat modeling purposes, we chose to focus our modeling
efforts on several GEDI-derived height, cover, foliage height
diversity, and summarized plant area density profile metrics
corresponding to important habitat structure components for a
variety of wildlife species. GEDI level 2A relative height (RH)
metrics represent the height at which a defined percentage of
GEDI waveform energy is contained. For instance,
RH98 corresponds to the height at which 98% of the waveform
energy is captured - comparable to a canopy height measure. We
also included RH50 and RH75 within our modeling efforts to test
their utility for wildlife modeling in future applied research efforts.
Among the GEDI level 2B metrics, we selected two commonly used
forest measures in wildlife habitat modeling, fractional canopy cover
(COVER) and foliage height diversity (FHD). Among the Level 2B
plant area vegetation density (PAVD) profile metrics, we choose the
lowest single profile available through the GEDI waveform metrics
that represents the 5–10 m strata (PAVD5-10 m), as well as
summarizing plant area densities above 20 m (PAVD>20 m) and
40 m (PAVD>40 m) to represent the presence of a mature upper
canopy within different forest types.

We leveraged the rGEDI package (Silva et al., 2020)
implemented in the R Statistical Software (R Core Team, 2021)
to download and filter GEDI version 2 footprint data across our
study area. We restricted our target GEDI footprints within a
summer season date range of June 6th - September 30th for both
2019 and 2020 to limit any bias in canopy cover and vegetation
density profiles in mixed or deciduous forests outside of the primary

growing season. We further filtered the summer season GEDI shots
with a series of conditional arguments to retain only the highest
quality observations to serve as model reference and testing data,
including a solar elevation below 0°, a degrade flag of 0, a quality flag
of 1, a beam sensitivity of greater than or equal to 0.95, and only
employing full power beams. After filtering, the remaining GEDI
footprints were intersected with the study area and each footprint
observation was reprojected into an Albers Equal Area Projection
(EPSG 5070).

While the rich spatial density of GEDI footprints provides value
for a wide suite of applications including direct quantification and
monitoring of forest patterns across broad extents, for our purposes
in leveraging GEDI footprints as a model reference source, we chose
to spatially thin our GEDI footprints to balance computational
efficiency while maximizing model performance. We developed a
set of spatial thinning steps to reduce the density of GEDI footprints
while ensuring a spatially balanced sample across our study area. We
first took a random subsample of 150,000 observations for each year.
Constructing a set of polygon tiles with a 60 × 60-km resolution over
the desired study region, we generated a Euclidean distance matrix
for the subsetted footprints within each tile. Based on the distance
between each footprint, 225 maximally distanced footprints were
retained per 3,600 square kilometers. The resulting spatially
subsetted dataset consisted of 99,766 observations for 2019 and
100,003 observations for 2020.

2.2.2 Continuous remote sensing predictors
We leveraged the computational efficiency of Google Earth

Engine (GEE) to generate a suite of 31 active and passive remote
sensing predictor layers for upscaling GEDI forest structure metrics
to a continuous 30 m resolution grid and to apply models at annual
time steps from 2016–2020. We wanted to test the utility of GEDI-
fusion models for hindcasting structure metrics to years outside
model creation, but were restricted to the 2016 forward time period
due to the temporal availability of Sentinel-1 data included within
our data fusion assessments. All dynamic predictors (e.g., Sentinel-1
and Landsat) were summarized for the summer growing season to
match the temporal window of our GEDI data. From median
summer composites of the Sentinel-1 C-band Synthetic Aperture
Radar (SAR) dataset, we compiled the vertical-vertical (VV) and
vertical-horizontal (VH) polarizations along with several ratios
derived from the median VV and VH data including:

VHVVratio � VH/VV

normalized difference radar index � VV − VV[ ]
VH + VV[ ]

radar vegetation index � 4*VH[ ]
VV + VH[ ]

For our Landsat spectral predictors, we created Medoid image
composites for the annual summer seasons for the full Landsat
archive (1984–2021), from which annual spectral indices were then
calculated. Studies have found that when forest attribute models are
created for a particular time period and then applied across a longer
time period, using a temporal segmentation fitting algorithm can aid
in producing more stabilized temporal representations of the
modeled attribute within predicted maps (Moisen et al., 2016;
Kennedy et al., 2018a). We used one such trend fitting algorithm,
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LandTrendr in GEE (Kennedy et al., 2018b), to calculate vertices
within each spectral index and the original bands to produce annual
“fitted” values for all Landsat predictors (Table 1). In additional to
the original Landsat bands, we incorporated several Landsat spectral
indices in our “fitted” Landsat predictor set that are commonly used
within forest attribute modeling and change detection: tasseled cap
brightness, greenness, and wetness (Crist and Cicone, 1984); the
normalized difference vegetation index (Rouse et al., 1974); the

enhanced vegetation index (Liu and Huete, 1995); and the
normalized burn ratio (Key and Benson, 2006).

While annual Landsat information may be correlated with some
forest measures such as canopy cover (Coulston et al., 2012),
previous research has highlighted the additional value of Landsat
time series derived information of disturbance histories for
improving structure predictions (Pflugmacher et al., 2012;
Vogeler et al., 2016). To test for similar improvements, we

TABLE 1 Continuous predictor variables grouped by data source incorporated within GEDI-fusion modeling frameworks. Those predictors retained in final models
after removing highly correlated variables within individual models sets are marked with an X.

Predictor set Predictor abbreviation Description Retained in modeling

Landsat 8 (median summer composites) blue Landsat 8 band 2

green Landsat 8 band 3

red Landsat 8 band 4

nir Landsat 8 band 5

swir1 Landsat 8 band 6 - shortwave infrared 1

swir2 Landsat 8 band 7 - shortwave infrared 2

NDVI Normalized difference vegetation index X

NBR Normalized burn ratio X

EVI Enhanced vegetation index

TCB Tasseled cap brightness X

TCG Tasseled cap greenness X

TCW Tasseled cap wetness X

Landsat time series disturbance TSD Time since most recent fast disturbance derived from LCMS X

Sentinel-1 (median summer composites) VV median Median composite of vertical polarizations X

VH median Median composite of vertical horizontal polarizations X

VHVV ratio VH/VV

nDiff Normalized difference radar index

rvi Radar vegetation index X

Topography elevation SRTM elevation (m) X

slope SRTM derived slope (degrees) X

aspect SRTM derived aspect (degrees) X

eastness Aspect transformation X

northness Aspect transformation X

TOPODIV Topographic diversity index X

CHILI Continuous heat-insolation load index X

mTPI Multi-scale topographic position index X

LANDFORM Landform classification X

Bioclimatic CMD climatic moisture deficit X

GDD growing degree days X

MAP mean annual precipitation X

MAT mean annual temperature X

MWT mean winter temperature X
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generated a model predictor related to disturbance histories derived
from the United States Forest Service Landscape ChangeMonitoring
System (LCMS) dataset (Housman et al., 2022). We filtered the
annual dataset to derive an image collection representing the most
recent year of abrupt, or “fast”, forest change. We subtracted this
most recent disturbance year from the year of interest (depending on
the year of GEDI data or mapping year) to derive an annual raster
layer indicating the number of years since the last fast disturbance
(here forward referred to as time since disturbance, TSD).

To complement the dynamic spectral and SAR predictors and to
represent the gradients that exist across our study area, we also
extracted topographic and bioclimatic information (Table 1).
Utilizing the Satellite Radar Topography Mission (SRTM)
dataset, we calculated elevation, slope, aspect and aspect
transformations (eastness and northness). We also incorporated
additional topographic predictors based on SRTM including the
Topographic Diversity Index (TOPODIV), Continuous Heat-
Insolation Load Index (CHILI), Multi-Scale Topographic Position
Index (mTPI), and landform classes created by combining CHILI
and mTPI (LANDFORM) (Theobald et al., 2015). ClimateNA
(version 7.2.1; Wang et al., 2016) was used to generate a set of
bioclimatic variables derived from PRISM 4 km × 4 km gridded
monthly climate for the 1961–1990 “normal” period (Daly et al.,
2008), which were downscaled using the global 1-arcsecond
v3 SRTM digital elevation model. We chose this “normal” period
as it likely corresponds to the time when many of our mature forests
were developing across our study area. More recent normals may
provide an updated version of this data for the period impacting
younger forest development, but we believe that the older versions
are still appropriate for our purpose of representing relative
differences in climatic gradients across our study region. The
resulting bioclimatic variables included climatic moisture deficit,
growing degree days, mean annual precipitation, mean annual
temperature, and mean winter temperature (Table 1).

The spatial resolution of the processed predictor datasets varied
from 10 m (SAR) to 270 m (some of the topographic position and
diversity indices). All predictors were either aggregated or resampled
to a common 30 m grid and exported from GEE for local modeling
and predictive mapping using the EPSG 5070 projection within
analysis ready dataset tiles. The spatially filtered GEDI locations for
each year were buffered by 12.5 m to generate polygons
representative of the 25 m diameter of the GEDI footprints. All
above predictors were extracted using an area weighted mean pixel
value from all pixels intersecting a footprint’s polygon, and for
temporally dynamic predictors the year used for extraction
corresponded to that of the GEDI footprint’s acquisition year.

2.3 GEDI-fusion modeling and mapping

A primary goal of our study was to test the utility of GEDI data
as a reference source combined with various continuous predictor
layers for scaling up structure information relevant to habitat
modeling across continuous regional extents at 30 m spatial
resolutions from 2016–2020. Different predictor data sources
(e.g., Landsat, Sentinel-1) may have various tradeoffs as to model
performance, spatial biases, and potential hind-casting capabilities.
Thus, comparing different predictor sets can help inform the

potential value and trade-offs of data fusion frameworks. All
model accuracies and errors were assessed using a withheld set of
testing GEDI footprints. Further spatial bias and temporal
transferability were evaluated using our sample of ALS
collections across two-time mapping windows representing years
of model creation and model hindcasting (Figure 1; section 2.4.2).
We completed an initial evaluation of random forest regression
(Breiman, 2001) with progressively larger training samples to
identify the number of training samples at which model
performance began to stabilize for a sample set of GEDI metrics
(i.e., a learning curve), and we used this number of training and
testing samples for subsequent model development and evaluation.

We defined an a priori set of data fusion model combinations
(Table 2) to compare model performances and spatiotemporal
biases. Within each single-source predictor set (e.g., Landsat,
topography), we first tested for highly correlated variables using a
correlation threshold of 0.95. Only those not highly correlated were
retained within the model comparisons (Table 1). The reduced
variable sets were also combined to determine the best overall
model for each GEDI metric in terms of model performance and
errors as assessed using the withheld testing set of footprints. The
fusion models representing the full set of predictors (combined
model) and the model incorporating Landsat, topography, and
bioclimatic predictors (Landsat/topo/bio model) were applied to
the predictor layers to produce 30 m resolution maps of the GEDI
metrics across the study area and on annual time steps from
2016–2020. As a final post-processing step, we developed an
open-water mask using the Global Surface Water Layer
v1.4 within GEE (Pekel et al., 2016), which we applied to all final
maps to minimize false vegetation structure measures as a result of
our GEDI filtering approaches that removed all water GEDI points;
therefore, water bodies were outside the scope of our model
reference data.

2.4 Validation assessments

2.4.1 GEDI Footprint-ALS comparisons
GEDI-fusion frameworks are based on the assumption that the

information provided by the GEDI footprints are accurate
representations of forest structure for serving as modeling
reference data. To test this assumption and to inform sources of
error in the GEDI-fusion maps, such as the potential for up to 10 m
geolocation errors within the GEDI data, we compared footprint
estimates of focal metrics to those from ALS samples. ALS data may
be limited in spatial extents and temporal coverage, but the sources
of errors and vertical/horizontal accuracies are well established and
can serve as a baseline for comparisons with GEDI-derived forest
measures and for comparing patterns in spatiotemporal biases
between GEDI-fusion maps. We identified a set of ALS
collections for the years of our GEDI footprint samples
(2019 and 2020) that represent the forest-dominated ecoregions
of the study area based on the EPA Level III Ecoregions (US EPA,
2015; Figure 1). The sample ALS collections also captured a wide
range of forest structure variability and disturbance patterns. While
our models and predicted maps encompass the extent of our six
study states, the focal area for our habitat case studies were the
forested regions of those states. As such, our ALS validation samples
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represent forest and shrubland cover types and our validations are
only representative of forested lands in the region.

The majority of ALS data are collected using discrete lidar
sensors, while GEDI is a full-waveform system. To convert the
ALS measures to those comparable to waveform derived structure
metrics, we employed the GEDI waveform simulator, gediSimulator
(Hancock et al., 2019), frequently used within GEDI-ALS
comparisons. That said, by simulating waveforms with discrete
ALS, we acknowledge that we may be introducing some level of
error within our validation data set although allowing for more
direct comparisons of metrics than possible between waveform and
discrete lidar. Within the selected ALS comparison units
(Supplemental Table S1), we clipped the ALS point clouds at our
filtered GEDI footprint locations corresponding to the year of ALS.
Preprocessing the ALS clips involved identifying lidar returns within
60 cm of the ground surface and reclassifying those lidar returns as
ground returns to account for topographic variations within a
simulated footprint (Hancock, 2023). The gediSimulator tool,
gediRat, was used to convert the ALS point clouds into a
simulated waveform, which were passed to gediMetric to
calculate waveform metrics. Simulated cover outputs are reported
to be particularly sensitive to variations in topography within a
footprint (Hancock, 2023), which can be significant within our study
area. Implementing the suggested pre-processing steps for
minimizing the impacts of topographic variations on ALS
simulated metrics did not appear to improve the simulated cover
metric for our sample ALS areas. Therefore, we chose to directly
compare discrete ALS cover to our GEDI footprint and map cover
estimates, although we acknowledge that slightly different measures
of canopy cover may be represented by these two measures. We
calculated the discrete ALS cover metric as the proportion of first
returns above 2 m within the FUSION lidar processing software
(McGaughey, 2022). We then compared the simulated or direct
ALS-based metrics to the GEDI-based metrics for matching years
(e.g., 2019 GEDI footprints compared to simulated 2019 ALS
metrics) by calculating the coefficient of determination (R2),
mean bias (bias), and root mean squared error (RMSE). We
were unable to include our PAVD metrics within the footprint

and map level validations as these are not direct outputs available
from gediSimulator (Hancock, 2023), nor are there readily
comparable metrics from discrete ALS. Evaluations for the
PAVD metrics were restricted to the prediction assessments from
the large set of withheld testing GEDI footprints (described in
section 2.3).

Many studies comparing simulated ALS waveforms to GEDI
footprints conduct an additional step to better georeference the
GEDI footprints based on the ALS information as GEDI version
2 footprints may have up to 10 m geolocation error. For our
purposes, we wanted to directly compare GEDI footprints to ALS
information without additional georeferencing steps to directly test
the utility of footprints as reference data in areas where we do not
have corresponding ALS data sets for location corrections.
Therefore, some of the variability observed within our footprint
level comparisons may be due to geospatial mismatches between the
ALS data and the recorded footprint locations. As such, the
comparisons are not intended as direct validations of the GEDI
instrument measurements in the absence of geolocation errors, but
instead validations of the footprint level information in their original
form as a reference data source for scaling up structure information
which may aid in understanding the errors observed within our
resulting study-area wide GEDI-fusion predicted maps.

2.4.2 Structure map validations
In addition to comparing model performance through the

withheld set of independent GEDI footprints, we also evaluated
biases within the predicted maps and temporal transferability of
models. We leveraged our sample set of ALS units for years of model
creation (2019–2020) and a set of ALS collections from
2016–2018 to represent years of model hindcasting to evaluate
differences in map accuracies when models were applied to years
outside of the model training data (Supplemental Table S1). We
ensured that the sampled collections within both time windows were
representative of the range of forested ecoregions within our study
area (Figure 1).

Maps of simulated gridded waveform metrics within the ALS
sample units were created using a similar approach as outlined for

TABLE 2 GEDI-fusion model comparisons using a priori model predictor sets. All accuracy and error statistics calculated using a withheld testing set of
~140,000 GEDI footprints. The combined model includes metrics from all predictor sets.

GEDI metrics A Priori model sets

Combined Landsat/Topo/Bio Landsat Sentinel-1

R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias

RH98 0.757 5.445 0.130 0.750 5.526 0.128 0.651 6.525 0.113 0.492 7.888 0.032

RH75 0.707 4.238 0.098 0.698 4.298 0.096 0.603 4.930 0.071 0.388 6.142 0.042

RH50 0.651 3.369 0.078 0.639 3.426 0.079 0.553 3.815 0.051 0.292 4.831 0.041

FHD 0.739 0.392 −0.005 0.730 0.399 −0.004 0.643 0.458 0.004 0.564 0.507 −0.001

COVER 0.684 0.146 0.004 0.674 0.148 0.003 0.599 0.164 0.003 0.459 0.191 0.001

PAVD 5–10 m 0.363 0.051 0.002 0.359 0.052 0.002 0.288 0.054 0.001 0.224 0.057 <0.001

PAVD >20 m 0.580 0.058 0.001 0.562 0.059 0.001 0.481 0.065 0.001 0.200 0.081 0.001

PAVD >40 m 0.447 0.034 0.001 0.442 0.034 0.001 0.335 0.038 <0.001 0.079 0.045 <0.001
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footprint level comparisons above (section 2.4.1). PDAL (PDAL,
2022) was used to filter ALS lidar in the sample units to include only
ground and vegetation returns, as well as reclassifying all returns
within 60 cm of the ground surface as ground returns. The
preprocessed ALS files were then converted to simulated
waveforms and waveform metrics (Hancock, 2023). Following
our same comparison approach for cover measures as used in
our footprint-level comparisons, we utilized a gridded ALS cover
measure created within FUSION representing the proportion of first
returns above 2 m (McGaughey, 2022). The size of the ALS
collections used in the comparisons ranged between 150 and
450 km2 (Supplemental Table S1), therefore a random sample of
1,100 cells were drawn from each ALS unit for a total of 9,900 pixels
selected during the years of creation (2019–2020) and 9,900 pixels
from hindcasted years (2016–2018). We created scatterplots of the
map validation sample points for each time period, as well as
calculating R2, bias, and RMSE for each temporal validation dataset.

2.5 Case study: wildlife habitat modeling

Primary cavity excavators are considered a keystone wildlife
guild because they excavate tree cavities that provide nesting and
roosting habitat for multiple other species who cannot excavate
those cavities themselves (Martin et al., 2004; Gentry and Vierling,
2008; Tarbill et al., 2015). For instance, Bunnell et al. (1999) noted
that 25%–30% of vertebrates within Pacific Northwest forests are
reliant on woodpecker cavities for either nesting or roosting, and
many of these secondary cavity users are themselves species of
management interest (e.g., fishers (Pekania pennanti) and marten
(Martes spp.); Bissonette and Broekhuizen, 1995; Matthews et al.,
2019). We chose three cavity excavator avian species which occur
within our study region and are associated with different forest
structural elements. These include the downy woodpecker
(Dryobates pubescens), the Northern flicker (Colaptes auratus),
and the pileated woodpecker (Dryocopus pileatus). Downy
woodpeckers are small woodpeckers that prefer deciduous forest
elements, small trees, and low canopy cover (Jackson et al., 2020).
Conversely, pileated woodpeckers are associated with more mature
forest elements, particularly tall trees (Bull and Jackson, 2020).
Northern flickers are intermediately sized between the other two
woodpecker species, and are associated with forest edges (Wiebe
et al., 2017).

We followed best practices (Johnston et al., 2019; Strimas-
Mackey et al., 2020) to obtain pileated woodpecker, Northern
flicker, and downy woodpecker observations from eBird records
(eBird, 2021). As a general workflow, we obtained stationary eBird
checklists conducted in the study area between June 1 and July 31 of
2016–2020. For pileated woodpeckers, we restricted checklists to
those taking place at longitudes west of −108.723868°, to account for
the limited range of this species in the study area. Northern flicker
and downy woodpecker occur throughout the study area and
therefore checklists for these species were not restricted by
longitude. After spatiotemporal subsampling (following Strimas-
Mackey et al., 2020), we obtained the effective sample size for
positive observations for each species and retained 20% of the
data for model evaluation. We selected modeling scales based on
estimated home range sizes for each species. We used a 250 m radius

buffer size for downy woodpeckers (Jackson et al., 2020), 500 m
radius buffers for Northern flickers (Wiebe et al., 2017), and a 1 km
radius buffer size for pileated woodpeckers (Bull and Jackson, 2020).
In random forest regression models, we used the observations for
each species as our response variables and the following predictor
variables: survey particulars (survey duration and time of day); forest
type (confer, deciduous, or mixed) from MODIS data (Friedl and
Sulla-Menashe, 2015); elevation, slope, eastness and northness from
SRTM; and our set of GEDI-fusion maps produced as explained
above. We first generated models for each woodpecker species using
the GEDI-fusion layers created from the combined model and then
repeated the process for each species using only the restricted
Landsat/topo/bio model outputs. This direct comparison allows
us to ascertain how models with different accuracies and biases
affect wildlife model outputs.

3 Results

Overall, our data fusion approaches leveraging GEDI footprint
forest structure information and continuous remote sensing data
sources proved valuable for producing regional extent gridded maps
of forest architecture with moderate to high model performances
which were of value to wildlife habitat assessments for three cavity
nester species representing different forest structure associations.
Specific data, modeling, and mapping validations are presented
below.

3.1 GEDI-fusion model assessments

Model performance stabilized at approximately 60,000 training
footprints in our initial model testing, which was the sample size
used for subsequent model development along with a withheld set of
approximately 140,000 footprints for model testing. All reported
model accuracies and errors were quantified using the independent
testing set of footprints.

Our random forest combined models predicting GEDI
structure metrics from continuous satellite remote sensing
data sources had high model performance for the majority of
the GEDI metrics. Within the combined models incorporating all
predictor data sources, the highest performance was observed for
RH98 (R2 = 0.76, RMSE = 5.46 m) and FHD (R2 = 0.74, RMSE =
0.39). Lower model performances were observed for the PAVD
metrics, with R2 values ranging from 0.36 (PAVD5-10 m) to 0.58
(PAVD>20 m), and RMSE values ranging from 0.03
(PAVD>40 m) to 0.06 (PAVD>20m; Table 2). The
performance of the Landsat/topo/bio models were only slightly
lower than that of the combined model for all GEDI metrics
(Table 2). When comparing the single source Landsat model to
the Sentinel-1 model, the Landsat model exhibited higher model
performance for all metrics (Table 2). These differences in
performance for the single source predictive models were the
lowest for FHD, COVER, and RH98, in that order.

When comparing relative importance of predictor variables
within the combined random forest models, Landsat variables
were common among the top five most important predictors for
all GEDI metrics (Table 3). Sentinel-1 metrics were also within
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the top five predictors for most GEDI metrics, and within the top
ten predictors for all GEDI metrics apart from FHD (Table 3).
Disturbance information (TSD) was only among the top ten

predictors for PAVD>20 m. Topography and bioclimatic
variables were among the top ten predictors for all GEDI
metrics, and among the top five for FHD and the PAVD
metrics (Table 4), representing the importance of macro
(bioclimatic) and micro (driven by topographic patterns)
climatic gradients on driving vegetation within particular
forest strata as well as for promoting overall diversity of the
vertical vegetation profile.

3.2 Validation assessments

3.2.1 GEDI footprint- ALS comparisons
Comparisons between ALS simulated (RH and FHD metrics)

or direct discrete ALS measures (COVER) to those from GEDI
footprints showed variability in accuracies across the GEDI
metrics (Table 4). We observed the highest comparison
accuracies for RH98 (R2 = 0.74, RMSE = 6.83 m) and the
lowest accuracies for COVER (R2 = 0.44, RMSE = 0.27). The

TABLE 3 Random forest variable importance rankings for the top 10 predictor metrics within the combined models for GEDI-fusion metrics.

Predictor set (abbrev.) Combined model top 10 variable importance ranking

RH98 RH75 RH50 FHD COVER PAVD 5–10 m PAVD >20 m PAVD >40 m

Landsat 8 (L8) NDVI 4 4 3 4 5 5 3 3

NBR 5 3 2 7 4 6 1 1

TCB 1 2 4 1 2 3 4 4

TCG 2 9 7 6

TCW 1 1 2 1 2 2 2

Disturbance (Dist) TSD 9

Sentinel-1 (S1) VV median 8 8 8 8 9

VH median 3 5 5 3 1 8

RVI 9

Topography (Topo) elevation 10 10 10 10

slope 7 7 7 5 6 4 8

aspect

eastness

northness

TOPODIV 9 6 9 8

CHILI

mTPI

LANDFORM

Bioclimatic (Bio) CMD 10 9 8 10

GDD 10

MAP 6 6 6 3 7 7 5 7

MAT 9 6 5

MWT 10

TABLE 4 Comparison statistics for GEDI Level 2A and 2B footprint metrics and
ALS metrics for a sample of ALS units across our study area. Simulated
waveform metrics from ALS were used for all comparisons with the exception
of COVER, which was produced directly from discrete ALS data (proportion of
first returns above 2 m). Validation results are not included for PAVD metrics
as those are not available as outputs from the GEDI simulator or directly from
discrete ALS. RMSE units are in meters for relative height (RH) metrics and
proportions for COVER. FHD is unitless.

GEDI footprint metric R2 RMSE Bias

RH98 0.735 6.831 0.782

RH75 0.698 5.629 −0.119

RH50 0.664 4.551 −0.256

FHD 0.608 2.143 −2.107

COVER 0.436 0.271 −0.142
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remaining height metrics of RH75 and RH50 along with the FHD
metric had comparable accuracies, with R2 values of 0.70, 0.66,
and 0.61, respectively. The majority of the metrics had a negative
bias with the exception of RH98, which means that the GEDI
footprints tended to underestimate values compared to ALS
measures. The simulated FHD values exhibited a systematic

bias in that they had a higher range of values to those from
the GEDI footprints (bias = −2.107), but still exhibited a good
validation comparison with the actual GEDI footprint values
(Table 4). The lower model performances observed between
the GEDI and direct ALS cover measures may be influenced
by a multitude of factors; these include the different

FIGURE 2
GEDI-fusion RH98 2020 map across our 6-state study area with an example inset area showing 2020 maps of the full set of GEDI-fusion maps
created using the combined model (RH98, RH75, RH50, FHD, COVER, PAVD 5–10m, PAVD >20m, and PAVD >40 m). All height metrics are in meters,
COVER and PAVD metrics are proportions, and FHD is unitless.
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representations of cover within waveform vs discrete lidar
measures of cover, geolocation errors within the GEDI
footprints, or issues with the ground finding algorithm within
the GEDI footprint influencing the resulting cover estimate.

3.2.2 Structure map validations
Through our GEDI-fusion frameworks, we were able to

successfully scale up GEDI structure information to
continuous extents, capturing horizontal and vertical structural
patterns across our six-state western U.S. study area (Figure 2).
Our results show variability in map performance across the
GEDI-fusion metrics although all had moderate to high
predictive performance (R2 = 0.59–0.75; Table 5). Map
accuracies and errors were comparable between maps within
years of model creation to those representing hindcasted years
for both the combined and Landsat/topo/bio models (Table 5).
Map accuracy was only slightly higher from the combined model
than from the Landsat/topo/bio model for all GEDI-fusion
metrics (Table 5). The comparable accuracies and errors
between the model-map versions and the consistency between
years of model creation to hindcasted years, show promise for the
potential of further map hindcasting using the Landsat/topo/bio
model prior to years of Sentinel-1 data. From here forward we
focus on map validation results for the combined model-based
maps for the years of model creation.

Among the GEDI-fusion metrics, FHD had the best map
accuracy (R2 = 0.745), although it still exhibited the systematic
bias observed within the footprint level comparisons (Figure 3).
RH50 had the lowest map accuracy with an R2 of 0.59 and RMSE of
4.59 m (Table 5) and map predictions underestimated
RH50 compared to simulated values, particularly among higher
RH50 simulated heights (Figure 3). The order of validation
performance rankings of the GEDI-fusion metrics was different
between the footprint- and map-level validations, but the general
range of accuracies and errors and moderate-high performance was
consistent between scales of analyses (Tables 4, 5).

3.3 Case study: wildlife habitat modeling

Our GEDI-fusion maps show promise for supporting large
extent forest wildlife habitat modeling efforts according to the
results of our case study, which focused on three species
representing different forest structure associations and home
range scales. We were able to successfully model habitat for our
three cavity-nesting avian species with “good” performance
according to AUC values (Swets, 1988) by incorporating
structure information provided by the GEDI-fusion maps
(Table 6). Habitat models for the pileated woodpecker exhibited
the highest AUC values, closely followed by the downy woodpecker,
and then the Northern flicker (Table 6). In general, the habitat
models had very high specificity with lower sensitivity (Table 6),
meaning that the maps were better at predicting areas where the
species were not encountered than areas where they were present.

When comparing habitat models incorporating the two different
GEDI-fusion mapping versions, we observed minimal differences
for all species, with only slightly higher (or directly comparable)
AUC values for the habitat models incorporating the GEDI-fusion
metrics from the combined models compared to those from the
Landsat/topo/bio fusion maps (Table 6). The two versions of the
random forest habitat models for each species also had similar
ranking for relative importance of predictors (Table 7), so here
forward we will only discuss the habitat models incorporating the
GEDI-fusion metrics from the combined fusion maps. Following
eBird habitat modeling best practices, we incorporated variables
within our models related to survey timing and durations. Not
surprisingly, both metrics were among the top five predictors for all
three species (Table 7). There was a greater probability of detecting
an individual of the species earlier in the day when birds are known
to be more active and vocal, and as survey durations covered longer
periods of time (Figures 4–6). Likewise, measures of topography
were included in the top 9 predictors for all three species. Elevation
was particularly important for downy woodpecker, for which it was
the single most important variable (Table 7). Slope was in the top

TABLE 5 GEDI-fusion gridded predicted map validation with GEDI-simulator ALS (or direct discrete ALS for COVER) sample units for maps created with the
combined predictor model and the Landsat/topo/bio model. Validation results are not included for PAVD metrics as those are not available as outputs from the
GEDI simulator used to simulate comparable waveform metrics from the ALS sample units, or through direct discrete ALS measures.

GEDI fusion map metric Combined model Landsat/Topo/Bio model

R2 RMSE Bias R2 RMSE Bias

Modeling Years Maps (2019–2020) RH98 0.673 6.996 1.109 0.664 7.079 0.961

RH75 0.633 5.675 0.710 0.625 5.730 0.616

RH50 0.591 4.589 0.384 0.584 4.612 0.307

FHD 0.745 2.197 −2.173 0.726 2.207 −2.182

COVER 0.681 0.235 −0.144 0.674 0.238 −0.148

Hindcasting Map Years (2016–2018) RH98 0.690 6.296 0.618 0.684 6.344 0.439

RH75 0.650 5.171 0.563 0.643 5.213 0.325

RH50 0.599 4.329 0.384 0.596 4.325 0.137

FHD 0.719 2.198 −2.176 0.717 2.196 −2.174

COVER 0.653 0.206 −0.126 0.647 0.213 −0.135
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FIGURE 3
Scatterplots of the predicted GEDI-fusion metrics maps (GEDI-fusion) compared to simulated waveform grids (or direct discrete ALS grids in the
case of COVER) for our validation ALS units (ALS) for a random sample of validation pixels. Relationships shown are those for the combined model GEDI-
fusion maps and for map years and ALS units representing years of model creation (2019–2020). Scatterplot color scale depicts discrete ALS-derived
maximum canopy height.

TABLE 6 Comparison of habitat models for three case study wildlife species that incorporate the GEDI-fusion metrics from either the combined model or the
Landsat/topo/bio model. Model assessment statistics include the mean square error (MSE), sensitivity, specificity, and area under the curve (AUC).

Combined GEDI-Fusion metrics Landsat/Topo/Bio GEDI-Fusion metrics

Species MSE Sensitivity Specificity AUC MSE Sensitivity Specificity AUC

Downy woodpecker 0.056 0.501 0.945 0.862 0.059 0.463 0.945 0.855

Northern flicker 0.135 0.538 0.814 0.762 0.135 0.526 0.826 0.762

Pileated woodpecker 0.039 0.313 0.965 0.865 0.039 0.306 0.968 0.864
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7 predictors for downy woodpecker and Northern flicker, but not for
pileated woodpecker (Table 7).

Regardless of the importance of topography and survey
characteristics on detecting an occurrence for the species,

GEDI-fusion metrics were also included among the top five
most important variables for all species (Table 7). FHD was the
most important GEDI-fusion metric for both downy
woodpecker and Northern flicker, but was not ranked in the

TABLE 7 Random forest variable importance rankings for the top 10 predictor metrics within the wildlife case study habitat models using the GEDI-fusion metrics
from the combined models. Survey detectability related predictors are italicized as they are not related to environmental occurrence drivers.

Importance
ranking

Downy woodpecker (250 m habitat
buffers)

Northern flicker (500 m habitat
buffers)

Pileated woodpecker (1000 m
habitat buffers)

1 elevation survey duration RH98

2 survey duration time survey started RH75

3 time survey started FHD time survey started

4 slope RH98 survey duration

5 FHD elevation COVER

6 COVER PAVD 5–10 m Evergreen

7 PAVD >40 m slope PAVD >20 m

8 RH98 COVER elevation

9 PAVD >20 m RH75 RH50

10 RH75 northness FHD

FIGURE 4
Partial dependence plots for the top nine ranked variables within the random forest downy woodpecker occurrence model depicting observed
habitat relationships for GEDI-fusion, topographic, and survey timing metrics. Occurrence was modeled at a 250 m radius scale, comparable to the
species average home range size.
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top ten variables for pileated woodpecker (Table 7). Both
species showed higher encounter rates at higher FHD
(Figures 5, 6). RH measures were particularly important for
pileated woodpecker, with RH98 and RH75 ranked as the two
most important variables overall and RH50 as the ninth most
important variable (Table 7). All three species had highest
encounter rates at high RH98 (Figures 4–6). Pileated
woodpecker had the highest encounter rate at RH75 > 10 m
(Figure 6), while Northern flicker encounter rate was negatively
correlated with RH75 (Figure 5). COVER was ranked in the top
eight variables for all three species (Table 7). For pileated
woodpecker, encounter rate was highest at high COVER
(Figure 6), while downy woodpecker and Northern flicker
encounter rates peaked at moderate COVER (0.4–0.6; Figures
4, 5). PAVD metrics were included in the top 6–9 predictors for
each species, but the strata of greatest importance were different
across the species (Table 7). Downy woodpecker encounter rates
peaked at low values (<0.05) of PAVD> 40 m and at
PAVD>20 m values of approximately 0.1 (Figure 4).
Northern flicker encounter rates were negatively related to
PAVD5-10 m (Figure 5). Pileated woodpecker encounter
rates were positively related to PAVD>20m, but reached an
asymptote at PAVD>20 m values of approximately 0.1
(Figure 6).

4 Discussion

With the novel source of three-dimensional data provided by
GEDI, it is critical to determine the advantages and drawbacks for
use in modeling forest structure across a variety of forest types and
architectures. Our study calibrated and tested predictive models
across six western U.S. states with a variety of forest types across a
bioclimatic gradient from the wetter coastal forests in western
Washington and Oregon to the dryer southwest forests and
woodlands of Colorado. Within our model assessments, we
found moderate to high predictive performance for a set of eight
GEDI structure metrics across our diverse study region. Much of the
existing GEDI literature has focused on accuracy assessments of the
GEDI waveform geolocations and structure measures (Adam et al.,
2020; Li et al., 2023), developing footprint level biomass models
(Duncanson et al., 2022), or leveraged simulated GEDI data in lieu of
actual footprint samples (Burns et al., 2020; Silva et al., 2021).
Studies have begun to investigate GEDI footprint samples as the
basis for scaling up forest structure measures by leveraging fusions of
passive and active satellite earth observations, although the majority
of those studies have been focused on elevation, canopy height, or
biomass (Healey et al., 2020; Potapov et al., 2021; Shendryk, 2022).
Our comparison of additional GEDI metrics to ALS and our
evaluation of the trade-offs between different data fusion

FIGURE 5
Partial dependence plots for the top nine ranked variables within the random forest Northern flicker occurrence model depicting observed habitat
relationships for GEDI-fusion, topographic, and survey timing metrics. Occurrence was modeled at a 500 m radius scale, comparable to the species
average home range size.
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frameworks provides valuable information on the potential of using
GEDI data fusions to provide wall-to-wall structure information
across different forest types for metrics useful in wildlife
applications. While ALS-validation results within this study
varied slightly between the footprint- and map-level assessments,
moderate to high performances were observed for all metrics and the
general range of accuracies and errors were consistent between
scales of analyses. The consistency between footprint- and map-
level assessments further supports the promise of data fusion
approaches for scaling up GEDI structure information to
continuous extents, even with geolocation errors from both GEDI
footprints (e.g., up to 10 m error within version 2 GEDI data) and
satellite predictors (e.g., potential of 15 m error for Landsat pixels).

Among the studies focused on scaling up GEDI structure
metrics through data fusion approaches, the majority have largely
focused upon GEDI canopy heights (Healey et al., 2020; Sothe et al.,
2022; Ngo et al., 2023). Similar to these previous studies, we found
high accuracies within our maps scaling up RH98 samples to
continuous extents through optical and radar-based data fusions
with an R2 of 0.673 and RMSE of 6.996 m when compared against
simulated ALS validation samples, and an R2 of 0.757 and RMSE of
5.445 m when assessed using withheld GEDI footprint testing data.
Healey et al. (2020) found progressively improved predictions of
RH98 when global-extent models were calibrated within blocks of
decreasing sizes, with optimization at 3 km. At this 3 km local

calibration scale, they were able to achieve an RMSE of 7.08 m
for RH98 predictions using only Landsat predictors across global-
extents (Healey et al., 2020), which shows promise for the potential
of expanding GEDI structure measures to larger extents than
included in our regional study. Within sample tropical forest
sites in South America and Africa, Ngo et al. (2023) found the
greatest modeling success with RH98 among the possible upper
canopy height GEDI metrics, supporting our inclusion of this
variable. Similar to our results, Ngo et al. (2023) also found
optical data the most important predictors of RH98 even when
radar was included, with a validation R2 of 0.62 and RMSE of 5 m
when compared to an ALS canopy height. All previous studies of
scaled-up GEDI RH98 predictions reviewed here had similar biases
to those from our study, with under predictions at taller heights and
over predictions at lower RH98 values (Healey et al., 2020; Sothe
et al., 2022; Ngo et al., 2023).

To our knowledge, our study represents one of the first studies to
extend GEDI data fusion evaluations to additional structure metrics
beyond canopy height and biomass across regional extents, such as
FHD and PAVD metrics. The novelty of these additional metrics at
moderate resolutions across broad extents are likely to be extremely
informative for wildlife focused studies. FHD has long been noted to
be an important driver of local bird diversity patterns (e.g.,
MacArthur and MacArthur, 1961). Furthermore, wildlife species
are sensitive to the density of vegetation within different height

FIGURE 6
Partial dependence plots for the top nine ranked variables within the random forest pileated woodpecker occurrence model depicting observed
habitat relationships for GEDI-fusion, topographic, and survey timing metrics. Occurrence was modeled at a 1,000 m radius scale, comparable to the
species average home range size.
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strata. For instance, a dense upper canopy is important for Pacific
marten (Martes caurina), which are one of many forest mustelids of
management interest (Buskirk and Ruggiero, 1994). Scaling up these
metrics and producing continuous data layers is an important first
step to explore structural characteristics that are likely to influence
wildlife-habitat relationships.

Our results showed promise for applying GEDI-fusion models
further back in time than our study period starting in 2016, where we
found comparable map validation results for hindcasted years versus
years of model creation for all structure metrics. We also found
comparable performance for models based on Landsat, topographic,
and bioclimatic predictors compared to the model that also
incorporated Sentinel-1 and disturbance metrics, which supports
the findings of Ngo et al. (2023) for the importance of optical data
for scaling up GEDI information to continuous extents. The reliance
on Landsat data for driving our GEDI-fusion models provides the
opportunity to hindcast models further back across the Landsat
archive prior to the availability of Sentinel-1 data. In addition, we
compared the performance of the two GEDI-fusion map sets (one
incorporating all predictors and the second only leveraging Landsat,
topography, and bioclimatic predictors) within our wildlife habitat
models for three case study species representing different forest
structure associations. For all species, we found comparable habitat
model performance between the two GEDI-fusion map sets. While
Sentinel-1 data are likely to be helpful for wildlife modeling in
multiple contexts (e.g., Koma et al., 2022), its exclusion from our
GEDI-fusion models did not have downstream effects on wildlife
modeling applications. Future studies expanding the time series of
hindcasted GEDI-fusion models will require additional validation
for the expanded temporal scope outside that of our study, as well as
for implications within ecological applications.

The description of vegetation characteristics across broad
extents, including vertical and horizontal structure patterns, is
critical for managing and conserving wildlife species, since
vegetation characteristics provide food, cover, and thermal
resources for these organisms. While previous remote sensing-
based wildlife habitat modeling efforts have shown value in the
use of direct spectral indices from Landsat (Oeser et al., 2020),
Sentinel-2 (Valerio et al., 2020), and MODIS (Viña et al., 2008),
there is added applicability for habitat characterizations based on
structure measures to meet the needs of forest managers who often
manage their land in terms of across, or within, stand structure
goals. When realized habitat relationships based on structural
components can be mapped across the landscape as well as
through time (Davies and Asner, 2014; Eitel et al., 2016), there
are also opportunities for monitoring changes in habitat
availabilities and connectivity through time, or to better match
the timing of habitat variables with the timing of wildlife surveys.
The annual maps of structure components for 2016–2020 which we
produced here were successful in characterizing habitat for our three
case study species. We were able to do so leveraging citizen science
wildlife survey data sets (i.e., eBird data), where the multiple years of
GEDI-fusionmaps facilitated thematching of survey years to habitat
predictors across multiple years, increasing our records. eBird data
are now widely used in studies addressing bird distributions,
movements, and diversity hotspots (e.g., Sullivan et al., 2014),
and while a limited number of studies to date have included
eBird data with GEDI data (Burns et al., 2020, this study), we

anticipate that investigations of bird populations and communities
that use scaled up, continuous GEDI-fusion data are likely to be of
great benefit to the conservation and management of birds given
their sensitivity to forest structure.

Important to the mapping of animal habitat are considerations
of scale. Animals select their habitat at hierarchical scales from the
species’ geographic range down to the foraging and cover resources
an individual utilizes within their territory (Johnson, 1980), and
different species operate at different spatial scales. Spatially
continuous representations of fine-moderate resolution vertical
and horizontal forest structure and patch characteristics facilitate
the simultaneous evaluation of multiple scales of habitat selection
for different species (Holbrook et al., 2017), as well as the mapping of
realized wildlife habitat relationships across the landscape
(Lesmeister et al., 2019), providing valuable forest planning tools.
Our study included three species with home ranges that ranged from
2 ha (downy woodpecker; Jackson et al., 2020) to approximately
400 ha (pileated woodpecker in Oregon; Bull and Jackson, 2020),
and our analyses resulted in AUCs of 0.76–0.87, suggesting that the
GEDI-derived structure data were successfully reflecting habitat
elements. This finding is consistent with Smith et al. (2022), who
found that GEDI-derived metrics were important for modeling a
suite of mammal species that operated at different spatial scales (e.g.,
snowshoe hares (Lepus americanus) and coyotes (Canis latrans)). In
general, our habitat models had very high specificity with lower
sensitivity, meaning that the maps were better at predicting areas
where the species were not encountered than areas where they were
present; this is common within modeling of wildlife occurrence as a
number of non-environmental factors may influence the occupancy
of a suitable patch by an individual of a species, including inter- and
intra-species competition, predator-prey dynamics, and population
densities.

The GEDImetrics used in this study were hypothesized to reflect
important forest structural elements for our selected species, and our
findings suggest that the GEDI-fusion data were successful in
representing those elements. For instance, pileated woodpeckers
require large trees for nesting and roosting (Bull and Jackson, 2020),
and our results that RH98 were positively associated with the species
encounter rates are consistent with pileated woodpecker ecology.
Northern flickers often forage at the edge of stands while nesting in
large trees (Wiebe et al., 2017), and the positive relationship of this
species with increasing levels of RH98 and FHD are again consistent
with their nesting and foraging ecology. Burns et al. (2020) found
that simulated GEDI data captured structural elements important
for multiple bird species, and Smith et al. (2022) similarly found that
GEDI-derived structural elements were important in improving
distribution models of several mammal species. These studies, in
addition to our findings, suggest that GEDI data represent structural
elements at spatial scales that are important to a wide variety of
wildlife species.

Beyond characterizing wildlife habitat, the remote sensing data
fusion frameworks which we developed and tested for scaling up
GEDI-based structure information to continuous regional extents
may additionally provide value for other forest assessments. For
instance, maps of forest structure components, such as height,
canopy cover, and vegetation profiles, are also valuable for
estimating biomass (Hudak et al., 2012) and forest management
planning. In turn, this forest information may also serve as the basis
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for studies assessing the tradeoffs between managing for carbon
sequestration, timber production, species specific habitat, and
overall biodiversity (Kline et al., 2016). Understanding spatial
forest structure patterns can also aid in calibrating forest
projection models for predicting impacts of land use and
management practices, as well as climate change scenarios, on
future forested systems (Fekety et al., 2020) and habitat
availability. Our focus on the use of only publicly available
remote sensing products within our data fusions also ensures the
applicability of our developed methods across other regions around
the globe and within projects or programs with limited financial
resources.

While some countries, such as the United States, benefit from
federally funded periodic and systematic forest sampling efforts,
including the U.S. Forest Inventory and Analysis (FIA) program,
many developing countries do not have comparable forest
monitoring programs. These countries contain some of the
forests and biodiversity hotspots experiencing the greatest rates
of anthropogenic driven land conversions and other threats to
forest health and function (Jetz et al., 2007). Such areas could
greatly benefit from a consistent forest structure sampling data
set, such as GEDI, for regional assessments and monitoring, or
to serve as reference data in modeling approaches such as those
presented in this study to predict forest structures across continuous
extents at resolutions relevant for a diversity of ecological
applications. Even within valuable field sampling programs such
as FIA, there are drawbacks for serving as reference datasets for
some spatial modeling applications because of the need for meeting
data security protocols which can restrict their use within cloud
computing workflows and through their view of the forest from the
ground up with variable georeferencing accuracies (e.g., inconsistent
GPS sampling errors across regions and plots). GEDI shows promise
for filling this data gap for consistent, 3-dimensional
characterizations of the forest strata as measured from above,
and publicly available at near global extents (Dubayah et al.,
2020). While these data may provide a novel data source in
many regions of the world, the rich density and availability of
ALS collections along with the diverse gradients of forest
types and climatic gradients still make the U.S. a valuable
location to test the utility of GEDI for driving such modeling
efforts and for validating spatiotemporal biases of the resulting
products.

5 Conclusion

The purpose of our study was to test the suitability of the rich
reference source of structural information that GEDI footprints
provide within various data fusion modeling frameworks for scaling
up metrics of value to wildlife habitat modeling applications. We
conducted this assessment across broad extents at 30 m resolutions
that are of value to a variety of forest assessments. We chose to
conduct our analyses within the diverse western U.S. where there
were corresponding samples of ALS data for validation purposes.
This evaluation was intended to provide insights into the strengths
and limitations of the resulting predicted structure maps across a
variety of forest types and structures, to better inform similar
mapping efforts within regions which do not have ALS samples

or forest inventory programs. Since our goal was to use
computationally approachable workflows, we filtered and spatially
thinned our GEDI footprints to a sample size that balanced model
accuracy with computational needs. However, with the greater
density of GEDI footprints now available and the hope of an
extended mission, exciting opportunities arise for more of a
census of forest structure at varying resolutions. Such a census
should be tested for greater precision than those found in our study.
Increased temporal extents of GEDI data from the originally
planned mission period may also help in model stabilities for
increased temporal transferability or for directly monitoring
change in forest structure or habitat availabilities. Future studies
should continue to expand the evaluations of the values and
limitations of GEDI structure information and fusion products
within assessments of a wider variety of wildlife species and for
characterizing biodiversity patterns.
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