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Mapping land use and land cover (LULC) using remote sensing is fundamental to
environmental monitoring, spatial planning and characterising drivers of change
in landscapes. We develop a new, general and versatile approach for mapping
LULC in landscapes with relatively gradual transition between LULC categories
such as African savannas. The approach integrates a well-tested hierarchical
classification system with the computationally efficient random forest (RF)
classifier and produces detailed, accurate and consistent classification of
structural vegetation heterogeneity and density and anthropogenic land use.
We use Landsat 8 OLI imagery to illustrate this approach for the Extended Greater
Masai Mara Ecosystem (EGMME) in southwestern Kenya. We stratified the
landscape into eight relatively homogeneous zones, systematically inspected
the imagery and randomly allocated 1,697 training sites, 556 of which were
ground-truthed, proportionately to the area of each zone. We directly assessed
the accuracy of the visually classified image. Accuracy was high and averaged
88.1% (80.5%–91.7%) across all the zones and 89.1% (50%–100%) across all the
classes. We applied the RF classifier to randomly selected samples from the
original training dataset, separately for each zone and the EGMME. We evaluated
the overall and class-specific accuracy and computational efficiency using the
Out-of-Bag (OOB) error. Overall accuracy (79.3%–97.4%) varied across zones but
was higher whereas the class-specific accuracy (25.4%–98.1%) was lower than
that for the EGMME (80.2%). The hierarchical classifier identified 35 LULC classes
which we aggregated into 18 intermediate mosaics and further into five more
general categories. The open grassed shrubland (21.8%), sparse shrubbed
grassland (10.4%) and small-scale cultivation (13.3%) dominated at the detailed
level, grassed shrubland (31.9%) and shrubbed grassland (28.9%) at the
intermediate level, and grassland (35.7%), shrubland (35.3%) and woodland
(12.5%) at the general level. Our granular LULC map for the EGMME is
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sufficiently accurate for important practical purposes such as land use spatial
planning, habitat suitability assessment and temporal change detection. The
extensive ground-truthing data, sample site photos and classified maps can
contribute to wider validation efforts at regional to global scales.

KEYWORDS

land use and land cover (LULC), hierarchical classification, landscape stratification, random
forest, accuracy assessment, out-of-bag error, heterogeneous socio-ecological systems,
extended greater masai mara ecosystem (EGMME)

1 Introduction

Land use and land cover (LULC) mapping characterize the
anthropogenic influences and natural elements that occupy a
landscape at a specific time based on established methods and
appropriate data sources (Nedd et al., 2021). Land use ranks
among the important environmental factors that affect natural
and socio-economic systems at local, regional and global levels
(Lambin et al., 2003; Bajocco et al., 2012; IPBES, 2018; Vijith
et al., 2018; Jung et al., 2019). It affects vegetation cover that
underpins terrestrial ecosystem functions (Anderson et al., 1976;
Yesuph and Dagnew, 2019) and influences human wellbeing
(IPBES, 2018; IPBES, 2019). However, the contemporary
unprecedented rate of LULC change is troubling (Meiyappan
et al., 2014; Showqi et al., 2014), with model projections
suggesting it will likely continue manifesting overwhelming
impacts even by 2,100 (Sala et al., 2000). Consequently, an
urgent need exists to produce detailed and accurate LULC maps
to advance our understanding of the causes and putative drivers of
change to guide implementation of potential mitigation measures
(Hansen et al., 2000; IPBES, 2019). This is especially relevant for
complex landscapes with gradual transitions between LULC
categories, such as grasslands, woody grasslands, woodlands and
forests as found in the African savannas, where LULC change
impacts are profound yet poorly understood (Reed et al., 2009;
Homewood et al., 2012). This poor understanding stems from both
the technical difficulty of classifying their LULC categories given
their inherent complexity and the fine grain of underlying socio-
ecological processes that drive the changes.

Mapping LULC is an operational source of information for many
sectors such as environmental impacts reporting, biodiversity
conservation and food security assessment (Serneels and Lambin,
2001; Lambin et al., 2003; Reed et al., 2009; Shiferaw et al., 2011). It
is essential for guiding integrated spatial planning and tackling
environmental, socio-economic and political challenges beyond
traditional management boundaries (Reed and Curzon, 2015).
Consequently, many LULC maps have been derived from ground
observations and remotely sensed data (Loveland et al., 2000;
Pandey et al., 2021), however, producing accurate and consistently
classified maps for heterogeneous and complex landscapes such as
savannas is exceedingly challenging (Loveland et al., 2000; Hansen et al.,
2013). The limitations are due largely to lack of good coverage, using few
ground-truthing samples (Krig, 2014), ambiguous or narrow
classification schemes (DiGregorio and Jansen, 2000), and inefficient
analytical tools, and non-robust classifiers stemming from the
inherently fuzzy nature of the LULC categories. Costly software and
algorithms further make it difficult to obtain the best available tools for
image processing and analysis.

The quality of LULC maps strongly depends upon the clarity
and quality of remote sensing images and varies with the spatial
resolution of sensors (Xie et al., 2008) andmultiple biotic and abiotic
factors. The latter include climatic (atmospheric) effects,
topography, land cover heterogeneity and plant growth stages
(Loveland et al., 2000; Hansen et al., 2013). Image clarity
depends on the spatial resolution of satellite sensors such that
high-resolution images have finer and clearer pixels than medium
to coarse-resolution images because of averaging over less spatial
heterogeneity (Xie et al., 2008). Atmospheric effects can degrade
images by scattering solar radiation through constituent gasses and
aerosols (Chavez, 1996; Tyagi and Bhosle, 2011), cloud cover causes
opaque surfaces, whereas rugged or undulating terrain will cast
shadows on parts of land cover type (Sun et al., 2018). Further, the
size of a study area and its topography can make fieldwork very
strenuous and expensive (i.e., budgetary and time constraints), and
possibly lead to the collection of too few ground-truthing samples
during fieldwork. However, several strategies can be used to
overcome the challenges in LULC mapping from remotely sensed
data. 1) Selection of clear images for analysis, i.e., free of cloudiness
and haze as much as possible. 2) Many training and validation
samples to improve model fit and predictive accuracy (Congalton,
1991; Wu and Shapiro, 2006). 3) Use of pre-existing auxiliary data
and well-trained teams with sufficient socio-ecological knowledge to
aid the classification and extraction of thematic features (Shrestha
and Zinck, 2001; Gad and Kusky, 2006). 4) Stratification of the
landscapes into smaller zones with greater ecological similarity and
inherent land use change narratives to minimize the spread of
spectral signatures during image processing (Smith et al., 2003;
Hansen et al., 2013; Sleeter et al., 2013). 5) Well-tested and
standardized classification systems. 6) Robust classifiers and
analytical tools (Breiman, 2001; Janitza and Hornung, 2018).

Various machine learning and other classifiers are widely used
for modeling LULC types in remote sensing image detection and
visualization, pattern recognition, classification, fusion and object-
based analysis (Hussain et al., 2013). Efficient classifiers include
random forest (Breiman, 2001), soft or fuzzy classifiers (Binaghi
et al., 1999; Ralescu and Visa, 2011), support vector machines (Taati
et al., 2015), deep learning (Ma et al., 2019; Li et al., 2020a; Li et al.,
2020b, boosting algorithms (Ghimire et al., 2012), object-oriented
classifiers (Zhao et al., 2020), spectral unmixing (Keshava and
Mustard, 2002), classifiers based on texture measures (Raju and
Durai, 2013; Cavalin and Oliveira, 2017) and decision-tree and rule-
based classifiers (Berhane et al., 2018).

We selected the RF classifier for this study because of its
excellent predictive performance and computational efficiency
with high-dimensional data (Janitza and Hornung, 2018). The RF
is increasingly being used as a classifier of choice for LULC
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classification of remotely sensed data (e.g., Gislason et al., 2006;
Belgiu and Drăguţ, 2016; Thi et al., 2019). The RF is a refinement of
ensemble machine learning methods for reducing prediction
variance using recursive binary partitioning and bootstrap
aggregation (Breiman, 2001). These include bagging if random
subsamples are drawn from a training dataset with replacement
to create an ensemble of training samples and sub-bagging if the
random subsamples are taken from the training dataset without
replacement. The predictions in classification are typically based on
a majority vote and are aggregated across trees using means
(bagging) or medians (bragging). Random subsampling with
replacement and averaging over trees produces stable fitted
values and reduces overfitting and prediction variance whereas
randomly selecting subsets of predictors without replacement to
split each tree node increases the independence of predictions across
trees. RF can also perform both classification and regression,
produce partial dependence plots for multi-category classes and
rank predictor variables in order of their importance (Kotsiantis,
2010; Belgiu and Drăguţ, 2016).

The predictive performance of the RF can be evaluated using an error
estimate computed from the out-of-bag (OOB) data. TheOOBerror is an
unbiased estimator of the true error rate of the RF, and also measures the
prediction error of other related methods that use bootstrap aggregation
such as boosted decision trees (Zhang et al., 2010; Janitza and Hornung,
2018). The RF uses all the original samples to construct the classifier and
estimate the OOB error and saves storage and processing time for high-
dimensional data (Janitza andHornung, 2018).However, theRF classifier
has some shortcomings too, including inefficient error estimation with
k-fold cross-validation and other data-splitting approaches that leave out
a subset of the sample (Bylander, 2002; Zhang et al., 2010).

Several alternative approaches have been explored for mapping
LULC within the Extended Greater Masai Mara Ecosystem
(EGMME) of southwestern Kenya (Betts, 1953; Trapnell et al.,
1969; Glover and Trump, 1970; Epp and Agatsiva, 1980;
Mwichabe, 1986; Karime, 1990; Mundia and Murayama, 2009;
Reed et al., 2009; Mireille et al., 2019; Supplementary Table S7).
However, none of these has so far produced detailed and reliable
maps of the structural vegetation heterogeneity and density and
anthropogenic land use with a consistent classification at the local to
larger scales. More precisely, to our knowledge, no method exists for
producing accurate, consistent and detailed LULC maps at
landscape to regional and continental scales from fine to
medium-resolution images, especially for complex landscapes
with gradual transitions between LULC categories such as
African savannas. Yet, an approach for describing the fine to
general characteristics and composition of vegetation cover is
essential for understanding environmental changes and linking
them to putative drivers (Veldhuis et al., 2019).

We propose a new, reliable, flexible and general approach for
mapping detailed to general structural vegetation heterogeneity and
density and anthropogenic land use in complex socio-ecological
systems such as African savannas. The method integrates a well-
tested and hierarchical vegetation classification system with a robust
machine learning (RF) classifier and is illustrated using landscape
stratification and extensive training and ground-truthing sites to
evaluate its classification accuracy. We implement the approach and
evaluate its predictive performance for a premier East African
savanna ecosystem, the Extended Greater Masai Mara Ecosystem

(EGMME). The EGMME is an ideal test bed for our approach
because its landscape is expansive and highly heterogeneous.

We adopt a well-tested hierarchical vegetation classification
system (Grunblatt et al., 1989) developed for multiple land cover
types from multiple data sources (ground observation, aerial and
satellite data) and extend it to incorporate anthropogenic land
use (specifically cropland and built-up areas) and water bodies.
We stratify the landscape into zones to account for spatial
heterogeneity and optimise the selection of training and
ground-truthing samples, therefore enhancing prediction
accuracy to ensure local relevance of the cover classes. We
illustrate the approach using large training and ground-
truthing datasets. We evaluate the accuracy of visual image
classification using discrete matching, assess the overall and
class-specific accuracies and computational efficiency of the
RF classifier with and without stratification, and compare our
findings with those of previous studies in the same landscape. The
approach is general, reproducible and versatile, yields consistent
classification with high accuracy and can be used in various
applications including spatial planning, habitat suitability
assessment and change detection.

2 Materials and methods

2.1 Study area

We conducted the study in the Extended Greater Masai Mara
ecosystem (EGMME), a vast and complex savanna, occupying
11259.4 km2 in southwestern Kenya (Figure 1). The study area
covers 65% of the Mara River Basin (MRB, 8,938 km2) and the
overlapping Greater Masai Mara Ecosystem (GMME, 7,500 km2;
Stelfox et al., 1986). The remaining 35% of the MRB is located
across the northern Serengeti National Park and extends into
Lake Victoria in Tanzania. The GMME is defined by the historic
range of wildebeest migration and encompasses the Masai Mara
National Reserve (MMNR, 1,530 km2), the adjacent wildlife
conservancies (created from 2005 to 2006) and unregulated
pastoral lands (Stelfox et al., 1986; Bhola et al., 2012; Bedelian
and Ogutu, 2017). The MME has diverse vegetation communities
and land uses including traditional pastoralism, ranching,
conservation, forestry and crop production. It is home mainly
to Maasai people and their livestock but also hosts diverse wildlife
assemblages (Homewood et al., 2012; Ogutu et al., 2016; Løvschal
et al., 2019).

The MME is generally covered by grassland, shrubland,
woodland and cultivated areas. It contains one of Kenya’s major
“water towers” (upland river catchment areas, Mau Forest Complex
in this case), wildlife biodiversity ‘hotspots’ (MMNR and its
neighbouring conservancies) and is bordered in the south by the
Tanzanian Serengeti National Park (SNP) (Veldhuis et al., 2019).

In recent decades, the MME has experienced rapid LULC
changes due to human population growth, land tenure
privatization and land subdivision (Bedelian and Ogutu, 2017;
Nkedianye et al., 2020) and expansion of cultivation and
settlements (Serneels and Lambin, 2001; Lamprey and Reid,
2004) compounded by widening climatic variability (Bartzke
et al., 2018). Cropland, supporting small-scale rainfed cultivation
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and livestock keeping (crop-livestock system) are widespread in the
wetter Mau upland and footslopes. Large-scale (wheat and maize)
fields have progressively expanded into the transitional zone in the
lowland (Karime, 1990; Serneels and Lambin, 2001; Lamprey and
Reid, 2004).

Rainfall in theMME is bimodal and increases up a gradient from
the southeast (ca. 600 mm/year) to the northwest (ca. 1,300 mm/
year), east to west and south to north (Norton-Griffiths et al., 1975;
Bartzke et al., 2018; Mukhopadhyay et al., 2019). The Mara River,
the only permanent river and lifeline of the whole Serengeti-Mara
ecosystem in dry periods, originates in the Mau uplands at
Napuiyapi swamp (2,932 m a.s.l). Several of its tributaries
traverse the Mara plains before converging onto the Mara River

in the Masai Mara Reserve and draining into Lake Victoria
through the SNP.

2.1.1 Data sources and types
The EGMME is covered by two Landsat 8 images, path/row 169/

60 and 169/61.We downloaded the two images acquired on the 13th and
15th February 2015 from the USGS portal (https://earthexplorer.usgs.
gov/). The images were already radiometrically calibrated, orthorectified,
geometrically corrected and projected on the WGS (1984) Universal
Transverse Mercator (UTM) zone 36S from the source.

These images were acquired during a short dry period after the
early wet season from December to January, the best time of year to
obtain clear scenes from space in this equatorial region because the

FIGURE 1
The Extended Greater Masai Mara Ecosystem (EGMME) encompasses part of the Mara River Basin in Kenya (white thick outline) and the entire
Greater Masai Mara Ecosystem (GMME, red dotted outline) (Stelfox et al., 1986) that largely overlap. Background: Landsat 8 OLI multispectral image for
February 2015.
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short rains remove dust from the air making LULC differences
clearer, cultivation has just started and vegetation has greened up
(Reed et al., 2009; Kija et al., 2020). The images had <5% cloudiness
and were haze-free as much as possible. Furthermore, the cropland
can be distinguished from natural vegetation in the medium-
resolution images during the post-harvest period, whereas active
vegetation growth in the wet season emits a combination of spectral
reflectances, making them harder to discriminate, while the
cloudiness may also obscure large areas (Xie et al., 2008).

Several ancillary data were used to aid the visual image interpretation
and extraction of thematic features (Shrestha and Zinck, 2001; Gad and
Kusky, 2006). 1) High-resolution Google Earth Pro and aerial photos
taken around the time of image acquisition by Kenya’s Directorate of
Resource Surveys and Remote Sensing (DRSRS). 2) Road network and
urban/rural settlements from Kenya’s Ministry of Roads and Physical
Planning. The road network was used for orientation and to create
buffers to select the ground-truthing sites. 3) A digital elevation model
(DEM, Shuttle Radar Topography Mission, 30 m) was used in the ‘C’
correction method for normalizing the cast shadows over rugged
terrains. 4) Agro-ecological zones for demarcation of potential crop
areas and rainfall regimes (https://infonet-biovision.org/). 5) Physical
boundary of the protected areas (wildlife and forest reserves and
conservancies) from the Kenya Wildlife Service (KWS) and the
Maasai Mara Wildlife Conservancies Association (MMWCA). 6)
DRSRS 5 × 5 km permanent grid for assessing large herbivore

population (Ogutu et al., 2016), land use and habitat conditions in
the Kenya rangelands using the Grunblatt et al. (1989) classification
system. 7) Human population density from the Kenya National Bureau
of Statistics (KNBS) for evaluating land use intensity. 8) Expert socio-
ecological knowledge of the study landscape.

2.1.2 Image preprocessing
A schematic illustration of the general steps in our approach is

provided in Figure 2. First, we prepared the images to ensure greater
clarity and quality before stratifying the landscape and undertaking
the visual image classification. Landsat 8 has eight spectral bands
(1–7) and band 9 at 30 m spatial resolution, panchromatic (band 8)
at 15 m and thermal infrared (bands 10 and 11) at 100 m. Bands
2–5 emphasise the peak vegetation cover used to assess plant vigour,
soils and biomass content; bands 6 and 7 discriminate vegetation
and soil moisture content and band 9 detect cirrus cloud
contamination. We used bands 2-7 and 9 to create the
multispectral composite image in ENVI 5.3.1 but did not use
bands 1 (coastal aerosol), 8, 10 and 11 because they were
unsuitable for our purpose.

We followed the five general steps outlined below.

i) The seven bands for each scene were layer-stacked to a
multiband. tif file composite in ENVI 5.3.1. This image
was visualized both as an RGB composite (bands 4, 3, 2)

FIGURE 2
A diagrammatic illustration of the LULC classification process showing each module represented by a dashed box and described in the text.
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and a false color composite (bands 5, 4, 3). All seven bands
were used for the RF classification. The two images were
combined by histogram matching for each band, then
seamlessly merged into a single multispectral image.

ii) A few clouds dotted a small section of the study area,
particularly in the Mau upland. We zoomed into the
clouded area and extracted the pixels with clouds on the
image using the Fmask tool in ENVI 5.3.1, then refilled the
gaps with similar pixels from a cloud-free image spaced
maximally 64 days apart. We corrected the atmospheric
effects between the original image and the new pixels
inserted using the QUick Atmospheric Correction (QUAC)
tool (Zhu et al., 2018)

iii) To correct for atmospheric effects that can cause false
indications of objects on the image, we used the Dark
Object Subtraction (DOS) and linear regression methods
(Franklin and Giles, 1995; Chavez, 1996) in QGIS 3.2
(QGIS Development Team, 2019). This procedure removes
inconsistency of image brightness by reducing values to
provide the ‘true’ surface reflectances. It normalizes the
difference within and between the images and the sensor
by converting the pixel brightness value (DN) to the actual
ground reflectance (Top-of-Atmosphere) value (Gilabert
et al., 1994).

iv) The merged boundaries of the Mara River Basin (MRB) and
the Greater Masai Mara Ecosystem (GMME) using ArcGIS
vers. 10.5 (ESRI, 2016a) demarcated the extent of the
EGMME. We created a 10-km buffer around the EGMME
boundary andmasked the pixels outside this area by assigning
them no data.

v) Relief elevation and rugged terrains are common features of
the study landscape and often cast shadows on some parts of
the land cover due to obstruction of direct solar radiation or
illumination. We normalized the displayed reflectance values
on the shadowed parts of the same cover type using the ‘C’
correction method (an automated algorithm combining a 30-
m digital elevation model (DEM). The procedure
compensates for radiance that affects illumination
conditions (Giles, 2001; Suriyaprasita and Shrestha, 2008).
Then, we applied a 3 × 3-pixel kernel convolution to
characterize and sharpen image objects by embossing
features to stand out (i.e., different cover types respond
differentially to slope and illumination effects) (Ekstrand,
1996; Amro et al., 2011).

2.1.3 Stratification of the EGMME into zones
The stratification of complex landscapes is important for image

interpretation because it enables their delineation into relatively
internally homogeneous areas for qualitative evaluation. Moreover,
it reduces the variance of the parameter estimates and predictions of
quantitative variables, thereby improving accuracy (Ndao et al.,
2021). Our study landscape is characterised by remarkable
variations in geomorphology, topography, climatic and protection
status, land tenure change and human population growth, which
greatly influence LULC (Wubie et al., 2016). Consequently, we used
these factors together with agroecological zones and inferred image
patterns to partition the EGMME into eight internally more
homogeneous and ecologically similar zones (Loveland and

Merchant, 2004; Sleeter et al., 2013). More detailed descriptions
of each zone are provided in Table 1.

We relied on our socio-ecological knowledge of the landscape
and used the physical boundary for the conservation areas,
protection status and land use intensity to subdivide the
rangeland into five zones: (i) Masai Mara National Reserve. (ii)
Semi-protected wildlife conservancies with controlled livestock
grazing alongside wildlife conservation. (iii) Siana plains and
Loita hills with low-intensity land use and limited conservation.
(iv) Lower Loita plains with low-intensity land use and traditional
pastoralism. (v) Upper Loita plains with high-intensity land use and
large-scale commercial farms (Table 1). Large-scale (wheat and
maize) farming is expanding in the transitional zone at the edge
of the low-lying rangeland.

The variation in soil types and seasonality of water availability
can introduce additional dissimilarities among cover types in each
zone (Chasmer et al., 2020). Three zones were delineated in the
highland comprising the Mau Forest Reserve (dense woodland),
Mau upland (intensive small-scale rainfed cultivation) and Mau
footslope (widespread crop-livestock systems). These areas are
wetter and suitable for cultivation. We used a digital elevation
model (DEM, SRTM 30 m), human population density and
agroecological zonation to separate the zones based on land use
intensity. Lastly, we generated 10-km buffers around each zone,
which overlapped with the adjacent zone(s), and used them to
seamlessly merge the zones to form the EGMME after separately
classifying each zone.

2.1.4 Hierarchical classification scheme
A good LULC classification system is typically hierarchically

structured to accommodate varying levels of detail ranging from
granular to general. It should also be independent of data source and
scale (e.g., ground observation, aerial survey or satellite data)
(Grunblatt et al., 1989; Jansen and Di Gregorio, 2003). We
adopted the Grunblatt et al. (1989) hierarchical vegetation
classification system because it meets these criteria and expanded
it to incorporate anthropogenic land use (specifically cropland and
built-up areas), as well as water bodies, which are not included in the
original scheme but represent important cover classes in the study
landscape (Table 2). The system (Grunblatt et al., 1989) was
developed for heterogeneous cover types using data from ground
and aerial surveys to support the long-term monitoring of large-
herbivore populations and habitat conditions in the Kenya
rangelands (510,726 km2) by the DRSRS and its predecessors
(Kenya Rangeland Ecological Monitoring Program (KREMU:
1976–1986) and the Department of Resource Surveys and
Remote Sensing (DRSRS:1986–2013)) since 1977 (Ogutu et al.,
2016). It is well-tested and standardized for savanna rangelands
and relies primarily on structural vegetation heterogeneity and
density distribution.

The scheme has four hierarchical levels for classifying land cover
types. The more general category (level 0) only characterizes the
primary (lifeform) vegetation cover type (i.e., woodland, shrubland,
grassland and barren land), while at level 1, the classes characterize
the primary lifeform and canopy cover at a site. Table 2 summarises
the terms and symbols used in the classification system. The level
1 classes are defined as dense woodland or Forest (dF), closed
Shrubland (cS) or open Grassland, where the cover type (trees,
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shrubs, and grass) must have >20% canopy cover and preference is
given to structural form in the same order. For example, a site with
25% trees, 15% shrubs, 30% grass and 70% bare ground would be
called an open Woodland (oW). The sparse modifier is used
alongside a class with the greatest canopy cover if there is no
form in a higher order with >20% canopy cover and others
with >2% (e.g., 0% trees, 2% shrubs, 10% grass, and 90% bare
ground would be sparse Grassland (sG).

Level 2 gives a detailed category that describes vegetation
community mosaics, where classes are characterized by
incorporating the primary (lifeform) vegetation cover and
secondary modifiers, and the density modifiers described in the
level 1 class. The secondary modifier has terms similar to the
primary form (i.e., Wooded or Treed, Shrubbed and Grassed)
used as descriptors only when none other than the primary
vegetation attains a canopy cover of >20%, and preference is
given in the same order. A site with a canopy cover of T25%,
S15%, G30% and B70% would be an open Grassed Woodland
(oGW), while another site with slightly greater shrub cover
(T25%, S22%, G30%, B70%) would be an open Shrubbed
Woodland (oSW). The density adjective and secondary modifier
describe the primary vegetation cover, with emphasis given to
wooded and shrubbed categories, and allowing them to be
included if present at >2% and <19% when no other types are
present as ‘true’ candidates (or >20%). For example, a site with a
canopy of T5%, S15%, G70%, and B30% would be dense ‘Treed’
Grassland (dTG).

The plant heights (tall, low, dwarf) are included at level 3 as
modifiers to the primary lifeform, for example, low open Shrubby
Grassland. The grazing history and phenological status should be
considered when categorizing grass heights. Lastly, level 4 is the
most detailed category, which also considers the dominant species in
the described vegetation community, for example, Acacia
drepanolobium low-Grassed Shrubland. We did not consider
levels 3 and 4 in the illustrative example for this study. For
example, most of the cropland was either harvested, fallowed or
plowed during the dry period except in the wetter uplands, while the
herbaceous layer was mostly low, and therefore the plant growth
stage (or height) was highly variable.

We incorporated anthropogenic land use at level 2 of the
Grunblatt et al. (1989) scheme. The cropland was defined using
the landholding (i.e., socio-economic function and field size—a
proxy for density), source of water for cultivation (e.g., rainfed or
irrigated) and tillage method (e.g., mechanised, tractor or ox-plow)
(Meiyappan et al., 2014). Small-scale (2–25 ha) fields are intensive
crop-livestock systems with rainfed cultivation and using a tractor or
ox-plow for tillage (Longmire and Lugogo, 1989; Meiyappan et al.,
2014). The small-scale cultivated areas in the highlands are
subdivided into upland and footslope based on relief features.
Large-scale (>25 ha) fields are wheat (Triticum aestivum), barley
(Hordeum vulgare) and maize (Zea mays) fields under rainfed and
mechanized cultivation in the transitional zone at the edge of the
rangelands, but large tea (Camellia sinensis) plantations also occur in
the upland. The center-pivot irrigated cultivation of horticultural

TABLE 1 Characteristics of the eight zones in the Extended Greater Masai Mara Ecosystem (EGMME) showing their extent, average rainfall (mm), human
population density and land use.

Zones Extent Average rainfall
(mm) (1965–2015)

People/
km2 (2015)

Major land use

1 Masai Mara
National Reserve

Protected wildlife area 1,026 13 Conservation and ecotourism

2 Mara
Conservancies

Naboisho, Olare Orok, Motorogi, Ol Kinyei,
Pardamat, Mara North, Oloisukut, Lemek, Ol
Choro Oiroua and Enonkishu

814 23 Conservation, controlled livestock grazing,
ecotourism and center-pivot irrigation at
Enonkishu

3 Siana plains and
Loita hills

Conservancies: Nashulai, Isaaten, Olderkesi,
Siana, Olarro South, and Olarro North

749 23 Conservation, controlled livestock grazing and
ecotourism in the conservancies

Former group ranches: Olmesutie, Entasekera,
Morijo-Loita, Leshuta and Naikara

Unregulated low-intensity land use
(traditional pastoralism, ranching, forest and
limited ecotourism) in the group ranches

4 Lower Loita plains Former group ranches: Ol Kinyei, Maji Moto,
Oldonyo Rasha, Oleleshwa, Morijo Narok,
Olenkuluo, Narosura, Enamatishoreki and
Enkutoto Elangat

1,036 25 Unregulated low-intensity land use
(traditional pastoralism, formerly wet season
grazing and calving grounds for the migratory
Mara-Loita wildebeest, zebra, Thomson’s
gazelle and eland

5 Upper Loita plains Former group ranches: Lemek, Ntulele,
Olosawata, Osupuko-Ololulunga, Ngorengore,
Ewaso Ng’iro and Oloisiusu

804 52 Large-scale (rainfed) wheat and maize
cultivation and crop-livestock system,
formerly grazing and calving grounds for the
migratory Mara-Loita wildebeest, zebra
Thomson’s gazelle and eland

6 Mau Footslope Former group ranches: Ntulele, Lemek,
Osupuko-Ololulunga

1,115 338 Smallholder (rainfed) cultivation and livestock
keeping (crop-livestock system)

7 Mau Forest
Reserve

Water tower and forest protected area 1,144 61 Conservation, water tower and tea (Camellia
sinensis) fields at the edges

8 Mau Uplands Excised portion of the Mau Forest in
Olenguruone and Olpusimoru

1,077 186 Smallholder (rainfed) cultivation (crop-
livestock system)
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crops is practised through water abstraction at the midstream of the
Mara River (Table 1). The built-up area is represented by urban/
large rural settlements and other service utilities and the water
bodies by the Mara River and its tributaries. Although several other
water surfaces also exist such as streams and dams, they are often too
small to reliably identify on the medium-resolution image.

2.1.5 Generation of all possible cover classes for
the EGMME

We used an a priori classification approach to calculate the
number of all possible cover classes based on a combination of
vegetation lifeforms and structural attributes including density and
canopy cover. Such an approach is used in many fields including soil
science and plant taxonomy (e.g., Arnold, 2005; Kusumawardani
et al., 2019). Although this approach is effective for producing a
standardized classification and consistently describing LULC, it
typically requires numerous predefined classes. Further, not all
field samples may easily be assigned to one of the predefined classes.

We reviewed the literature and used expert knowledge to
construct the set of all possible LULC classes expected in the
EGMME. This enabled us to identify all the possible
combinations of classification criteria which we used to calculate

the number and characterize all the possible expected classes before
carrying out the actual field ground-truthing. The classes were
defined according to the Grunblatt et al. (1989) classification
system using the primary vegetation lifeforms (tree, shrub and
grass) and structural attributes including canopy cover or density
(e.g., closed, dense, open, sparse and baren) and height (e.g., tall, low,
dwarf) to generate 159 possible classes in hierarchical levels 1,
2, and 3.

More precisely, the possible classes are generated as follows.
First, we produced codes for all the possible land cover classes in the
EGMME using a combination of primary lifeforms: woodland (W),
shrubland (S), grassland (G), bare ground (B); density modifiers:
dense (d), closed (c), open (o) and sparse (s); and secondary
modifiers: wooded (w), shrubbed (s) and grassed (g). Next, we
used these to calculate the number of all possible level 1 classes
(3 primary lifeforms × 4 density modifiers + 1 barren land = 13) and
level 2 classes (3 primary lifeforms × 4 density modifiers ×
3 secondary modifiers + 1 barren land = 37). Lastly, we
calculated the possible level 3 classes by additionally considering
height categories (3 primary lifeforms × 4 density modifiers ×
3 secondary modifiers × 3 heights + 1 barren land = 109). This
yielded a total of 13 + 37 +109 = 159 classes for levels 1 to 3.

TABLE 2 Summary of the terms and symbols used in the Grunblatt et al. (1989) hierarchical classification scheme and their descriptions.

Vegetation type Symbol Description

Forest F Single-stem woody plants, generally taller than 1.5 m and at densities >50% of canopy cover

Woodland W Single-stem woody plants, generally taller than 1.5 m and at densities <50% of canopy cover

Shrubland S Multi-stem woody plants, generally shorter than 2 m

Grassland G Herbaceous vegetation, generally shorter than 2 m, includes grass and sedges

Barenland B Less than 2% of total vegetation cover, mainly unvegetated patches including rocks and bare earth

Riverine* R Dominated by trees or shrubs fringing river courses or drainage lines

Wetland and Swamp* W Land often or intermittently covered by shallow water, moisture-saturated soil

Density modifier (% canopy cover)

Closed c 80–100

Dense d 50–79

Open o 20–49

Sparse s 2–19

Baren b <2

Anthropogenic land use

Large-scale cultivation** LRC Large-scale (rainfed and mechanized) wheat (Triticum aestivum), barley (Hordeum vulgare), tea (Camellia sinensis) and maize (Zea
mays) on > 25 ha

Small-scale cultivation** SRC Smallholder crop-livestock system (rainfed), limited cash flow (outgrowers and/or agroforestry) on 2–25 ha

Irrigated cultivation** IC Center-pivot irrigated fields with horticultural crops using water abstraction on 2–25 ha

Others

Built-up Area** BA Man-made structures including rural/urban residential and industrial structures, commercial agriculture; service centres and
utilities

Water Bodies** WB Perennial or permanent water source (rivers, streams and dams)

*Optional modifier describing significant conditions which can determine vegetation community characteristics. **Classes incorporated in the extended Grunblatt et al. (1989) system to

complete the range of land use and cover types in the ecosystem.
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2.1.6 Determining the actual cover classes
expected in the EGMME

To determine the actual LULC classes expected in the EGMME,
we used information from literature review (e.g., Epp and Agatsiva,
1980; Karime, 1990; Reed et al., 2009), maps from previous studies
(Supplementary Table S7), our expert knowledge of the study
landscape and experience from DRSRS aerial monitoring surveys
on collecting habitat condition data between 1990 and 2015. We
identified the detailed structural vegetation cover and cropland
classes and compared them with a set of 37 possible expected
level 2 classes in the EGMME (Section 2.1.5). A total of
30 natural vegetation cover classes and three anthropogenic land
use functions (large- and small-scale rainfed and center-pivot
irrigated cultivation) were identified at level 2 of the extended
Grunblatt et al. (1989) system. To this, we added two more
classes (i.e., built-up areas and water bodies) to yield 35 LULC
classes. As a result, 35 classes were actually observed out of the
37 possible level 2 classes expected (Table 4; Figure 8).

2.1.7 Visual image classification and selection of
training sites on the images

Image classification was done concurrently with the selection
of training sites and involved identifying classes and assigning
each training site to one of the expected 35 level 2 classes (Section
2.1.6). We identified a training site and matched the class
characteristics inferred from the image with the expected
class. Our expert socio-ecological knowledge of the study
landscape was crucial in this exercise, besides using a high-
resolution Google Earth Pro and 80 oblique photos from
aerial sample surveys, some of which fell over the training
sites (Section 2.1.1), as aids in the visual image classification
(Shrestha and Zinck, 2001). The multispectral image was
inspected interactively by inferring the LULC types using
image patterns, texture, tone and color (Lillesand et al., 2015).
We directly identified the distinct objects on the image based on
their patterns that represented familiar features on the ground,
for example, large-scale wheat (T. aestivum) fields, tea (C.
sinensis) plantations, center-pivot irrigation, built-up areas or
large water bodies. Cultivated areas were easily distinguished
partly because of their greater internal homogeneity, but the
smallholder fields were often harder to discriminate due to a
mixture of crops interspersed with small plots of pasture,
hedgerows and dwellings.

Prior to selecting the training sites on the image, we
partitioned the entire study landscape into eight distinct zones
or strata. We then defined a training site as the area of
homogeneous 3 × 3 pixels (8,100 m2) containing a single class
on the image, digitized the polygon covered by the pixels onto the
training layer and assigned it to one of the expected 35-level
2 classes (Section 2.1.6). Some training sites were either
irregularly shaped or spanned multiple polygons, especially for
rare classes such as riverine gallery forests or ridges, but covered
areas comparable in size.

We determined the training sample size for each zone as
follows. First, we used stratified random sampling with the eight
zones as the strata to select and distribute the training sample
sites. Specifically, we used the training sample manager tool in
ArcGIS 10.5 to generate 500 random points (UTM coordinates)

representing potential training sites on the image for the largest
and most heterogeneous zone in the EGMME, the Siana plains
and Loita hills zone. Second, we overlaid the DRSRS 5 × 5 km grid
cells to guide the systematic search for homogenous pixels
around the potential training sample points on the image by
zooming on 1 cell at a time, beginning from the bottom-most row
and moving upward row by row. We relied on high-resolution
Google Earth Pro and oblique aerial photos acquired on some of
the grid cells during routine DRSRS aerial surveys (Section 2.1.1)
to aid the interpretation of training sites and infer cover classes.
The DRSRS grid was also used to spatially relate each potential
training site to the corresponding oblique aerial photos for the
site and LULC class to the corresponding class determined for the
site during the routine DRSRS surveys. This allowed us to identify
the LULC class for the 9 contiguous pixels (polygon) containing
random points and determine if the pixels qualified for selection
as a training site. Third, we identified and excluded all the
random points that fell on 3 × 3 pixels with multiple cover
classes and were therefore not sufficiently homogenous to assign
to a single class. This procedure resulted in 408 of the original
500 random points being selected as training sites for the Siana
Plains and Loita Hills zone. Fourth, we estimated the sample size
for the entire EGMME using the proportion of the EGMME area
(11259.4 km2) to the area of the Siana plains and Loita hills
(2704.6 km2) as 408 × (11259.4/2704.6) km2 � 1,697. We then
distributed the 1,697–408 = 1,289 training samples across the
remaining seven zones in proportion to their areas relative to the
total area of the EGMME less the area of the Siana plains and
Loita hills (Table 3). The sample size for each of the remaining
seven zones was therefore calculated as (total area of each zone)/
(total area of EGMME -2704.60 = 8554.9) × total number of
training sites for the remaining seven zones in the EGMME
(1,697–408 = 1,289). The training samples were distributed
across the seven zones in a similar way as the Siana Plains
and Loita Hills zone. Lastly, we calculated the number of
training samples for each class in each zone as (area covered
by the class in the zone)/(total area of the zone) × total number of
training samples for the zone.

To relate the selected training sites with the Grunblatt et al.
(1989) scheme, we created a schema (ESRI, 2016b) in the training
sample manager panel in ArcGIS 10.5, then added our expected
35 level 2 classes and assigned each training site with corresponding
inferred characteristics to a single class. Next, we digitized a polygon
with the random point (UTM coordinate) enclosing the 3 ×
3 identical pixels on the training site layer. We ensured that the
9 pixels that form a training sample were indeed homogeneous by
using the histogram tool in ArcGIS to compare the frequency
distribution of their bands (i.e., the Red, Green and Blue or
simply RGB). To ensure the originally generated random points
fell on all the expected classes in each zone, we collapsed multiple,
visually classified training samples into single, multipart samples to
display the total number of samples in a zone and the class
distribution. If a class was missed by all the random points
(i.e., no random point fell on a pixel containing the class), which
was common in small or irregularly shaped areas, particularly for
rare classes such as riverine gallery forests or ridges, then two
training sites (one for ground-truthing and another for training)
were manually added for the missing class.

Frontiers in Remote Sensing frontiersin.org09

Ojwang et al. 10.3389/frsen.2023.1188635

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1188635


2.1.8 Selection of ground-truthing samples on
the images

We allocated a subset (35%, n = 594) of the 1,697 training sites
distributed randomly across the entire 11256 km2 EGMME for
ground-truthing. We defined the criteria for selecting ground-
truthing sites by considering factors that can significantly affect
the quality of sampling sites such as road networks and built-up
areas. The validation samples were randomly selected from the
training sites using buffers (polygons) created along the reference
road networks and the peripheries (polygons) of the built-up areas to
exclude potential disturbances to the vegetation cover and degraded
areas in ArcGIS vers. 10.5 (ESRI, 2016a).We did not create buffers in
the cultivated areas where human influence is significant but
randomly sampled the accessible areas for ground-truthing sites.

The buffers for selecting ground-truthing samples were designed
according to the following criteria. 1) Ground-truthing sites inside
the protected areas (Masai Mara National Reserve and Mau Forest
Reserve) were randomly selected within a 500 m buffer on both sides
of the reference road network because off-road driving and
pedestrian movements are restricted except in designated areas.
2) Ground-truthing sites outside the protected areas (Conservancies,
Siana plains and Loita hills, and lower Loita plains) were randomly
selected within multiple buffers between 200–1,000 m on both sides
of the reference road network and 300–1,000 m or more at the
periphery of the built-up areas (urban/rural settlements and other
major infrastructure). The urban areas are bound to expand towards
their peripheries and attract human population and associated
activities which typically cause vegetation disturbance and land
degradation. 3) No buffer was used in the cultivated areas (upper
Loita plains, Mau upland and footslope).

We intersected the buffers and training site layers in ArcGIS vers
10.5 (ESRI, 2016a) to isolate the ground-truthing sites, then
systematically and uniquely relabelled the points (UTM-
coordinates) and superimposed them onto a topographic map
(scale 1:50,000) to help the field team locate each site during the
ground-truthing.

2.1.9 Ground-truthing in the field
We actually visited and validated only 556 sites (33%) of the

594 sites (35%) designated for ground-truthing out of the

1,697 training sites. This was because inaccessibility,
restrictions on movement and safety concerns made it
impossible to visit some sites within the protected areas,
while the imminent eviction of local communities from the
Mau Forest around the time of our field visits also generated
uncertainty and hostility towards our field teams. Consequently,
we visited and sampled, for example, only 82 of the 143 sites
allocated to the Siana plains and Loita hills, 92 of the 115 sites
allocated to the lower Loita plains and 63 of the 72 sites allocated
to the Mau footslope zone and relocated 4 sites in the Mau
Forest. A few of the visited sites could only be observed from a
close range because of the foregoing reasons. To ensure adequate
and reliable ground-truthing data were collected during the
fieldwork, we replaced the sites that could not be accessed
directly with alternative sites about 450 m from the original
site that contained similar characteristics (Tables 3 and
Supplementary Table S2, S1 Data).

The extended Grunblatt et al. (1989) classification protocol was
followed when characterizing and estimating the canopy of
vegetation cover and field size of cultivated areas during the
ground-truthing in the short (19–29 January; 15–30 February)
and long (2–26 July) dry seasons of 2016. The UTM coordinates
of the ground-truthing sites were uploaded to a handheld GPS
(Trimble® Juno SB), separately for each zone and supported by
toposheets (scale 1:50,000) marked with site geo-locations to locate
them in the field.

The field data were collected by two teams trained in remote
sensing and ecology and calibrated to minimize observer
differences. The teams independently described the structural
physiognomy of the dominant and secondary vegetation
communities and anthropogenic land use by moving around
each site and estimated the percent canopy cover from an
elevated platform either by standing on top of a packed
vehicle or on a nearby hill. The cropland was classified by
field size—a proxy for density, socio-economic function, water
source for cultivation and tillage methods. Also recorded were
prior disturbance indicators such as livestock grazing, wildlife
trampling or destruction, charcoal kilns, deforestation, soil
erosion and dominant vegetation species. We did not consider
the vegetation growth stage (or height), but this is incorporated at

TABLE 3 Summary of the area, number of training samples, number of ground-truthed samples and the degree of agreement between the classes assigned
during visual image interpretation and ground truthing for each of the eight zones in the EGMME.

Zone Area (km2) #Training samples #Ground-truthed samples Accuracy (%)

Masai Mara Reserve 1,514.6 228 80 88.8

Mara Conservancies 1,785.8 269 96 91.7

Siana plains and Loita hills 2,704.6 408 82 80.5

lower Loita plains 2,173.0 328 92 87.0

upper Loita plains 653.9 99 63 90.5

Mau footslope 1,364.1 206 63 88.9

Mau upland 511.4 77 47 89.4

Mau Forest 552.2 83 33 87.9

EGMME 11,259.4 1,697 556 88.1
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the more detailed level 3 of the hierarchical classification. The
vegetation cover and cropland were classified at level 2 of the
extended Grunblatt et al. system (Section 2.1.4, Figure 3).

Each sample site measured 3 × 3 pixels or 8,100 m2. We
subdivided this area into four quadrants each measuring 2025 m2

and thoroughly searched each except in the open cultivated areas

FIGURE 3
Spatial distribution of training sites (black polygons) in the eight zones (coloured background) of the EGMME. The footprint training sites are
homogeneous 3 × 3 pixels (90 × 90 m) or irregular shapes in some sites (e.g., riverine gallery forests and ridges on escarpment (Inset box). The DRSRS has
used the 5 × 5 km permanent grid shown in the map for aerial monitoring surveys of habitat conditions based on the Grunblatt et al. (1989) system since
1990 (blue lines).
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where an entire site could be observed from one vantage point. We
identified the first and the second most dominant vegetation cover
types and estimated their percent canopy cover in each quadrant
according to the extended Grunblatt et al. classification system and
then separately averaged them across all four quadrants making up
each site. This average was used to define the common vegetation
cover class for the site. The resulting common cover class identified
for each site was then standardized by assigning it to the
corresponding class that conforms with the Grunblatt

classification system. We similarly estimated the field size for
cropland and recorded the dominant crop type in each quadrant,
then averaged the areas and the common crop type across all four
quadrants constituting the site. In addition, we recorded the built-up
areas (urban and shopping centres) and types of water bodies (rivers,
swamps, dams). Further, we used a hand-held and a compass-guided
wooden cross and a site-specific labelled tag to identify geo-tagged
horizontal photos taken in each quadrant with a 35 mm camera
pointing in each of the four cardinal compass directions (Figure 4).

FIGURE 4
Ground-truthing the site-specific LULC data (land cover classes, canopy cover, location tagged label (Loita (zone)-98 (no.)A(quadrat)) and awooden
cross showing the four cardinal compass directions. (A) A plowed large-scale wheat field in Nkorikori (Ngorengore) area on the upper Loita plains. (B)
Woody riverine forest along the Mara River near Mara Rianta Shopping Centre. (C) Closed woodland in the Mau Forest (background) and tea (Camellia
sinensis) plantation (foreground). (D) Dense shrubby Acacia woodland (thicket) in the Siana plains. (E) Open grassy shrubland with Acacia
drepanolobium in lower Loita plains. (F) Small-scale rainfed maize (Zea mays) cultivation in the Mau footslope zone.
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A total of 1,488 such photos were taken in all the 556 sample sites.
S2 Data shows the 556 ground-truthed sites in the eight zones, their
UTM coordinates, a comparison of the training with the ground-
truthed classes, and the respective ground photos taken in
each quadrant.

2.1.10 Generating the actual training sample
dataset for the random forest classifier

We prepared the dataset for training the RF classifier as follows.
First, we digitized a polygon layer with the 1,697 training sites. A
subset (556 sample sites) of the 1,697 training sites was selected and
set aside for ground-truthing (S1 Data). All the training sites (points)
were individually labelled and assigned five variables: the UTM
coordinates, unique numeric and alphabetic letter codes for the
classes and their descriptions.

Second, the information on the training polygons was updated
with the actual classes only for those classes that ground-truthing
showed to have been misclassified during the image interpretation.
However, some new sites were also updated to replace the original
sites that could not be validated during the ground-truthing due to
the various reasons detailed in Section 2.1.9.

Third, the training polygon layers were overlaid onto the raster
image for each zone in the same projection and joined together to link
the points (UTM coordinates) for each training site to corresponding
pixels with discernible spectral characteristics (S3 Data).

Fourth, the classes for all the ground-truthed sites in each of the
eight zones were tallied for their frequency. For example, there were
22 classes in the conservancies zone with unique numeric class codes
4, 6, 7, ..., 43 corresponding to dense grassed shrubland (dGS), open
shrubbed grassland (oSG), closed wooded shrubland (cWS) and so
on to dense grassland. The frequency for each of the above 22 classes
was 12, 24, 6, ..., 1 and for the most common class in this zone was
60. We multiplied the frequency for each class with that for the most
common class (multiplier factor = 60) in this zone to ensure an
approximately equal probability of randomly selecting any class. The
example for the conservancies zone above yielded 720, 1,440, 360, ...,
60 random training samples for the respective classes. Consequently,
each zone has its own multiplier factor and the frequency for the
most common class over all the eight zones is used as a multiplier
factor for the entire ecosystem. The choice of a multiplier factor does
not follow any strict rules but larger values (up to the total number of
all the pixels for the most common class in a target area or zone)
increase the number of randomly selected training samples, which,
in turn, improve the classification accuracy (Horning, 2010).

The attributes (UTM coordinates and corresponding classes
(response variable)) for the randomly selected training samples
above were separately combined with the image band (DN)
values (as predictors) for each zone and for the entire EGMME.
The number of randomly selected training points and the actual
number of sample points may not exactly match because some
training sites may not be completely homogeneous and therefore
have to be allocated more than one UTM coordinate point. For
example, the specified total number of training samples for all the
22 cover classes in the conservancies zone was 16,140 but the
number actually selected was 16,280. The final training dataset
passed to the RF classifier contained one response variable
(numeric class code) and seven predictors (band DN
values) (S4 Data).

2.1.11 Implementation, configuration and
classification accuracy of the RF classifier

The RF often performs well in classification depending on
configurations of its tuning parameters (Kotsiantis, 2010; Belgiu and
Drăguţ, 2016). The main tuning parameters for the RF are the number
of trees to grow, the number of predictors to consider when splitting a
tree node and theminimumnumber of samples belowwhich a terminal
node or tree leaf is not split.We used the RF classifier (Liaw andWiener,
2002) within the R-script (R Statistical Software, v4.1.1, R Core Team,
2021) of Ned Horning (Text S1; Horning, 2010). We evaluated the
performance of this classifier using multiple configurations of the three
tuning parameters by executing eight models for each of the eight zones
and for the entire EGMME, yielding a total of 72 model runs. The
number of trees to grow was set as ntree = 500, 1,000, 2000 and 3,000,
the random subsample of predictors (i.e., p = 7 bands) to consider when
splitting each tree node was set as mtry = 7/3, therefore either 2 or
3 predictors and the minimum number of samples per tree leaf or
terminal node below which no split is attempted (nodesize) was set
equal to 1. The RF classifier uses each configuration of ntree, mtry and
nodesize to grow trees and assigns each pixel to themost common cover
class based on its relative frequency across all the trees.We evaluated the
performance of the RF classifier for level 2 classes of the extended
Grunblatt et al. classification system but not for the other levels (e.g., the
intermediate and general classes) because they are formed by collapsing
the secondary and density modifiers of the detailed classes (Table 5).

After the RF classifier has built a prediction tree for the training
dataset, the pixels in the rasterized image are used to define an output
image block that is passed to the RF classifier for prediction. The RF
classifier uses the prediction tree and the predictors (seven image bands)
for each point in the output image block to predict the cover class
(‘response’) for each point on the output image block. It produces a
classified image for all the pixels in the output image block in GeoTIFF
format, as well as the following outputs. 1) Class probability image for
the classes that received the most votes (pixels with a threshold
probability of more than 75%). 2) Classified pixels with inter-class
confusion that received the most votes below the 75% threshold. 3)
Variable importance plot that provides information on the influence of
each predictor variable. 4) Out-of-Bag (OOB) error rate estimate
calculated from a cross-tabulation of the error matrix table. 5)
Percent error rate given by the number of correct predictions from
the OOB sample and computed as 1 minus (sum of correctly classified
(diagonal) values divided by the sum of misclassified (column) values)
multiplied by 100. 6)Margin (spatial) points (the proportion of votes for
the correctly classified samples for a class minus the maximum
proportion of votes for the other classes in a zone. The margin
(spatial) points can be used to evaluate the data quality. A positive
margin value indicates a correctly classified sample and vice versa. The
margin points can be superimposed onto the classified image to select
classes that need improvement either by removal, relabeling or re-
training to enhance data quality. 7) A confusion matrix with statistics
for assessing agreement between the predicted classes and the classes in
the training dataset by comparing the correctly classified and
misclassified classes. The matrix provides the producer’s accuracy
which relates to the probability of correctly classifying a sample, the
user’s accuracy which measures the probability of the training classes
matching the predicted classes and the Kappa coefficient which
measures the extent to which the predicted classes compare with the
reference classes, where the Kappa values indicate slight (0.1–0.20), fair
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(0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80) or perfect
(0.81–1.0) agreement (McHugh, 2012). 8) The processing time
(computational efficiency) was measured as the difference in
minutes between the start and end times of each model run
(Figure 7). The models were executed using a 458 GB OS laptop
with 16 GB RAM and 11th Gen Intel(R) Core(TM) i5-1135G7 @
2.40GHz and 2.42 GHz Processor.

Although the RF classifier produced a confusion matrix, we did
not use it for evaluating the predictive performance of the classifier
and relied instead on the out-of-bag (OOB) error, which is an
unbiased estimator of the true error rate (Janitza and Hornung,
2018). Other machine learning classifiers that use bootstrap
aggregation such as boosted decision trees also measure
prediction accuracy using the OOB error (Friedl et al., 1999;
Zhang et al., 2010; Goldstein et al., 2011; Janitza and
Hornung, 2018).

2.1.12 Classified LULC map of the EGMME for 2015
We produced the final classified LULC map for the EGMME by

merging the individual maps for each zone based on parameter
configurations with the highest overall accuracy and computational
efficiency ( Figures 5, 7). The final map is the detailed LULC at level

2 of the extended Grunblatt et al. system. The intermediate and
general (level 1) classes can be created by aggregating the level
2 classes via dropping the secondary and density modifiers, which
demonstrates the hierarchical nature of this approach (S5 Data). We
created the final classified map by matching and merging the
corresponding features in the 10-km buffer around the eight
zones and seamlessly joining them in ERDAS (2008). Then, we
used the Clump and Eliminate algorithm to eliminate clusters (salt-
and-pepper effect) smaller than the minimum mapping unit (90 ×
90 m or 9 pixels) by applying a 3 × 3-pixel majority filter (Lillesand
et al., 2015).

3 Results

3.1 Accuracy of visual image classification

We directly compared the classes identified by visual image
interpretation with corresponding ground-truthed classes in each of
the eight zones to evaluate the interpreter accuracy at 90 × 90 m
spatial resolution. This direct measure of accuracy was high and
averaged 88.1% (range 80.5%–91.7%) across the zones and increased

FIGURE 5
Variation in the overall accuracy (%) of the Random Forest classifier based on the Out-of-Bag (OOB) error estimate across the eight zones and the
whole study ecosystem (EGMME), the configuration of the number of trees grown (ntree) and the subsample of predictors considered in splitting each
tree node (mtry).
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with land cover homogeneity and intensity of ground-truthing.
Consequently, accuracy was the highest for the most intensely
ground-truthed conservancies zone (91.7%) and the internally

more homogeneous upper Loita plains (90.5%) but the lowest for
the internally more heterogeneous Siana plains and Loita hills
(80.5%) (Table 3). Accuracy was similarly high and averaged

TABLE 4 Summary of the number of times each of the 35 classes assigned during the visual image interpretation matched or did not match the
corresponding classes observed during ground-truthing across all the eight zones in the EGMME. LC Code is a unique number assigned to each class.

Land cover name LC code Matched Mismatched Total Accuracy (%)

Bare Land 36 4 1 5 80.0

Built-up Area 38 1 0 1 100.0

Closed Grassed Shrubland 24 8 5 13 61.5

Closed Grassed Woodland 23 2 0 2 100.0

Closed Grassland 40 2 0 2 100.0

Closed Shrubbed Grassland 22 1 0 1 100.0

Closed Shrubbed Woodland 21 6 5 11 54.5

Closed Wooded Shrubland 19 2 0 2 100.0

Dense Grassed Shrubland 6 27 10 37 73.0

Dense Grassed Woodland 6 2 0 2 100.0

Dense Grassland 43 2 1 3 66.7

Dense Shrubbed Grassland 16 33 6 39 84.6

Dense Shrubbed Riverine 31 3 1 4 75.0

Dense Shrubbed Woodland 15 6 2 8 75.0

Dense Wooded Grassland 14 1 1 2 50.0

Dense Wooded Riverine 27 5 2 7 71.4

Dense Wooded Shrubland 13 15 1 16 93.8

Dense Woodland (Forest) 39 29 2 31 100.0

Irrigated Agriculture 35 2 0 2 100.0

Large-scale Agriculture 33 23 1 24 95.8

Open Grassland 42 1 0 1 100.0

Open Grassed Shrubland 12 75 2 77 97.4

Open Grassed Woodland 11 16 1 17 94.1

Open Shrubbed Riverine 41 2 0 2 100.0

Open Shrubbed Grassland 10 30 1 31 96.8

Open Shrubbed Woodland 9 2 0 2 100.0

Open Wooded Grassland 8 4 0 4 100.0

Open Wooded Riverine 26 10 0 10 100.0

Open Wooded Shrubland 7 15 2 17 88.2

Small-scale Agriculture 34 69 7 76 90.8

Sparse Grassed Shrubland 18 7 2 9 77.8

Sparse Grassed Woodland 5 1 0 1 100.0

Sparse Shrubbed Grassland 4 75 11 86 87.2

Sparse Wooded Grassland 2 6 0 6 100.0

Water Body 37 5 0 5 100.0

All 35 classes 492 64 556 89.0
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89.1% (range 50%–100%) across all the classes and increased with
increasing internal homogeneity within the classes (Table 4).

3.2 Overall and class-specific accuracy of
the RF classifier

The accuracy of the RF classifier was higher for the eight zones
than for the entire EGMME at 30 × 30 m spatial resolution,
highlighting the importance of landscape stratification. Across
the eight zones, the overall and class-specific accuracies were
higher for the internally more homogeneous zones and classes.
Consequently, accuracy was the highest for the more homogeneous
Mau Forest (97.4%) and the lowest for the highly heterogeneous
Siana plains and Loita hills (79.3%) (Figure 5; Supplementary Tables
S4, S5). Accuracy did not vary with increasing number of trees
grown, either for each zone or the entire ecosystem, suggesting that
using 500 trees would generally yield satisfactory predictions for
most practical classification tasks.

The class-specific accuracy varied strikingly among the 35 cover
classes, averaging 61.6% and ranging from 25.4%–98.1% (Figure 6;
Supplementary Tables S4, S5). This wide variation reflects the

underlying high variation in land cover types in this complex
landscape. For example, the overall accuracy for the typically
more homogeneous dense woody riverine, dense woodland
(forest), water bodies and barren land was high, ranging between
93.2% and 98.1%, but that for more heterogeneous dense grassy
woodland, open grassy woodland, closed woody shrubland or dense
woody shrubland was much lower, ranging between 25.4% and
42.3%. The overall and class-specific accuracy in all the eight zones
and in the entire EGMME was little affected by varying the
subsample of predictors considered in splitting each tree node
(mtry = 2 or 3), suggesting that using 2 or 3 predictors made no
material difference to accuracy (Figure 5).

3.3 Computational efficiency of the
RF classifier

Computational efficiency of the RF classifier decreased with
increasing number of trees grown for all the eight zones except for
the internally more heterogeneous Mau Forest and Mau upland
(small-scale rainfed cultivation) zones (Figure 7). However,
computational efficiency varied only slightly with the subsample

FIGURE 6
Variation in the class-specific accuracy (%) of the Random Forest classifier based on theOut-of-Bag (OOB) data averaged across the 35 LULC classes
in the EGMME, the configuration of the number of trees grown (ntree) and the subsample of predictors considered in splitting each tree node (mtry). The
x-axis represents the unique numeric code for each class as specified in Table 4 and Supplementary Table S3.
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of predictors (mtry) considered in splitting each tree node or with
the number of classes in a zone. The processing time for the entire
ecosystem was much higher than that for all the zones combined,
indicating that stratifying the landscape into internally more
homogeneous areas enhanced computational efficiency.

3.4 Final LULC map of the EGMME, 2015

With the methods outlined above, we produced the first detailed
and consistent map of the EGMME at 30 × 30 m spatial resolution for
the year 2015, based on land use and structural vegetation heterogeneity
and density (Figure 8).We identified a total of 35 detailed LULC classes,
which we aggregated into 18 community mosaics and further into five
more general classes (Supplementary Tables S3, S6; Supplementary
Figures S1, S2). Grassland (35.7%) and shrubland (35.3%) dominated
the landscape at the general level of hierarchical classification followed
by woodland (12.5%), cropland (16.2%) and other (0.3%). The grassed
shrubland (31.9%) and shrubbed grassland (28.9%) were dominant at
the intermediate level, but small (13.3%)- and large (2.7%)- scale
cultivated areas also occupied sizable areas. At the detailed level 2,
the open grassed shrubland (21.8%), followed by sparse shrubbed

grassland (10.4%), were the most widespread and occurred largely in
the rangelands where the main land use was conservation, traditional
pastoralism and ranching (Table 5). The smallholder rainfed cultivation
and livestock keeping (crop-livestock system) were prominent in the
wetter part of the ecosystem but a few farms were scattered across the
rangeland. Large-scale rainfed (wheat and maize) cultivation occurred
in the transitional zone with favourable agro-ecological conditions,
particularly in the upper Loita plains at the edge of the rangeland,
whereas the center-pivot irrigated (horticulture) fields were notable in
Enonkishu conservancy within the conservancies zone.

The most common land cover types in the EGMME are
vegetation community mosaics including open grassed shrubland,
sparse shrubbed grassland, open shrubbed grassland, dense grassed
shrubland, dense shrubbed grassland, dense wooded shrubland and
open wooded grassland (Table 5). The riverine shrubbed and
wooded gallery forest occurs along the Mara River and its
tributaries. A few wetlands are also scattered across the Mara
Triangle within the Masai Mara Reserve. The grassland and
shrubland are dominant in the Masai Mara Reserve, Mara
conservancies, Siana and Loita hills and the Lower Loita plains,
whereas woodland occurs in almost equal proportions in the Mara
Reserve and the adjacent conservancies but is more widespread in

FIGURE 7
Variation in computational efficiency (processing time in minutes) of the Random Forest classifier across the eight zones and the whole ecosystem
(EGMME), the configuration of trees grown (ntree) and the subsample of predictors considered in splitting each tree node (mtry). The vertical bar labels are
the number of cover classes in each zone.
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the Mau upland and the Siana plains and Loita hills
(Table 6; Figure 8).

4 Discussion

We developed an approach that blends a hierarchical LULC
classification system with the Random Forest classifier, a robust
and computationally efficient machine learning algorithm. We
also used both landscape stratification and 1,697 training sites
distributed according to stratified random sampling and

proportionate to the area of each zone. About a third (33%) of
the training sites (n = 556) were selected and used for ground-
truthing. We evaluate how the accuracy of this approach to LULC
classification using medium-resolution remote sensing imagery
varies with the following five factors. 1) Landscape stratification
to account for landscape heterogeneity. 2) The number and
distribution of training and ground-truthing samples. 3) Intra-
class heterogeneity. 4) Image resolution, clarity and visual image
interpretation. 5) Accuracy and robustness of the classification
method. Below, we discuss, in turn, how each of these factors
affects accuracy.

FIGURE 8
A comprehensive LULC map of the EGMME at 30 × 30 m spatial resolution showing the 35 classes of vegetation community mosaics and
anthropogenic land use derived from the Landsat 8 image of February 2015. Classification accuracy of 78.8%–95.5% was achieved using ntree = 500 and
mtry = 2, separately for each zone (Figure 5). A similarmap produced by classifying thewhole EGMMEwithout stratification (accuracy = 80.2%) is shown in
Supplementary Figure S3.
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TABLE 5 Summary of the aggregated (general level 1) and detailed (level 2) classes in the Extended Greater Masai Mara Ecosystem (EGMME) (Supplementary
Figures S1, S2 and Figure 8).

Class level I Class level II Area (km2) Cover (%)

Woodland Closed Grassed Woodland 1.9 0.02

Closed Shrubbed Woodland 120.9 1.07

Dense Grassed Woodland 2.9 0.03

Dense Shrubbed Woodland 107.2 0.95

Dense Wooded Riverine 379.7 3.37

Dense Woodland (Forest) 560.8 4.98

Open Grassed Woodland 34.4 0.31

Open Shrubbed Woodland 5.4 0.05

Open Wooded Riverine 188.9 1.68

Sparse Grassed Woodland 20.8 0.19

Woodland Total 1,422.9 12.64

Shrubland Closed Grassed Shrubland 29.3 0.26

Closed Wooded Shrubland 26.5 0.24

Dense Grassed Shrubland 1,006.0 8.93

Dense Shrubbed Riverine 7.8 0.07

Dense Wooded Shrubland 2,412.0 2.14

Open Grassed Shrubland 2,449.9 21.76

Open Shrubbed Riverine 4.5 0.04

Open Wooded Shrubland 104.6 0.93

Sparse Grassed Shrubland 106.8 0.95

Shrubland Total 3,976.6 35.32

Grassland Closed Grassland 262.6 2.33

Closed Shrubbed Grassland 47.8 0.42

Dense Grassland 28.7 0.25

Dense Shrubbed Grassland 951.6 8.45

Dense Wooded Grassland 38.3 0.34

Open Grassland 203.5 1.81

Open Shrubbed Grassland 1,083.3 9.62

Open Wooded Grassland 179.9 1.60

Sparse Shrubbed Grassland 1,169.7 10.39

Sparse Wooded Grassland 32.0 0.28

Grassland Total 3,997.4 35.50

Cropland Small-scale rainfed Agric 1,502.1 13.34

Large-scale rainfed Agric 303.2 2.69

Irrigation Cultivation 19.1 0.17

Cropland Total 1,824.4 16.20

Built-up Area Infrastructure and settlements 20.9 0.19

Waterbodies Rivers, streams, and dams 10.9 0.10

(Continued on following page)
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4.1 Landscape stratification and
LULC accuracy

Stratification enabled the delineation of the study landscape into
zones with greater internal homogeneity and smaller variance than
the entire study ecosystem, leading to greater classification accuracy.
Stratification of the EGMME landscape into eight internally more
homogeneous zones also evidently helpedminimize the spreading of
digital signatures and contamination of adjacent zones during visual
image processing. This enhanced accuracy by reducing the
likelihood of misclassification. Our approach also reaffirms the
importance of stratification in ensuring spatially representative
allocation of training and validation sites. As expected, the
overall accuracy of the RF classifier was higher for the individual
zones, 88.4% (range 79.3%–97.4%) than for the entire ecosystem
(80.2%) except in the internally more heterogeneous zones (e.g.,
Siana plains and Loita hills zone, Masai Mara National Reserve and
wildlife conservancies), consistent with findings of other studies
(e.g., Smith et al., 2003; Hansen et al., 2013; Sleeter et al., 2013; Cano
et al., 2017; Yadav and Congalton, 2018).

Furthermore, landscape stratification improved computational
efficiency. Stratification reduced the processing time for the RF
classifier such that it was 1.5 times faster for the eight individual
zones combined than for the entire EGMME. The gain in
computational efficiency with stratification of the RF classifier
increased dramatically with decrease in the number of decision
trees grown and was four times faster for the individual zones
combined than for the entire EGMME for 500 trees but only
0.5–0.8 times faster for 1,000–3,000 trees. Similarly,
computational efficiency decreased with increasing number of

trees grown for each of the eight zones except for the internally
more homogeneous zones, particularly the Mau upland and upper
Loita plains that are cultivated areas, and the Mau Forest. Our
results, therefore, reinforce the findings of other studies that
stratification increases computational efficiency (Loveland and
Merchant, 2004; Hansen et al., 2013; Sleeter et al., 2013).
However, it has a potential downside that land use transition
may be abrupt at the boundaries of the strata (e.g., conservation
boundaries), partially reflecting the stratification process itself,
rather than ‘true’ land use differences. Our intense ground
truthing approach, with samples distributed across strata
boundaries, almost certainly minimized this risk.

4.2 Training and ground-truthing sample
sizes and LULC accuracy

We used relatively many training (1,697) and validation samples
that were well-distributed to achieve a high LULC classification
accuracy. Ground-truthing revealed a reasonably high average
(88.1%) but substantial variation (80.5%–91.7%) in the accuracy
of the visual image classification across the eight zones,
corresponding to a misclassification rate of 8.3%–19.5% and
showing that internally more heterogeneous zones require
relatively more training and validation sites to achieve high
accuracy. This has significant implications for the RF classifier
because its predictive accuracy, for the subset of the unvalidated
training data (1,114 = 1,697minus 556 training samples), is bounded
above by the accuracy of the visual image classification. The ground-
truthing showed that although the average class-specific LULC

TABLE 5 (Continued) Summary of the aggregated (general level 1) and detailed (level 2) classes in the Extended Greater Masai Mara Ecosystem (EGMME)
(Supplementary Figures S1, S2 and Figure 8).

Class level I Class level II Area (km2) Cover (%)

Bareland <2% vegetation cover at site 6.3 0.06

Others Total 38.1 0.34

EGMME 11,259.4 100.00

TABLE 6 Summary of the area occupied by the general land cover type in each of the eight zones.

Zone Woodland Shrubland Grassland Cropland Others EGMME*

Masai Mara National Reserve 8.2 27.2 64.0 0.1 0.5 13.5

Mara Conservancies 8.0 46.2 41.4 3.8 0.6 15.9

Siana plains and Loita hills 18.4 51.4 30.2 0.0001 0.1 24.0

Lower Loita plains 2.7 42.6 53.8 0.8 0.1 19.3

Upper Loita plains 3.7 30.4 28.0 37.5 0.4 5.8

Mau footslope 3.3 13.5 3.6 79.2 0.4 12.1

Mau Forest 85.8 3.3 3.5 7.2 0.1 4.9

Mau upland 10.7 4.2 10.7 73.2 1.2 4.5

EGMME** 12.6 35.32 35.50 16.2 0.3 100.0

EGMME* is the proportion of the entire ecosystem (11259.4 km2) covered by each zone and EGMME** is the proportion of the entire ecosystem covered by each land cover class. Others denote

the rare classes such as barren land, built-up areas and water bodies.
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accuracy was high (89.1%), it too varied markedly across the classes
(50%–100%) such that the internally more heterogeneous classes
exhibited greater misclassification rates and accordingly require
relatively more training and ground-truthing samples. It follows
logically that even though it can be hard to achieve a large sample
size due to inaccessibility, budgetary and time constraints, extensive
ground-truthing is essential to achieving accurate LULC
classification, especially for complex landscapes such as the
EGMME (Congalton, 1991). Other factors that should be
considered to improve classification accuracy include suitability,
size, shape, distribution, frequency and classes assigned to the
training sites (Congalton, 1991; Foody et al., 2006).

4.3 Intra-class heterogeneity and
LULC accuracy

Classification accuracy decreased with increasing intra-class
heterogeneity for both the visual image and RF classification. The
class-specific accuracy ranged between 50% and 100% for the visual
image but between 25.4%–98.1% for the RF classifier. Accordingly,
the internally more homogeneous classes such as the dense
woodland (forest), riverine gallery forest, grassland, large- and
small-scale rainfed cultivation, water bodies and barren land had
higher accuracies than the more heterogeneous community mosaics.
Some rare and therefore less well-represented classes had low
classification accuracy as a result.

When classifying detailed structural vegetation heterogeneity and
density, it is often difficult to discriminate between classes with different
physiognomic characteristics in ecologically similar communities. This
is because some classes will emit near-similar spectral reflectances that
make them appear indistinguishable on images (Turner and Congalton,
1998). For example, in the EGMME, a recently harvested wheat field
and a pasture paddock were hard to distinguish on the medium-
resolution image, which complicates their discrimination using spectral
responses (Thenkabail, 1999; Reed et al., 2009). Similarly, it is
particularly difficult to differentiate classes depicting proximate
spectral signatures in communities with overlapping ecological
characteristics and thin demarcations such as the shrubbed grassland
and grassed shrubland. Other examples of narrowly separable classes in
terms of their ecological composition include closedWoodedGrassland
(cWG) and densely Wooded Grassland (dWG) as well as dense
Shrubbed Grassland (dSG) and closed Shrubbed Grassland (cSG),
both of which had the lowest accuracy. However, the estimated
inaccuracy is consistent, such that misclassified pixels end up in
classes with similar ecological compositions. Also common is the
misclassification of functionally distant and disparate classes that are
often found together in the same area such as wheat fields, grassland
and cultivated pasture, but which appear homogeneous in images.
Open and closed grassland often have narrow distinctions but are less
likely to be mistaken for open grassed shrubland.

4.4 Image resolution, visual image
interpretation and LULC accuracy

The medium-resolution remote sensing images such as Landsat
8 OLI are popular for LULC mapping from local to global scales

(Gad and Kusky, 2006; Thi et al., 2019), however, their utility is
constrained by limitations inherent in their spatial and temporal
resolutions as well as spectral responses, all of which affect visual
image interpretation and hence the overall and class-specific
accuracies. Because the details of an image are captured by visual
inspection, we used well-trained image interpreters with expert
knowledge of the study landscape to ensure a dependable
identification of the image objects. However, if unreliable or
outdated auxiliary data are used to support image interpretation,
then this can result in misinterpretation and reduced accuracy. As a
result, we relied on high-resolution Google Earth Pro and aerial
photos acquired around the same time as the satellite images. These
high-resolution images have more pixels and higher-quality
information than medium-resolution images. We expect this to
enhance the interpreter accuracy, which is the most reliable measure
of classification because the classes identified visually on the image
are compared with direct field observations. Consequently, any
inaccuracy introduced during the visual image inspection can be
magnified in the subsequent image processing steps, and reduce the
overall accuracy. Moreover, interpreters should be adequately
knowledgeable about the study landscape and have sufficient
image interpretative skills to minimize misclassification. It is
perhaps fair, therefore, to say that it is almost impossible to
produce a detailed and accurate LULC map without good socio-
ecological knowledge of a landscape.

Our approach refines the Grunblatt et al. (1989) method with
respect to spatial resolution. The Grunblatt et al. (1989) method as
applied by the DRSRS is typically used to assess the LULC at 5 ×
5 km or 5 × 2.5 km spatial resolution from low-flying aircraft (Ogutu
et al., 2016). However, we downscaled this to 90 × 90 m (or 3 ×
3 homogeneous pixels) during the visual image interpretation and
further to 30 × 30 m resolution during the processing of the Landsat
8 OLI image in which the individual pixels form the basis for spectral
classification and evaluation of accuracy.

4.5 Integrating the Grunblatt et al. system
with the RF classifier

The Grunblatt et al. scheme is a well-tested and standardized
classification system that has been used for assessing land use and
habitat condition in the Kenya rangelands as part of a long-term
monitoring program on trends of large-herbivore populations since
1990 (Ogutu et al., 2016). However, this is the first time this classification
system has been blended with the RF classifier for LULC mapping.
Besides the RF classifier, the system can also be blended withmany other
efficient machine-learning or other algorithms used for classification in
remote sensing applications. Our approach represents a major
improvement over previous LULC classification and mapping in
complex social-ecological systems such as African savannas.

4.6 Classified LULC map of the EGMME
for 2015

A detailed and accurate map of vegetation heterogeneity and
density and land use at the landscape scale is essential but was
previously lacking for the EGMME. In order to understand the
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challenges relating to land cover conversion and modification,
and to link habitats to putative drivers of change, a fine and
consistent description of the LULC characteristics is required.
We have therefore produced granular maps with high overall
accuracy based on extensive ground-truthing in the EGMME and
a thorough assessment of the classification accuracy. This is the
most detailed and consistent classification of the structural
vegetation heterogeneity and density for this landscape to
date. The maps represent a substantial advance over existing
products due to the comparatively many training and ground-
truthing samples, efficient classifier and hierarchically consistent
and reproducible classification system used. The detailed to
general cover classes produced are suitable for reliable
multiscalar change detection.

Our approach represents a considerable improvement over the
previous mapping efforts in the EGMME landscape, some of which
have relied on ad hoc and unreproducible classes or typically
assumed rather than assessed classification accuracy
(Supplementary Table S7). Some of the earlier maps are
generalized and were based on either insufficient ground-
truthing data or used non-robust classifiers or inefficient
analytical tools, and therefore differ markedly even for the same
study area. For example, Epp and Agatsiva (1980) identified
46 cover classes and grouped them into 12 general categories in
the GMME (7,500 km2) using data from multiple sources (ground,
aerial and satellite images) acquired between 1973 and 1976. They
relied on the modified Pratt et al. (1966) system to classify the
physiognomic characteristics of the vegetation, particularly height
and canopy cover. Broten and Said (1995) later re-grouped the Epp
and Agatsiva (1980) cover classes into 9 classes and augmented
these with 8 more classes from Msafiri (1984) to yield 17 more
general cover types. They estimated the most extensive vegetation
cover in the ecosystem as shrubland (45%), dwarf shrubland (21%)
and grassland (26%). Reed et al. (2009) used Land ETM + images
and a fuzzy classification and post-classification fuzzy convolution
and 859 ground-truthing samples. They applied the original
Grunblatt et al. (1989) scheme only to display their 40 land
cover classes, which excluded the anthropogenic land use,
across 24000 km2 of the 40000 km2 Greater Serengeti-Mara
Ecosystem (GSME) that lies largely in Tanzania, with a small
portion overlapping our study landscape in Kenya. Reed et al.
(2009) stratified the GSME into three zones and classified each
separately but did not consider classifying the entire ecosystem as
a single entity. They did ground truthing using multiple methods,
none of which estimated the structural vegetation heterogeneity
and density according to the Grunblatt et al. (1989) method. The
FAO-Africover Kenya mapped the entire EGMME landscape as
part of a Kenya-wide mapping project involving visual
interpretation of Landsat ETM images acquired in 2000. They
used the FAO/UNEP Land Cover Classification System (LCCS),
relying mainly on a dichotomous and modular hierarchy, limited
fieldwork and broad classes (Ahlqvist, 2008). The World
Resources Institute (WRI)/FAO/DRSRS (2008) updated the
FAO-Africover Kenya map using the FAO/GLCN methods.
More recent LULC mapping efforts in the EGMME and the
rest of Narok County have used various ad hoc classification
systems and so have produced contrasting and often inconsistent
and unreproducible LULC classes (Supplementary Table S7).

4.7 Further refinements and extensions of
the Grunblatt et al-RF classifier

We have extended the Grunblatt et al. (1989) system to
incorporate anthropogenic land use, a feature not considered in
the original scheme (Section 2.1.4) and downscaled its coverage to
finer spatial resolutions. The approach can also readily be extended
to include LULC classes specific to particular study areas. We chose
the Grunblatt et al. (1989) system because it uses systematic criteria,
a complete set of diagnostic elements and precise and unambiguous
class definitions to achieve consistent, hierarchical and reproducible
classification. The scheme can be used to consistently classify LULC
at the landscape through regional and continental to global scales.

Improving the accuracy of the Grunblatt et al-RF classifier, as
with all LULC classification systems, can be challenging and revolves
around the determination of appropriate number of classes to be
used because too many or too few of these classes are likely to poorly
represent the actual classes in a study landscape. For the Grunblatt
et al. method, the maximum number of classes is bounded above by
the expected possible classes, which can be determined prior to
ground-truthing. Also, the accuracy of the Grunblatt et al.-RF
classifier can be enhanced by using a very high resolution (VHR)
image for mapping highly heterogeneous landscapes and complex
socio-ecological systems such as savannas. However, at least two
challenges are likely to arise when using such images for LULC
mapping. (i) The cost of images and time spent on analysis can
become prohibitive; however, as image processing technology
advances and image cost reduces, we expect these to become less
in future. (ii) The image pixel size may be smaller than the coverage
of target objects such as tree canopy. This is a fundamental challenge
and perhaps the most important concern in improving the accuracy
of our approach. For example, using images such as theWorldView-
1 and GeoEye-1 with a 0.5 m spatial resolution may result in a tree
canopy covering several adjacent pixels, which would require a more
complex object-oriented analysis instead of the ‘traditional’ pixel-
based classification (Whiteside and Ahmad, 2005).

The Grunblatt et al. (1989) scheme is best applied to medium
(e.g., Landsat 8 OLI) and higher resolution images with pixels that
cover entire target objects such as tree canopies at the landscape
scale, but its scale-independent classes permit the description of
objects and areas smaller than a pixel in size. At finer spatial
resolutions, this scheme can be used together with robust
classifiers such as the RF to provide even more granular classes
and higher accuracy. Moreover, the increasing temporal frequency
of satellite images with fine spatial resolution opens up new frontiers
for using this approach to reliably and efficiently monitor fine-
resolution LULC changes in space and time (Brown et al., 2022). We
anticipate further improvements in the accuracy and computational
efficiency of this approach as more efficient analytical tools, machine
learning classifiers and platforms that provide multi-dimensional
(open access) datasets become more widely available and affordable.

5 Conclusion

We have developed an approach to LULC classification that
blends the hierarchical Grunblatt et al. (1989) classification
scheme with the robust random forest classifier. The approach
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is very flexible and general and can be used at landscape to global
scales, with stratified classification as an important method to
cope with large-scale landscape heterogeneity. It is especially
suitable for ecosystems with relatively fuzzy differences between
LULC categories, such as savannas. Our extensive ground-
truthing data can be used to improve wider mapping efforts at
regional, continental and global scales. We have used large
training (1,697) and ground-truthing (556) samples to assess
the accuracy of the method in a relatively vast and complex socio-
ecological system, the Extended Greater Masai Mara Ecosystem
in Kenya. We anticipate the accuracy and computational
efficiency of the approach to increase as more efficient
classification algorithms and high-resolution data to aid image
interpretation become more widely available.

Our application of the approach supports the following general
conclusions. The Grunblatt et al.-RF classifier can accurately predict
detailed land use and structural vegetation heterogeneity and density
and land use even for vast and complex landscapes. The predictive
accuracy and computational efficiency of the approach are both
enhanced by landscape stratification. Using internally more
homogeneous zones with the RF classifier increases accuracy and
computational efficiency, both of which reduce with increasing
landscape area and complexity. Similarly, accuracy increases with
increasing intra-class homogeneity. Using more training and
validation samples improves the accuracy of the LULC
classification approach.

Growing 500 trees for the RF classifier yields sufficient
accuracy for most practical classification tasks at relatively low
computational cost. The size of subsamples of predictor variables
considered when splitting a tree node using relatively few
predictors (seven image bands in our case) has a negligible
effect on the predictive accuracy and computational efficiency
of the RF classifier. We have produced a granular and reliable
map of the EGMME with consistent and reproducible LULC
classes, and shown how to collapse the detailed classes into
intermediate and more general categories. The generalized
classes may be more suitable for general change detection than
the more detailed classes, but the latter are more appropriate
when a consistent classification system is desired. The digital
maps and photos acquired during the ground truthing are
provided as aids for wider ground-truthing efforts at regional
to global scales.
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