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Introduction: Space-borne lidar measurements from sensors such as CALIOP
were recently used to retrieve the particulate back-scattering coefficient, bbp, in
the upper ocean layers at a global scale and those observations have a strong
potential for the future of ocean color with depth-resolved observations thereby
complementing the conventional ocean color remote sensed observations as well
as overcoming for some of its limitations. It is critical to evaluate and validate the
space-borne lidar measurements for ocean applications as CALIOP was not
originally designed for ocean applications. Few validation exercises of CALIOP
were published and each exercise designed its own validation protocol. We
propose here an objective validation protocol that could be applied to any
current and future space-borne lidars for ocean applications.

Methods: We, first, evaluated published validation protocols for CALIOP bbp
product. Two published validation schemes were evaluated in our study, by
using in-situ measurements from the BGC-Argo floats. These studies were
either limited to day- or nighttime, or by the years used or by the geographical
extent. We extended the match-up exercise to day-and nighttime observations
and for the period 2010–2017 globally. We studied the impact of the time and
distance differences between the in-situmeasurements and the CALIOP footprint
through a sensitivities study. Twenty combinations of distance (from 9-km to 50-
km) and time (from 9 h to 16 days) differences were tested.

Results & Discussion: A statistical score was used to objectively selecting the best
optimal timedistance windows, leading to the best compromise in term of number
of matchups and low errors in the CALIOP product. We propose to use either a
24 h/9 km or 24 h/15 km window for the evaluation of space-borne lidar oceanic
products.
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1 Introduction

Satellite ocean color observations are used successfully by the scientific community for
studying the ecosystem of the oceans and to document temporal changes induced by
anthropogenic activities as well as climatic conditions. Passive ocean color remote sensing
has been continuously operational for more than two decades (McClain, 2009; Groom et al.,
2019) and provides a synoptic understanding of various ocean processes such as primary
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production (Huang et al., 2021), monitoring of phytoplankton
(Bracher et al., 2017), harmful algal blooms (Ghatkar et al.,
2019), changes in ocean productivity (Westberry et al., 2023),
and coastal water quality (Zheng and DiGiacomo, 2017).
Sustained observations can also be beneficial for studies on global
carbon cycle, marine biodiversity and function (Canonico et al.,
2019), biogeochemical models, data assimilation, assessing impact
and adaptation of marine ecosystems to climate change (Dutkiewicz
et al., 2019), understanding Earth System bio-feedback mechanisms,
flow of material through marine food webs (Racault et al., 2015),
implications for marine resources, marine coastal hazards (Melet
et al., 2020) and marine pollution (Seo et al., 2020). These benefits
are critical for understanding the health of marine ecosystems,
protecting human health and the environment, managing
fisheries, and promoting sustainable ocean policies (Groom et al.,
2019).

The conventional remote sensing of ocean color relies on
measurements of radiances coming out of the water surface
reaching the top-of-atmosphere using passive sensors. These
observations have changed our view of the global distribution of
the phytoplankton. However, this technology has some fundamental
limitations (Hostetler et al., 2018; Jamet et al., 2019). Passive ocean
color images are impacted by the contribution of the aerosols to the
top-of-atmosphere signal which is removed through atmospheric
correction and this leads to uncertainties in the ocean color products
(IOCCG, 2010; Goyens et al., 2013). Unaccounted contributions
from bubbles, foam, and surface reflection can further impact
accuracy. Retrieval attempts may fail under challenging
conditions such as Sun glint, aerosols, and clouds (Ilori et al.,
2019). The ocean color signal is mainly confined to the surface,
causing significant errors in water-column-integrated ocean
properties such as chlorophyll concentration and net primary
production. The retrieved water leaving radiance signal in ocean
color remote sensing is influenced by factors such as colored
dissolved matter (Tavora et al., 2020), phytoplankton pigments,
non-algal particles, and backscattering by suspended particles,
leading to uncertainty in retrieving fundamental properties and
geophysical parameters requiring additional information to improve
accuracy (Werdell et al., 2018). Ocean color global sampling is
significantly limited by atmospheric interferences, Sun angle, and
cloud cover. On average, more than 70% of the Earth’s ocean area is
under sufficient cloud cover making passive ocean color retrievals
impossible, and side-scatter from nearby clouds can compromise
ocean retrievals from otherwise clear sky pixels (Hostetler et al.,
2018). Strongly absorbing aerosol layers can also compromise ocean
color monitoring for extended periods. Polar regions have low Sun
angles and cloud conditions, which can eliminate ocean color
sampling for a significant fraction of the year (Behrenfeld et al.,
2017). This can undermine the understanding of plankton annual
cycles and biogeochemistry. The conventional ocean color
technology provides no information about the water quality
parameters at night (Hostetler et al., 2018; Jamet et al., 2019;
Behrenfeld et al., 2022).

Space-borne ocean color observations using lidar have a great
potential to provide complementary information to existing
passive ocean color sensors (Churnside, 2014; Hostetler et al.,
2018; Jamet et al., 2019). Lidar is an active remote sensing
technology and has been extensively used for atmospheric

applications. However, it did not get a lot of attention from
the ocean color community. Lidar technique can overcome some
limitations of the passive ocean color observations: it can provide
an enhanced temporal coverage including nighttime observations
and increased spatial range including polar regions which offers a
great potential expansion of the available datasets and possibility
of furthering our knowledge of the polar oceans and its processes.
In addition, the lidar enables to obtain bio-optical and
biogeochemical parameters over the vertical in the first tens of
meters, contrary to passive observations.

The potential of airborne lidar has been demonstrated for
accurately estimating scattering layers and phytoplankton
biomass (Chen et al., 2021; Churnside, 2014; Churnside et al.,
2021; Yuan et al., 2022) or for fishery surveys (Roddewig et al.,
2018). Recent developments of shipborne lidar confirmed the
potential of lidar to monitor the scattering and phytoplankton
layers over the first tens of meters (Collister et al., 2018;
Zimmerman et al., 2020; Shen et al., 2022; Zhang et al., 2022).
Although airborne and shipborne lidar sensors were shown to
have great potential for measuring the optical properties of the
water column for various applications (Steinvall and Björck,
2020; Zhou et al., 2022), there are currently no space-borne
lidars designed specifically for this purpose. Nevertheless,
there have been studies that have utilized data from the
CALIOP and ATLAS sensors aboard CALIPSO and ICESat-2
satellite respectively, which were not initially intended for ocean
applications (Behrenfeld et al., 2013; Behrenfeld et al., 2017; Lu
et al., 2014; Lu et al., 2016; Hostetler et al., 2018; Lu et al., 2022).
The Cloud-Aerosol lidar and Infrared Pathfinder Satellite
Observations mission, abbreviated as CALIPSO, was jointly
developed by NASA and CNES aiming to fill gaps in
observation of aerosols and clouds globally. The measurements
were collected with the intention of accurately getting
information on the atmospheric extinction coefficient profiles,
cloud height data, identifying non-spherical aerosol particles and
their sizes, and discriminating water clouds from ice clouds
(Winker et al., 2006). The main sensor is the Cloud-Aerosol-
lidar Orthogonal Polarization (CALIOP) which is near-nadir
viewing lidar sensor with two wavelength polarizations at
532 nm and 1,064 nm.

CALIOP data were used, for the first time, for ocean
applications in 2007 and this work has provided the first
global image of subsurface ocean with a lidar satellite (Hu
et al., 2007; Behrenfeld et al., 2013) pioneered assessments of
global ocean phytoplankton biomass (Cphyto) and particulate
organic carbon (POC) using CALIOP particulate back-
scattering coefficient, bbp(532) estimates. Several following
studies improved the data processing (Lu et al., 2014; Lu et al.,
2016; Lu et al., 2021a; Lu et al., 2021b; Behrenfeld et al., 2022) and
used the CALIOP bbp product for studying the polar regions
(Behrenfeld et al., 2017), the diel vertical migration (Behrenfeld
et al., 2019) or the seasonal distributions of bbp in the
Mediterranean Sea (Dionisi et al., 2020). CALIOP bbp was
validated using ocean color satellite products and in-situ
measurements and the results showed accurate estimates of
the particulate back-scattering coefficient, bbp(532)
(Behrenfeld et al., 2013; 2017; Lacour et al., 2020; Lu et al.,
2021a; Bisson et al., 2021). However, these validation exercises
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were based on different schemes in all of those studies (different
time and distance differences between the in-situ measurements
and the CALIOP footprint). There exists no standard validation
protocol for space-borne lidar oceanic products, such as those
used for validation of passive ocean color satellite products
(Bailey and Werdell, 2006). The major difficulties for
validating space-borne lidar oceanic products are the lidar
footprint size (70 m for CALIOP) and the revisit time
(16 days) which poses a significant challenge for having a
significant number of match-ups.

Alternative validation protocols need to be developed
specifically for space-borne lidar sensors to ensure the
accuracy and reliability of their data products. The much
smaller footprint of lidar sensors in comparison to ocean color
sensors swaths of 1,000+ km makes it challenging to collocate in
situ data. Moreover, the repeat cycle of lidar sensors, as CALIOP,
is much less frequent than ocean color sensors, making it difficult
to select an appropriate time and space window for validation of
lidar data due to scarcity of coincident in situ data. Recent studies
have adopted various spatio-temporal scales for validating
CALIOP data with in-situ BGC-Argo bbp (Lacour et al., 2020;
Bisson et al., 2021). However, there is a lack of research aimed at
providing clear guidelines to the scientific community regarding
the optimal spatio-temporal scales for validating satellite lidar
sensors.

In this study, the objective is to establish a standardized
methodology with a clear and objective criterion for validating
CALIOP oceanic products, bbp(532), but also other current and
future space-borne lidar oceanic products, given the limited
availability of datasets that makes direct validation challenging.
The proposed methodology uses an objective statistical score to
determine the optimal time-distance window. The CALIOP
bbp(532) archive from 2010 to 2017 and globally was compared
to the BGC-Argo bbp measurements through a match-up exercise,
where the CALIOP footprint was co-located with the BGC-Argo
measurement with criteria on the time (Δt) and distance (Δd)
differences between both observations. We investigated the
impact of twenty combinations of (Δt, Δd) on the accuracy of
the CALIOP bbp. Sensitivities analysis was performed to
showcase the advantages and limitations of our proposed
validation protocol.

2 Data

2.1 CALIOP

CALIOP measures the back-scatter lidar signal at 532 nm and
1,064 nm wavelengths and is a nadir-pointing lidar (Winker et al.,
2010). The measurements in CALIOP comprises of the co-polarized
and cross-polarized components of the vertically integrated back-
scatter with a vertical resolution of 22.5 m in ocean waters
(Behrenfeld et al., 2013; Bisson et al., 2021). The day- and
nighttime lidar derived bbp products published by Behrenfeld
et al., 2019 as available online (http://orca.science.oregonstate.
edu/lidar_public_v2.php) were used in this study. Similar to
Bisson et al., 2021, modification to this dataset was performed by
using a conversion factor (β(π)/bbp) of 0.32 instead of 0.16. That is,

the dataset was multiplied by a factor of 0.5. The CALIOP data used
in this study are for the period 2010 to 2017 and includes both day-
and night-time data.

2.2 BGC-Argo

The BGC-Argo bbp profiles at 700 nm were downloaded
from the biogeochemical-argo.com website on 25-12-2021
(Claustre et al., 2020). Synthetic delay mode data were used
which are quality controlled and depth adjusted data. There
were about 41,420 data points with bbp data for the period
between 2010 and 2017 at separate locations. Outliers were
removed using 1.5 times the interquartile range method. For a
comparable dataset between the CALIOP and Argo, the data
had to be averaged within the mixed layer depth. This was
achieved by finding the depth where the density is more than 0.
03 kg·m−3 with respect to the density at the depth 10 m. The
global median mixed layer depth from the BGC-Argo dataset is
18 m and has an inter-quartile range of 3.9 m (Bisson et al.,
2021). However, only depths less than 50 m were considered,
and the global median value was used at stations where this
method of finding mixed layer depth (MLD) did not work due to
a smaller number of samples in the profile. The values of the
calculated BGC-Argo values were reported to be not
significantly changed if the first light attenuation layer was
chosen instead of mixed layer depth as in Bisson et al., 2021.
Figure 1 shows the locations of the BGC-Argo data points
having a match-up with the CALIOP dataset, within 16-day
and 50-km spatio-temporal range.

As the wavelength at which bbp is provided (at 700 nm for BGC-
Argo and at 532 nm for CALIOP), it is necessary to transform BGC-
Argo bbp(700) into bbp(532) for direct comparison. This was done
with the following equation:

bbp 532( ) � bbp 700( ) × 532
700

( )−γ
(1)

Where Y represents the spectral slope of the backscattering spectra.

2.3 MODIS-Aqua

MODIS-Aqua level-3 remote sensing reflectance (Rrs) data at
443 nm and 555 nm with the 8-day average and 9-km resolution
were downloaded from the NASA ocean color website. The spectral
slope of the backscattering coefficient (Eq. 1) was determined
through the computation from the Rrs at 443 nm and 555 nm,
using the following formula (Lee et al., 2002):

γ � 2.2 1 − 1.2e−0.9 Rrs 443( )/Rrs 555( )( )( ) (2)

This was required for converting the bbp(700) from the BGC-
Argo data set to bbp(532) for comparison with the CALIOP-
estimated bbp(532). Similarly, the annual MODIS Aqua derived
SST values were also obtained from the NASA website. The Kd

values from MODIS Aqua with 8-day average and 9 km resolution
were also downloaded to be used in the depth averaging of BGC-
Argo bbp as in Lacour et al., 2020.
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3 Materials and methods

3.1 Match-up schemes

3.1.1 Introduction
We first present two published validation protocols for which a

high number of matchups were used and then we present the scheme
we developed to propose a more general and universal validation
protocol of space-borne oceanic lidar products.

3.1.2 Description of the validation protocol by
Bisson

Bisson et al., 2021 used a decorrelation approach to choose the
time-distance windows for the matchups between global BGC-
Argo and CALIOP datasets for the period 2015–2017. Only day-
time dataset was considered for the analysis. bbp(700) from the
BGC-Argo dataset was converted to bbp(532) to match with the
wavelength of CALIOP using a spectral slope calculated from
inversion of MODIS-Aqua Rrs using the generalized IOP model
(Werdell et al., 2013). A 3-point moving average median was
performed on the BGC-Argo profiles of bbp and removal of
outliers were performed (more than 1.5 inter-quartile range).
The CALIOP dataset was used as processed by Behrenfeld et al.,
2019 except for using a conversion factor of 0.32 instead of
0.16 for the ratio of β(π) to bbp. The depth-averaged bbp was
calculated within the mixed layer depth, being the point where
the density was greater than 0.03 kg·m−3 with respect to the
density at 10 m depth. This is performed to match the oceanic
vertical resolution of CALIOP.

To define the validation protocol, a 50-km window and 24-hour
window between the BGC-Argo measurements and the CALIOP

observations were used when the annual average Sea Surface
Temperature (SST) of the sampling point was greater than 15°C.
For stations with annual average SST less than 15°C, a 15-km and a
24-hour window were used.

3.1.3 Description of the validation protocol by
Lacour

Lacour et al., 2020, validated CALIOP observed bbp data with
BGC-Argo data in the North Atlantic for the year 2014. They
defined three configurations of spatio-temporal windows: 9-km/
16 days, 1°/16 days, and 2°/1 month. The analysis included both day-
and night-time data. BGC-Argo data were denoised through the
removal of data points along the profile designated as “bad” or
“probably bad.”

A fixed backscattering spectral slope of 0.78 was used to convert
BGC-Argo bbp(700) to bbp(532). The vertical integration of the bbp
profiles from the BGC-Argo to match the CALIOP data was
performed through the application of the following equation.

bFLOATbp � ∑e−2Kd 532( )zbbp 532, z( )∑e−2Kd 532( )z (3)

where Kd(532) (m−1) is the diffuse attenuation coefficient of
downwelling irradiance at the wavelength 532 nm. The authors
calculated the diffuse attenuation coefficient by fitting a fourth-
degree polynomial function of the logarithm of the downwelling
irradiance (Ed(490)) measured by the floats, and then determined
the mean slope over the initial 50 m of each profile. Only profiles of
type 1 and type 2 (good and probably good) were considered, and
any data points in the profiles flagged as “bad” or “probably bad”
were excluded from analysis. For 30% of the dataset, the quality of
the data was insufficient to calculate Kd(490). The mean Kd(490) was

FIGURE 1
Locations where a common matchup between the CALIOP and BGC-Argo were observed globally for the period 2008–2017.

Frontiers in Remote Sensing frontiersin.org04

Vadakke-Chanat and Jamet 10.3389/frsen.2023.1194580

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1194580


determined by averaging profiles within a 100-km radius and 20-day
time period, which corresponds to the decorrelation scale of bio-
optical properties, provided that the change in bbp float was less than
50%. The Kd(490) was then converted to Kd(532) using the specified
equation.

Kd 532( ) � 0.68 Kd 490( ) − 0.022( ) + 0.054 (4)

3.1.4 Our study
The aim of the present study was to assess the best validation

protocol by identifying potential impact of different
combinations of time, distance, period-of-day, SST thresholds,
and depth integration methods. This was achieved by comparing
match-up scales defined in the studies conducted by Bisson et al.,
2021; Lacour et al., 2020, and evaluating various other
combinations of these factors. Table 1 summarizes the
difference between this study and that of Bisson et al., 2021;
Lacour et al., 2020. We have used a statistical score (to be
discussed in the following section) to evaluate the different

combinations of time and distance to arrive at an optimal
protocol of time-distance window for the validation of space-
borne lidar oceanic products with sea-truth data.

3.1.5 Sensitivity studies to the time-distance
window

In order to determine the optimal match-up time/distance
window, various combinations of time (ranging from 3 h to
16 days) and distance windows (ranging from 9 km to 50 km)
were evaluated. Each of these combinations was further
subdivided into day-, nighttime, and all values, and plotted
separately. In addition, the combinations were also subdivided
based on SST, including all SST values, SST less than 15°C, and
SST greater than 15°C. The effects of different depth-averaging
methods (such as in Bisson et al., 2021), in Lacour et al., 2020,
with BGC-Argo Ed as input, or in Lacour et al., 2020,
with MODIS Kd as input were also assessed. Statistical
analyses were performed on each combination. The various
distance and time windows used in this study are illustrated in
Figure 2.

3.2 Statistics and scoring scheme

To evaluate each match-up combination, six statistical
parameters were calculated along with scatterplots. These
parameters include the slope (α) and intercept (β) of the
regression line, the bias (determined by Eq. 5), the relative error
(RE, determined by Eq. 6), the root mean squared error (RMSE,
determined by Eq. 7), and the determination coefficient (R2), where
N represents the number of match-ups.

TABLE 1 The different conditions in previous studies vs. this study.

Match-up
criterion

Bisson et al., 2021 Lacour et al., 2020 Current study

Type of data Only day time Day and nighttime Day and nighttime

Spatial match-up 50 km if SST>15°C Configuration 1: 9 km, Configuration 2:
1ox1o, Configuration 3: 2ox2o

The spatial match-up window used in this study are: 9,
15, 25, and 50 km

15 km if SST<15°C

Temporal
match-up

+/−24 h Configuration 1: 16 days, Configuration
2: 16 days, Configuration 3: 1 month

3, 6-, 12-, 24-, and 384-hours of temporal match-up
windows were studied

Spatio-temporal
coverage

2015–2017, Global 2014, North Atlantic 2010–2017, Global

bbp spectral slope Variable, calculated from MODIS-Aqua rrs blue
to green ratio as in Lee et al. (2002)

Fixed value of 0.78 Both fixed slope and variable slopes were used

Denoising data 3 Point moving median and removal of outliers
(1.5x inter-quartile)

Each data point acquired along the profile
flagged “bad” or “probably bad” removed

Outliers were removed from the depth integrated data
sets of BGC-Argo bbp, in addition to removing QC with
bad and probably bad points

β(π)/bbp 0.32 0.32 0.32

bbp depth
averaging

Mixed Layer Depth (density>0.03 kg·m−3w.r.t.
density at 10 m)

Kd calculated from BGC-Argo Ed profiles Additionally, Kd from MODIS-Aqua data were used,
average MLD values if data available

Cross-Talk
Correction

Done Done Done

FIGURE 2
Various distance and time windows used in this study.
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Bias � 1
N

∑N

i�1
bCALIOPbp − bfloatbp

bfloatbp

× 100 (5)

RE � 1
N

∑N

i�1
bCALIOPbp − bfloatbp

∣∣∣∣∣ ∣∣∣∣∣
bfloatbp

× 100 (6)

RMSE �
																					
1
N

∑N

i�1 bCALIOPbp − bfloatbp( )2√
(7)

To rank each of the match-up combinations according to its
performance in relation to other match-up combinations, a
scoring scheme was adopted from Müller et al., 2015;
Mograne et al., 2019. This scheme evaluated the α, β, bias,
RE, RMSE, and R2 of each algorithm and their range of
variation between the minimum and maximum values of
each statistical parameter score, considering all the
combinations.

Sα � ∑N

i�1
1 − αi| | −max 1 − α| |( )

min 1 − α| |( ) −max 1 − α| |( ) (8)

Sβ � ∑N

i�1
βi
∣∣∣∣ ∣∣∣∣ −max β

∣∣∣∣ ∣∣∣∣( )
min β

∣∣∣∣ ∣∣∣∣( ) −max β
∣∣∣∣ ∣∣∣∣( ) (9)

SBias � ∑N

i�1
Biasi| | −max Bias| |( )

min Bias| |( ) −max Bias| |( ) (10)

SRE � ∑N

i�1
REi| | −max RE| |( )

min RE| |( ) −max RE| |( ) (11)

SRMSE � ∑N

i�1
RMSEi −max RMSE( )

min RMSE( ) −max RMSE( ) (12)

SR2 � ∑N

i�1
R2
i −min R2( )

max R2( ) −min R2( ) (13)
STotal � Sα + Sβ + SBias + SRE + SRMSE + SR2 (14)

where α, β, Bias, RE, RMSE, and R2 represent the arrays with the slope,
intercept, Bias, RE, RMSE and R2 for each combination of the
matchups. For instance, the algorithm with the closest slope to
1 obtained the highest score of 1 for a given combination. The total
score was the sum of the scores for slope (Sα, intercept (Sβ), bias (SBias,
Eq. 5), RE (SRE, Eq. 6), RMSE (SRMSE, Eq. 7), and R2 (SR

2). Since
6 statistical parameters were considered for the calculation of the score,
the maximum value of the scores is 6. N was independently assessed,
without evaluating as a part of the score because the value ofN increases
with the increase of the time and distance differences which led to
biased estimation of the score.

FIGURE 3
Statistical score for the different combinations of time and distance and SST and day-night conditions (with fixed slope).
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4 Results for the determination of the
optimal time-distance window

Asmentioned in Section 3.1, a sensitivity analysis was conducted
to determine the most suitable time-distance window for the
validation of oceanic products from space-borne lidars. Figure 3
presents the value of the total score depending of a given
combination of time and distance windows (20 combinations in
total). The analysis included time windows ranging from 3 h to
16 days, and distance windows ranging from 9 to 50 km. The SST
threshold conditions described in Bisson et al. (2021) were also
considered. The data were further analyzed separately for day-,
nighttime, and both for each time-distance window. The
comparison of each of the combinations considered in the
current study with the previous studies is outlined in Table 1. In
order to further evaluate the effectiveness of the scoring scheme and
the availability of data for validation, the number of matchups (the
number of BGC-Argo floats for each combination is provided in the
Supplementary Material) for each combination of time and distance
windows is provided in Figure 4. In our study, we consider all
match-ups in a given time-distance window.

Our objective was to identify a time-distance window that is
robust and not dependent on multiple conditions. Therefore, we
narrowed our analysis to only consider the case with all-SST, all-
time data and BGC-Argo bbp(532) estimated using a fixed slope (Eq.

1). From Figure 3, we can observe that the value of the score
decreases with the increase of the time and distance windows.
The distance seems to have more impact on the value of the
score than the time. For instance, if the distance window is fixed
to 9-km, the value of the score decreases from 4.655 to 4.064 if the
time window increases from ± 3 h to ± 24 h. If the time window is
fixed to 6 h, the score decreases from 4.641 to 1.167 if the distance
window increases from 9 km to 50 km. For the validation of the
standard ocean color products, the time and distance windows are
usually ± 3 h and ± 9 km, respectively. Based on this criterion, the
score is 4.655 which is the highest score among all combinations.
However, it reaches only 1947 matchups (for 53 floats). So, it is not
realistic to use the standard validation protocol for space-borne
oceanic products. Lacour et al. (2020) used a 9-km distance window
and 16-day time window and reached only 16 matchups over more
1,000 profiles. Moreover, using these criteria, the value of the score
decreases to 2.305, similar to using a 50-km window (for the same
time window). Using a 16-day time window seems unrealistic to use
as the time scale of ocean color processes is over few days in the open
ocean and it really decreases by almost two-fold the values of the
score.

From all combinations, only the ones with a score higher than
3.5 were considered. For this criterion, seven combinations (out of
twenty) are available: 9-km/3-h; 9-km/6-h; 9-km/12-h; 9-km/24-h;
15-km/3-h; 15-km/24-h; 25-km/3-h. For those combinations, the

FIGURE 4
Number of matchups for each time-distance windows combination.
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number of matchups varies between 1947 (9-km/3-h) and 15,272 (9-
km/24-h), corresponding to 53 and 306 floats, respectively. As the
number of match-ups is the lowest for the 9-km/3-h combination, it
does not seem realistic to use it. As a reminder, we used 8 years of
CALIOP data and 41,420 profiles of BGC-Argo. As the sensitivity of
the value of the score is not high for the time window, we propose to
use 24-h. To enhance the number of match-ups, the distance
window needs to be increased, compared to the usual 9-km
taken for the validation of the standard ocean color products. So,
we propose to use either 9-km or 15-km. Using 15-km increases the
number of match-ups, from 5,554 to 15,272 (corresponding to
173 and 306 floats, respectively). For these combinations, the
value of the score is 4.064 and 3.589, respectively. It is worth
highlighting that our proposed time-distance window resulted in
higher scores compared to the 50-km/24-h case in the SST>15°C
scenario, which was employed in Bisson et al. (2021). For the case
“50-km/24-h and SST>15°C,” the score is 2.772, compared to 4.064
(and 3.589) for the current proposed combination of our study. As
mentioned, the score is very sensitive to the distance between the
BGC-Argo floats and the CALIOP footprint. It means that it is better
to reduce as much as possible this distance. Additionally, the value of
the score for the 15-km/24-h combination in the SST<15°C case
(Bisson et al., 2021) yielded comparable scores, with a value of
4.208 to compare with values of 4.064 and 3.589 for the 9-km/24-h
and 15-km/24-h cases, respectively. This highlights that it is not
necessary to add a threshold on the SST to get valuable matchups.

Concerning the protocols proposed by Lacour et al. (2020), we only
included their first case: 9-km/16-days. Distances greater than 50 km
were not included as the size of the ocean color patterns aremeso-scales.
For this case, the score reached 2.305, below the scores reached by the
validation protocol proposed here. The value of the score decreased by,
almost, a factor two, from 4.064 to 2.305 between a timewindow of 24-h
and a time window of 16 days (384-h) showing that taking a time
window higher than 24-h leads to unprecise comparisons between
BGC-Argo floats and CALIOP product. For a window of 16 days (384-
h), the distance does not impact the value of the score, varying from
2.261 (15-km) to 2.349 (25-km).

As we propose two combinations, we investigated the impact of
the quality and accuracy of the CALIOP product. Figures 5, 6
present scatterplots between the BGC-Argo and CALIOP
bbp(532) for the proposed time-distance windows of 9-km/24-h
and 15-km/24-h, respectively. Table 2 shows the statistical
parameters for both combinations.

For both combinations, most of the points are very close to the 1:
1 line which means that the CALIOP bbp(532) estimates are very close
to BGC-Argo bbp(532). 99 CALIOP bbp are highly underestimated by a
factor of higher than 4. It means that for those cases, either the CALIOP
footprint did not occur the same day as the BGC-Argo observations or
during the same day early morning and late afternoon. For this latter
case, the CALIOP observations happened during the night while the
BGC-Argo during the day. We know that the bio-optical properties
vary during the night and day (Kheireddine and Antoine, 2014). So,
because of the diurnal variations of the bio-optical properties, the values
of bbp can change overnight. This translates in term of statistical
parameters. The increase of the distance (from 9-km to 15-km)
increases the number of match-up by three-fold (from 5,554 to
15,272). This number is important as it is very difficult to get a
significant number of match-ups when comparing in-situ

measurements and lidar observations. Aside this difference, the
statistical parameters are very similar between both combinations.
For instance, the MRE and bias are very similar (RE = 36.12% for
9-km/24-h and 35.81% for 15-km/24-h; Bias = 12.84% for 9-km/24-h
and 11.84% for 15-km/24-h). This confirms that the two combinations
we proposed are very similar and the slight increase of the distance
window does not impact the quality of the match-ups. Even if it is

TABLE 2 Statistical parameters on the estimates of CALIOP bbp(532) for the two
best optimal combinations of time and distance windows: 9-km/24-h and 15-
km/24-h.

Combination N RMS (m−1) MRE (%) Bias (%) R2

9-km/24-h 5,554 0.0098 36.12 12.84 0.71

15-km/24-h 15,272 0.0011 35.81 11.84 0.63

FIGURE 5
Scatter plot showing the matchup of BGC-Argo and CALIOP for
24 h—9-km window.

FIGURE 6
Scatter plot showing the matchup of BGC-Argo and CALIOP for
24 h–15-km window.
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always preferable to choose the shortest distance between the in-situ
measurements and the satellite observations, it is not always possible to
do that, especially with space-borne lidars. Our proposed validation
protocol provides some flexibilities without hampering the quality of
the comparisons.

These statistical values are slightly higher than the ones found in
Bisson et al. (2021), who reached median percentage error below
25%. This might be explained by the difference of match-ups
between both studies: 15,272 for our study and 261 for the study
of Bisson et al. (2021). However, the purpose of our study was not to
validate per se the CALIOP bbp product but to propose an objective
validation protocol.

5 Discussion

5.1 Introduction

We proposed a universal protocol validation for comparison
between in-situ measurements and space-borne lidar oceanic
products. To do that, we used the BGC-Argo observations as it
provides a global distribution of bbp(532) since 2010. It is a valuable
dataset for validation of ocean color satellite products (Bisson et al.,
2019). However, the comparison between the BGC-Argo and
CALIOP bbp is not straightforward for several reasons:
measurement of bbp(700) vs. CALIOP bbp(532); profiles of
bbp(700) vs. depth-integrated CALIOP bbp(532). We investigated
the sensitivity of our analysis to these factors.

5.2 Estimation of BGC-Argo bbp(532) from
bbp(700)

In order to compare bbp values from BGC-Argo products with
those from CALIOP, BGC-Argo bbp(700) value had to be converted
to bbp(532) since CALIOP estimates bbp at this wavelength. The
spectral slope of the bbp value was calculated to achieve this, which

could either be a variable value derived from MODIS-Aqua data, as
in Bisson et al. (2021), or a fixed value of 0.78, as in Lacour et al.
(2020). The choice of spectral slope can impact the validation of the
CALIOP-derived bbp. Therefore, the influence of different spectral
slopes on the validation results was investigated. However, our
primary goal was to determine the optimal time-distance window
for validating CALIOP-derived bbp data, so proposing a specific
spectral slope choice was not within the scope of our work.

For our statistical analysis, we fixed the slope value at 0.78 to
convert bbp(700) to bbp(532) (Eq. 1) as in Lacour et al. (2020).
Figure 7 shows the scatterplot of bbp(532) estimated using a fixed
slope vs. using a variable slope, considering the depth-averaged
method as in Bisson et al. (2021). The variable slope was calculated
as explained in Section 2.3. The selection of a particular spectral
slope directly affects the conversion of bbp values at 700 nm to those

FIGURE 7
Comparison of Bisson et al. (2021) bbp(532) with a fixed vs.
variable slope.

FIGURE 8
Impact of the depth-averaged integration: Bisson et al. (2021) bbp
vs. Lacour et al. (2020) bbp estimated using BGC-Argo Ed.

FIGURE 9
Impact of the depth-averaged integration: Bisson et al. (2021) bbp
vs. Lacour et al. (2020) bbp estimated using MODIS Kd.
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at 532 nm, which is necessary for a valid comparison with the
CALIOPmeasurements. In Figure 7, we can observe that most of the
values are close to the 1:1 line. However, a bias can be observed
leading to a relative error of 40%.

5.3 Calculation of the depth-averaged BGC-
Argo bbp

To enable a comparable depth resolution with CALIOP-derived
bbp data, the bbp float value had to be depth-integrated. Bisson et al.
(2021), and Lacour et al. (2020), used different methods to depth-
integrated BGC-Argo bbp. In the results presented in Section 4, we
used the method from Bisson et al. (2021). So, our results could be
directly comparable with their results. However, we also used
another method (Lacour et al., 2020) as shown in Eq. 2. In
Lacour et al. (2020), the diffuse attenuation coefficient, Kd(532) is
used to depth-integrate bbp(532). Kd can either be directly calculated
by the downwelling irradiance, Ed, of BGC-Argo or by using satellite
products when the downwelling irradiance is not available in
BGC-Argo. The way to estimate the depth-integrated bbp impact
the value of bbp and so the comparison with CALIOP. So, it is
necessary to estimate the differences between the methods used to
obtain the depth-integrated value.

Figures 8, 9 show the comparison between the depth-integration
methods using BGC-Argo Ed or MODIS-Aqua Kd as in Lacour et al.
(2020), compared to the method in Bisson et al. (2021), respectively.
We can observe that the depth-integration methods have little
impact on the estimation of bbp values as the values from the
three methods are very similar. The relative error is of 11.81%
and 3.63% between the methods using Ed or Kd in Lacour et al.
(2020) and in Bisson et al. (2021), respectively. But these differences
are negligeable compared to the impact of the use of a fixed slope to
transform bbp(700) to bbp(532).

Although the depth-integration method used can impact the
calculated BGC-Argo float bbp values, our study focused solely on
the time-distance window for the validation of CALIOP satellite-
based lidar measurements. As such, we did not investigate the
impact of different depth-integration methods in the validation
to find the best method for depth integration.

5.4 SST threshold for the time-distance
window

Bisson et al. (2021) has suggested to use the annual global
average SST as a threshold for choosing the distance window
between the BGC-Argo floats and the CALIOP footprint. Our
analysis proposes that this SST threshold be not be used for
several reasons. First, it imposes an additional condition on the
match-ups protocol, requiring an extra parameter to validate
CALIOP datasets, which can impede ease of operation. Second,
our results indicate that our proposed time-distance window
generated superior scores in comparison to the 50-km/24-h case
employed in Bisson et al. (2021), for the SST>15°C scenario. Third,
even though the 15-km/24-h combination in the SST<15°C case
produced comparable scores, our analysis showed that our proposed
time-distance window outperformed the proposed protocol by

Bisson et al. (2021), for SST<15°C. We generalized this
combination for any SST value. This makes our proposed
validation protocol more straightforward and easier to apply.

5.5 Day-time and night-time difference

We focused our analysis on the combined day- and nighttime
data. However, we showed in Figure 3 the values of the score for day-
and nighttime only data, respectively. For the daytime configuration,
the results are very similar to the day- and nighttime configuration.
Both proposed combinations (9-km/24-h and 15-km/24-h) provided
the best compromised in termof values of the score and the number of
matchups. For instance, for the combination 9-km/24-h, the score is
4.275 for the daytime only and 4.064 for all data with the number of
match-ups being 1.003*104 and 1.527*104, respectively. The
distribution of the score is similar between all data and only
daytime configurations. The score decreases more with the
increase of the distance and the lowest values are found when the
timewindow is 16 days (386-h). The 50-kmwindow and timewindow
>3-h show also very low values of the score for both cases. However,
the values are lower for these configurations during daytime. For
instance, for 50-km/24-h, the score is 2.003 for daytime compared to
2.405 for all data. The results are very different for the nighttime. Even
if our proposed validation protocol is still valid (with values of score of
3.961 for 9-km/24-h and 4.228 for 15-km/24-h), the distribution of
the score is very different with the scenario with all data. The increase
of the time and distance leads to an increase of the score. However, our
proposed validation protocol is valid for day- and nighttime
conditions.

6 Conclusion

The study aimed at defining the optimal time-distance window
for the validation protocol of space-borne lidar oceanic products.
We focused our study on the particulate back-scattering coefficient,
bbp, estimated from the CALIOP space-borne lidar and we
compared these estimates to in-situ measurements obtained from
the global BGC-Argo floats for the period 2010–2017. Our work
enhances the works published by Bisson et al. (2021), and Lacour
et al. (2020), by including longer period (2010–2017) and nighttime
observations.

The study analyzed twenty combinations of time and distance
windows between the in-situmeasurements and CALIOP footprint and
their impacts of the validation through the use of a statistical score,
which is the combination of six statistical parameters. The values of the
score were analyzed following the increase of the distance and time
windows. The results showed that the optimal time-distance window
for the validation protocol of CALIOP is 24 h and 9 km. However, the
study also found that the distance window could be relaxed to 15 km
without significantly affecting the validation results. We analyzed the
assumptions made in previous published validation exercises: use of
SST as a threshold for the choice of the time and distance windows; the
estimates of the depth-integrated BGC-Argo bbp; the estimates of BGC-
Argo bbp(532) from BGC-Argo bp(700). We showed that the SST is not
necessary to use for the validation, contrary to what proposed Bisson
et al. (2021); the slope of bbp has a greater impact on the calculation of
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the in-situ bbp than the depth-integration methods. However, this does
not hamper our conclusions and our proposed validation protocol.

The findings of this study are significant as they provide
guidance for the validation protocol of space-borne lidar oceanic
products, which is crucial for ensuring the accuracy of satellite lidar
measurements. The proposed protocol should help to develop more
validation exercise of CALIOP or ATLAS oceanic products.
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