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We describe the PACE-MAPP algorithm that simultaneously retrieves aerosol and
ocean optical parameters using multiangle and multispectral polarimeter
measurements from the SPEXone, Hyper-Angular Rainbow Polarimeter 2
(HARP2), and Ocean Color Instrument (OCI) instruments onboard the NASA
Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) observing system. PACE-
MAPP is adapted from the Research Scanning Polarimeter (RSP) Microphysical
Aerosol Properties from Polarimetry (RSP-MAPP) algorithm. The PACE-MAPP
algorithm uses a coupled vector radiative transfer model such that the
atmosphere and ocean are always considered together as one system.
Consequently, this physically consistent treatment of the system across the
ultraviolet, (UV: 300–400 nm), visible (VIS: 400–700 nm), near-infrared (NIR:
700–1100 nm), and shortwave infrared (SWIR: 1100–2400 nm) spectral bands
ensures that negative water-leaving radiances do not occur. PACE-MAPP uses
optimal estimation to simultaneously characterize the optical and microphysical
properties of the atmosphere’s aerosol and ocean constituents, find the optimal
solution, and evaluate the uncertainties of each parameter. This coupled
approach, together with multiangle, multispectral polarimeter measurements,
enables retrievals of aerosol and water properties across the Earth’s oceans.
The PACE-MAPP algorithm provides aerosol and ocean products for both the
open ocean and coastal areas and is designed to be accurate, modular, and
efficient by using fast neural networks that replace the time-consuming vector
radiative transfer calculations in the forwardmodel. We provide an overview of the
PACE-MAPP framework and quantify its expected retrieval performance on
simulated PACE-like data using a bimodal aerosol model for observations of
fine-mode absorbing aerosols and coarse-mode sea salt particles. We also
quantify its performance for observations over the ocean of dust-laden scenes
using a trimodal aerosol model that incorporates non-spherical coarse-mode
dust particles. Lastly, PACE-MAPP’s modular capabilities are described, and we
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discuss plans to implement a new ocean bio-optical model that uses a mixture of
coated and uncoated particles, as well as a thin cirrus model for detecting and
correcting for sub-visual ice clouds.

KEYWORDS

vector radiative transfer, multiple scattering, passive remote sensing, polarimetry, aerosol
detection, oceanic optics, neural network

1 Introduction

Aerosols constitute the number one source of uncertainty in
passive ocean remote sensing products (Gordon, 1997). Legacy
atmospheric correction procedures can lead to the retrieval of
negative water-leaving radiances in coastal waters where the
ocean sub-surface is not completely absorbing in the near-
infrared (NIR). But if the atmosphere-ocean system is
correctly modeled as a coupled system, then retrieval of
negative water-leaving radiances is physically impossible
(Stamnes et al., 2003). Retrieval using a coupled atmosphere-
ocean system is the best way to reliably and accurately retrieve
ocean products in complex coastal zones, particularly in the
presence of absorbing aerosol. Therefore, a key feature of the
PACE-MAPP algorithm is that the atmosphere and ocean are
considered together as one coupled system from a vector
radiative transfer perspective. This physically consistent
treatment of the atmosphere-ocean system across all spectral
bands ensures that negative water-leaving radiances, which can
otherwise occur above bright waters such as coastal areas, are
avoided. And by simultaneously solving for the aerosol and
ocean products, we can determine the optimal solution,
together with a full accounting of the uncertainties of each
parameter. The PACE-MAPP algorithm, with its coupled
atmosphere-ocean vector radiative transfer approach, which
is operationally fast due to the use of neural networks, is
expected to be capable of providing aerosol and ocean
products for both the global ocean and in coastal areas.
Another key feature of PACE-MAPP is that it is a multi-
instrument algorithm. PACE-MAPP will use channels from
all instruments on PACE (Gorman et al., 2019), including
the two polarimeters, SPEXone (Hasekamp et al., 2019; van
Amerongen et al., 2019; Rietjens et al., 2021) and HARP2
(Fernandez Borda et al., 2018), and the OCI (Waluschka
et al., 2021) SWIR bands. The SWIR bands will be used to
improve the characterization of coarse-mode aerosols such as
dust and sea salt particles. In order to make PACE-MAPP
operationally fast, we have developed an accurate and fast
neural network to replace the vector radiative transfer
calculations that are used in the MAPP optimal estimation
framework, which builds on other efforts in this area
(Stamnes et al., 2018a; Gao et al., 2021). The general
philosophy behind the PACE-MAPP retrieval methodology is
to use an accurate forward model encapsulated within an
optimal estimation framework to fit all measurements
simultaneously (total radiance and polarized radiance) to
within the instrument measurement error (Stamnes et al.,
2018b). All aerosol and ocean data products include
uncertainties produced by the PACE-MAPP optimal

estimation retrieval, considering the instrument
measurement error uncertainty and a priori information. The
forward model that PACE-MAPP uses is an advanced doubling-
adding vector radiative transfer code (Hansen and Travis,
1974), with input provided by an aerosol model and ocean
bio-optical model (bio-optical model). Other polarimeter
algorithms that share a similar philosophy to PACE-MAPP
in the retrieval of aerosol properties include RemoTAP
(Hasekamp et al., 2011; Fan et al., 2019), MAPOL (Gao
et al., 2018), and GRASP (Zhang et al., 2021). PACE-MAPP
is different from these other polarimeter aerosol retrieval
algorithms in that it uses neural networks trained on coupled
atmosphere-ocean vector radiative transfer calculations for
both polarimeters and OCI’s SWIR channels on PACE. Of
these other algorithms, only MAPOL has taken a similar
neural network approach to replace the vector radiative
transfer model using scientific machine learning, but PACE-
MAPP represents the first time such a model has been developed
specifically for PACE. PACE-MAPP is unique in that it is
designed to simultaneously retrieve aerosol and ocean
properties across the UV-VIS-NIR-SWIR, whereas the other
algorithms do not focus on the UV or SWIR regions. PACE-
MAPP also has a unique design that is set up to take advantage
of a family of neural networks that are trained to handle
different observing scenarios, for example, (i) fine-mode
aerosol and coarse-mode sea salt bimodal aerosol model
above the ocean, (ii) trimodal aerosol model that also adds
non-spherical dust above the ocean (iii) trimodal aerosol model
under thin cirrus above the ocean. PACE-MAPP’s modular
design allows for multiple neural networks to enable
different capabilities. For example, observing scenario (iii)
includes a thin cirrus model, which will allow PACE-MAPP
to simultaneously retrieve thin cirrus properties together with
the aerosol and ocean properties. The emphasis of the PACE-
MAPP algorithm is three-fold: (i) accurate retrieval of aerosol
microphysical properties including aerosol absorption
quantified by the single-scattering albedo (SSA), the free
troposphere aerosol layer height, aerosol effective radius, and
the separation of aerosol optical depth (AOD) into a fine mode
and two coarse modes (sea salt and dust), (ii) simultaneous
retrieval of ocean products using a polarized bio-optical
model that parameterizes phytoplankton and nonalgal
particles across multiple water types including the open
ocean, phytoplankton blooms, and coastal zones, and (iii)
physically consistent and robust detection of thin cirrus that
contaminate aerosol retrievals by non-polarimeter
measurements (Stap et al., 2015; Stamnes et al., 2018b; Nied
et al., 2023), which will be accomplished by integrating a thin
cirrus model directly into the retrieval algorithm. In this paper
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we demonstrate the initial capability of the PACE-MAPP
framework for bimodal and trimodal aerosol above ocean
scenes. We describe the overall PACE-MAPP retrieval
algorithm framework, but in particular focus on its description
and performance for clear-sky and non-cloud-contaminated
scenes for both dust-free and dust-laden cases over the ocean.
The PACE-MAPP channels and uncertainty models that we use to
model the SPEXone and HARP2 polarimeters and OCI
hyperspectral sensor that form the PACE observing system are
described in Section 2. We summarize the PACE-MAPP retrieval
methodology framework in Section 3. The PACE-MAPP aerosol
model is described in Section 4. We discuss the PACE-MAPP
ocean bio-optical models, and introduce the novel ocean bio-
optical model that includes look-up-tables of the inherent
optical properties of coated and uncoated hydrosol particles, in
Section 5. The development of the neural network forward model
is discussed in Section 6. The PACE-MAPP algorithm is validated
by performing retrievals on simulated PACE SPEXone and
HARP2 data over a large range of realistic aerosol and ocean
parameters in Section 7. Section 8 discusses plans for future
algorithm improvements, namely, the use of the advanced bio-
optical model that uses a mixture of coated and uncoated spherical
hydrosol particles to model waters from very clear blue waters to
turbid coastal waters, and the simultaneous detection and
characterization of thin cloud contamination. We summarize
the PACE-MAPP algorithm in Section 9.

2 PACE hyperspectral radiometer and
polarimeter instruments

PACE is expected to launch in 2024 into a sun-synchronous polar
orbit at 675 km with 98° inclination and a local equatorial crossing
around 1 p.m., similar to the A-Train overflight time. The PACE
satellite will carry three instruments: one hyperspectral UV-VIS-NIR-
SWIR radiometer (OCI) and two polarimeters (SPEXone and
HARP2). The measurements from the three instruments will be
gridded to a common Level-1C (L1C) data format with 5.2 by
5.2 km ground-pixel resolution (Knobelspiesse et al., 2020). The
two polarimeters onboard PACE complement one another.
SPEXone has hyperspectral capability from the UV-VIS-NIR, and
has 5 viewing zenith angles (VZA). HARP2 has 10 VZA per channel,
except at 670 nm, which has hyperangular capability having 60 angles,
and can observe from the blue to the deep NIR at 873 nm. In order to
provide aerosol and ocean properties using both SPEXone and
HARP2, we selected the following 11 channels centered at the
wavelengths for use in PACE-MAPP: 556, 385, 396, 413, 441, 470,
533, 549, 669, 759, and 873 nm, where the wavelength of 556 nm is
listed first because it is used as our reference wavelength for aerosol and
cloud optical depth. We plan to augment these channels with the OCI
NIR/SWIR bands at 1,038, 1,615, 2,130, and 2,260 nm to help
constrain and determine coarse-mode sea salt and dust aerosol
properties. Additional OCI NIR/SWIR bands at 940, 1,250,
1,378 nm may be used to simultaneously retrieve water vapor
column amount and thin cirrus properties. The VZA are defined at
surface-level as per the PACE L1C data format. The instruments,
channels, and VZA used by PACE-MAPP are summarized in the first
3 columns of Table 1. The in-flight radiometric uncertainties of

SPEXone and HARP2 are expected to approach OCI’s radiometric
uncertainty. The polarimetric uncertainty in the degree of linear
polarization (DoLP) is expected to be better than 0.005. For the
purposes of this study, we modeled both SPEXone and HARP2 as
having a 2% Gaussian radiometric uncertainty, such that
measurements are expected follow a normal distribution and be
within 2% of the modeled value ~68% of the time. This 2% error
in the Stokes parameters is propagated to the DoLP, which results in
DoLP performance that can be larger than 0.005 when DoLP is large,
but closer to 0.5% when DoLP is small. We assume that all
measurements are independent, whereas the actual instrument
measurements are expected to be correlated. This error model has
been used previously and appears to work well in forecasting the real-
world performance of the RSP instrument together with retrievals
performed on synthetic data generated byMonte-Carlo-style sampling
of the aerosol and ocean parameters (Pena and Pal, 2009; Stamnes
et al., 2018b; Stamnes et al., 2021). An investigation of the impact of
measurement correlations on retrieval performance may be
undertaken once the measurement correlations of the instruments
are determined. The actual retrieval performance compared to the
uncertainties reported here depends on how well we can constrain the
aerosol and ocean models using a priori information, and how well we
can detect, correct, or simultaneously retrieve thin cirrus cloud
properties.

3 Retrieval methodology

PACE-MAPP is adapted from the automated and operational RSP
Microphysical Aerosol Properties from Polarimetry (RSP-MAPP)
retrieval algorithm (Stamnes et al., 2018b). RSP-MAPP was
developed for accurate retrieval of aerosol and ocean products for the
airborne NASA Goddard Institute for Space Studies Research Scanning
Polarimeter (Cairns et al., 1999). An overview of the PACE-MAPP
neural network models are depicted in Figure 1. An overview of the
PACE-MAPP pre-processing, optimal estimation, and post-processing
steps is depicted in Figure 2. The RSP-MAPP algorithm is an automated,
operational tool for retrieval of aerosol parameters over oceans that
provides aerosol and ocean products for airborne data. Archived data
products from RSP-MAPP are available from the following field
campaigns: (i) Two-Column Aerosol Project (TCAP, 2012); (ii)
Studies of Emissions and Atmospheric Composition, Clouds and
Climate Coupling by Regional Surveys (SEAC4RS, 2013); (iii) the
Ship-Aircraft Bio-Optical Research (SABOR, 2014); (iv) the North
Atlantic Aerosols and Marine Ecosystems Study (NAAMES,
2015–2017); (v) ObseRvations of Aerosols above CLouds and their
intEractionS (ORACLES, 2016–2018); (vi) Aerosol Characterization
from Polarimeter and Lidar (ACEPOL, 2017); (vii) the Cloud, Aerosol
and Monsoon Processes Philippines Experiment (CAMP2Ex, 2019),
and (viii) the Aerosol Cloud meTeorology Interactions oVer the
western ATlantic Experiment (ACTIVATE, 2020–2022).

3.1 Optimal estimation

TheMAPP algorithms use optimal estimation Rodgers (2000) to
iteratively find the solution beginning with a first guess to minimize
the following cost function:
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χ2 x( ) � Φ x( )data +Φ x( )prior
� 1
2

f − y( )TS−1ϵ f − y( ) + 1
2

x − xa( )TS−1a x − xa( ). (1)

The vector radiative transfer model is our forward model f, and
provides spectrometer-measured intensities that can be expressed as
the BRF RI using Eq. 2 and the polarimeter-measured DoLP defined
by Eq. 3. f is a function of the state vector x.

3.2 State vector

The state vector contains the aerosol and ocean parameters that
define a suitable atmosphere-ocean model for polarimeter
measurements y. The aerosol state vector is described in Section

4 and the ocean state vector is described in Section 5 and the full list
of state vector parameters are numbered in Table 2. The
measurements y can be either real measurements from PACE or
synthetic measurements generated by the forward model with noise
added. The first term in Eq. 1 may be called the data term since it
depends on residuals of the forward model and the measurement,
taking into account measurement error through the measurement
error covariance matrix Sϵ. The second a priori term is the departure
of the state vector x from the a priori state vector xa, with a priori
uncertainty provided by the a priori covariance matrix Sa. The prior
for each element in the state vector is the mean of the allowable
range, and the standard deviation of the uncertainty is also the mean
of the allowable range. The full details of the a priori state vector and
covariance matrices and the iteration procedure for the MAPP
algorithms are provided in Stamnes et al. (2018b).

TABLE 1 PACE-MAPP instrument channels, viewing zenith angles, and per-channel performance of the vector radiative transfer model of the neural network. For
our study, we assume the 5 SPEXone VZA are 58.07°, 22.65°, 4.42°, −22.66°, −58.07°. For HARP2 we select either 10 or 60 VZAs depending on the channel, with the
assumption that they are evenly spaced between −57° and 57°. Channels from OCI will be included in the next version of PACE-MAPP.

Channel # of Instrument MAE RMSE

wavelength [nm] VZA RI DoLP RI DoLP

bimodal

556 5 SPEXone 0.00047 0.00044 0.00070 0.00062

385 5 SPEXone 0.00033 0.00040 0.00045 0.00054

396 5 SPEXone 0.00035 0.00039 0.00046 0.00053

413 5 SPEXone 0.00039 0.00040 0.00053 0.00054

441 10 HARP2 0.00041 0.00038 0.00055 0.00053

470 5 SPEXone 0.00033 0.00039 0.00048 0.00055

533 5 SPEXone 0.00034 0.00042 0.00053 0.00059

549 10 HARP2 0.00040 0.00043 0.00062 0.00060

669 60 HARP2 0.00048 0.00055 0.00074 0.00078

759 5 SPEXone 0.00052 0.00062 0.00083 0.00088

873 10 HARP2 0.00061 0.00078 0.00097 0.00106

trimodal

556 5 SPEXone 0.00049 0.00051 0.00072 0.00068

385 5 SPEXone 0.00031 0.00038 0.00043 0.00051

396 5 SPEXone 0.00031 0.00037 0.00043 0.00050

413 5 SPEXone 0.00040 0.00037 0.00054 0.00051

441 10 HARP2 0.00034 0.00040 0.00049 0.00054

470 5 SPEXone 0.00033 0.00043 0.00049 0.00059

533 5 SPEXone 0.00038 0.00048 0.00057 0.00065

549 10 HARP2 0.00044 0.00049 0.00067 0.00066

669 60 HARP2 0.00051 0.00059 0.00079 0.00081

759 5 SPEXone 0.00057 0.00065 0.00089 0.00090

873 10 HARP2 0.00068 0.00082 0.00105 0.00111

Frontiers in Remote Sensing frontiersin.org04

Stamnes et al. 10.3389/frsen.2023.1174672

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1174672


3.3 Forward model

The Earth’s coupled atmosphere-ocean system is fully defined by
the complete aerosol and ocean state vector, x. Once we additionally
specify the Solar Zenith Angle (SZA) and Relative Azimuth Angle
(RAA), a vector radiative transfer program computes the bidirectional
reflectance factors (BRFs) RI, RQ, and RU. The BRFs are defined as the
I, Q, and U Stokes parameters scaled to be unitless using:

RI � πI

μ0E0
unitless[ ], (2)

and likewise for the factors RQ and RU. The Stokes parameters I,Q,U
have units [W/m2/sr], the solar irradiance E0 has units [W/m2], μ0 is
the cosine of the SZA, and π has units [sr]. The DoLP is defined as

DoLP �
�������
R2
Q + R2

U

√
RI

. (3)

This mapping from the input state vector to the output BRF and
DoLP at the desired polarimeter channel wavelengths and viewing
zenith angles via the vector radiative transfer program represents
our forward model.

3.4 Optimal estimation inversion

In nonlinear optimal estimation, we minimize the cost function,
Eq. 1, through an iterative process whereby the state vector x is
changed until the resulting forward-modeled measurements f(x)

match the measurements y within their uncertainties, as outlined in
Figure 2. A transformation into b-space is used to smooth out
changes between the different state parameters that have different
units and ranges, which is similar to a transformation into log-space
(Stamnes et al., 2018b). The next step in the iteration is given
according to the following equation:

bi+1 � ba + Si f − y( ) + Kb bi − ba( )[ ] (4)
where bi, ba, and Kb represent in b-space the state vector at the ith
step, the a priori state vector, and the Jacobian matrix, respectively.
The iteration-dependent constraint matrix Si is given by:

Si � KT
bΛiS

−1
ϵ Kb + S1

−1
a( )+ (5)

where S1a is the a priori constraint matrix in b-space. The symbol +
denotes the pseudoinverse. The iteration-dependent damping factor

Λi � 1

a0 − a0−1
1+en0−i

(6)

has constants a0 = 1,000 and b0 = 8 that are determined empirically
such that the state vector converges to a solution in an efficient and
robust manner (Wu et al., 2017). In practice, we train a neural
network to provide the output for our forward model. We take finite
differences of this neural network forward model to compute the
Jacobian, which we can efficiently compute by consolidating all
inputs into a single call to TensorFlow per iteration as described in
Section 6.3. Otherwise a complete description of the equations used
in the optimal estimation inversion is given in Stamnes et al.
(2018b).

FIGURE 1
The MAPP framework is modular such that researchers can incorporate various neural networks with different aerosol, ocean and cloud models to
evaluate which models can provide the best fit to PACE measurements.

Frontiers in Remote Sensing frontiersin.org05

Stamnes et al. 10.3389/frsen.2023.1174672

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1174672


4 Aerosol model

The PACE-MAPP aerosol model is either bimodal or trimodal,
and thus consists of two (or three) lognormal size distributions that
are externally mixed: (i) fine-mode particles are assumed to be
spherical, and the fine-mode refractive index is retrieved as
independent of wavelength; (ii) coarse-mode sea salt particles are
also assumed to be spherical with a fixed complex refractive index
corresponding to non-absorbing hydrated sea salt particles; (iii)
optionally, for the trimodal aerosol model, non-spherical coarse-
mode dust particles are also included. The optical depths of the fine-
mode and coarse-mode sea salt are retrieved at the reference
wavelength of 556 nm. The fine-mode and coarse-mode sea salt
particle effective radii and effective variances are retrieved. The fine-
mode real and imaginary refractive indices are also retrieved, the
latter of which accounts for aerosol absorption. In the trimodal
aerosol model, the free tropospheric layer (FTL) also contains a non-
spherical coarse-mode dust aerosol, which has two independent
parameters: the dust aerosol optical depth and the dust effective
radius. The dust effective variance is assumed to be the same as that

of the coarse-mode sea salt, and the spectral complex refractive
index of the dust aerosol is fixed according to climatology for the
Bahrain AERONET site in the Persian Gulf (Dubovik et al., 2002).
For the non-spherical shape of the dust, we assume that the dust is
spheroidal with an equiprobable aspect ratio, such that the particles
are as equally likely to be oblate as prolate. In the bimodal retrieval,
we assume that the real refractive index of sea salt is fixed to a value
1% larger than water, or 1.346 at 556 nm. In the trimodal aerosol
retrieval, the sea salt coarse-mode real refractive index is also
allowed to vary from that of water for a minimum of ~1.333 at
556 nm, to a maximum value of 2.5% larger or ~1.366 at 556 nm.

4.1 Aerosol location

In terms of location, we use a unique structure that places the
aerosols in a two-layer system comprised of a marine boundary layer

TABLE 2 PACE-MAPP solar-instrument geometry and state vector bounds.
Parameter labels f, c, and d denote fine-mode aerosol, coarse-mode sea salt
aerosol, and coarse-mode dust aerosol, respectively. τ556 is the optical depth at
the wavelength 556 nm. nr and ni are respectively the real and imaginary
refractive indices. rn is the median radius. σg is the size distribution width. The
wind speed v and Chla are as defined in Section 5. Values are randomly
selected from a uniform distribution. τ556 and Chla have half of their values
selected from a lognormal distribution. The numbered parameters comprise
the state vector. Parameters 1–11 are included in the bimodal aerosol ocean
retrieval. Parameters 1–14 are used in the trimodal aerosol retrieval.
Parameters 15–17 represent the thin cirrus model that will be added in the
next version of PACE-MAPP.

No. Parameter [Unit] Min Max

SZA [degrees] 0 60

RAA [degrees] 0 180

1 τ556f 1e-5 0.7

2 τ556c 1e-5 0.3

3 nrf 1.39 1.65

4 nif 1e-5 0.045

5 rnf [μm] 0.075 0.15

6 rnc [μm] 0.5 1.5

7 σgf ln(1.4) ln(2.01)

8 σgc ln(1.35) ln(2.01)

9 FTL base height [km] 1.01 7.0

10 v [m/s] 1.0 13.0

11 Chla [mg/m3] 0.01 9.0

reff,f [μm] 0.10 0.51

veff,f 0.12 0.62

reff,c [μm] 0.63 5.07

veff,c 0.09 0.62

12 nrc 1.333 1.366

13 rnd [μm] 0.6 1.5

14 τ556d 0 0.2

σgd ≡ σgc
reff,d [μm] 0.75 5.07

veff,d 0.09 0.62

15 τ556cld 0 0.5

16 reff,cld [μm] 10 60

17 veff,cld 0.02 0.2

FIGURE 2
PACE-MAPP flow chart of retrieval methodology including the
pre-processing, optimal estimation inversion, and post-processing
procedures.
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(MBL) and a FTL. Aerosols in the MBL are treated as an external
mixture of coarse-mode spherical sea salt and fine-mode aerosols to
represent mixing of continental aerosols including pollution and
smoke into the MBL. Based on the idea that the bulk of marine
aerosol particles is primarily confined to the MBL (Behrenfeld et al.,
2019), the FTL consists of spherical fine-mode aerosol particles, with
an option to be externally mixed with non-spherical dust particles.
We thus assume that the coarse-mode sea salt particles are located in
the marine boundary layer between the ocean surface and 0.5 km.
The fine-mode aerosol is mixed homogeneously between the surface
and 1 km, which is assumed to be the height of the marine boundary
layer (MBL). The fine-mode aerosol component is also present in the
FTL, which is located at the (retrieved) FTL base height and is
assumed to have a physical thickness of 1 km, with a location that
can vary between 1 and 8 km. For example, the FTL spans the range
of 4–5 km if the FTL base height is 4 km. The trimodal aerosol model
adds coarse-mode dust particles that are homogeneously externally
mixed with the fine-mode aerosol into the FTL. The fixed physical
thickness values that are used for the location of coarse-mode sea salt
aerosol (0–0.5 km), the location of the MBL (0–1.0 km) and physical
thickness of the FTL (1 km thick) are based on lidar observations
over the northern and southern Atlantic ocean, but different average
physical thickness heights can be used in different regions of the
world. Polarimeter observations are typically found to have a
retrieval uncertainty of ~1 km to aerosol layer height, and are
thus not expected to be extremely sensitive to the fixed physical
heights of the MBL and FTL compared to the optical depths of the
aerosol modes contained within the layers.

4.2 Aerosol state vector

The single-scattering properties of spherical particles are
obtained using the highly accurate and freely available Scale
Invariance Rule Aerosol Look-Up Table (SIR-A LUT)
(Chemyakin et al., 2021). The single-scattering properties of the
spheroidal dust particles are computed using the AERONET LUT
(Dubovik et al., 2006). The bimodal aerosol parameters included in
PACE-MAPP are listed in Table 2 as parameters 1–9. The trimodal
aerosol model adds one parameter to fine-tune the water-like real
refractive index of the sea salt aerosol (parameter 12), and two
parameters to describe coarse-mode dust, which are listed as
parameters 13–14. The state vector for our bimodal aerosol
model is thus

xbimodal aerosol � 〈τ556f rnf nrf nif
τ556c rnc σgf σgc zFTL〉, (7)

and the state vector for our trimodal aerosol model is

xtrimodal aerosol � 〈xbimodal aerosol nrc rnd τ556d〉. (8)

4.3 Aerosol model summary

This two-layer aerosol system, with up to three distinct aerosol
types with different complex refractive indices, provides a realistic
representation of aerosol types and location over the open ocean and
coastal areas based on goodness of fit to hyperangular polarimeter

measurements from 410 to 2,264 nm. The corresponding RSP
aerosol and ocean products are publicly available and archived
for TCAP, SABOR, NAAMES, ORACLES, CAMP2Ex, and
ACTIVATE airborne field campaigns (Stamnes et al., 2018b).
The accuracy of the aerosol location parameterization will
continue to be validated against aircraft HSRL lidar data since
aerosol location directly influences aerosol absorption retrieval
accuracy. For particle size, we prefer to use the effective radius
and variance since they can be used to describe any aerosol size
distribution. We note that PACE-MAPP assumes that the aerosol
size distributions are lognormal with a median radius and mode
width, and the analytic formulas for effective radius and variance are
described in Appendix A.

5 Ocean bio-optical model

PACE-MAPP will adapt two bio-optical models. In this study
we use a modified version of the DP-I (Detritus-Plankton)
polarized ocean bio-optical model that was originally created
for the NASA RSP and APS sensors (Chowdhary et al., 2006;
2012). The coated sphere model has recently been found to result
in much more realistic number concentrations for particles, while
still yielding realistic hemispherical backscatter values (Organelli
et al., 2018). Thus, in addition to this default chlorophyll-based
bio-optical model, in the future we plan to further build upon this
ocean model by creating a multi-parameter bio-optical model, in
which we will upgrade the plankton component from using
homogeneous spheres to coated spheres while incorporating
wavelength dependent Mie parameters for both the coated
sphere plankton and the homogeneous nonalgal particles, as
detailed in Section 8. The polarized ocean bio-optical model
will be organized as a stand-alone module (PACE-MAPP Module
1) that can be included in other vector radiative transfer codes as
part of the boundary condition for the ocean and will be made
available to all PACE as well as other interested researchers.
Additionally, look-up tables incorporating the full dynamic
ranges of Mie parameters for forward modeling of the
inherent optical properties for both coated and homogeneous
spheres have already been created and will also be made available.
The ocean module, together with a Cox-Munk model for ocean
surface roughness (Cox and Munk, 1954) and a Lambertian or
Fresnel reflectance correction for whitecaps (Koepke, 1984;
Frouin et al., 1996), will provide a complete and coupled
model for the ocean reflectance, which is numerically efficient
and accurate (targeting better than 1% accuracy for the top-of-
atmosphere (TOA) I, Q, and U Stokes parameters).PACE-MAPP
focuses on the most important first-order effects for the TOA total
and polarized radiances, namely, the elastic scattering and
absorption by particles in the ocean, and specifically the use of
a coated sphere model for phytoplankton. Second-order effects,
due to inelastic scattering sources like fluorescence and Raman
scattering, are ignored because their influence on the reflectance at
TOA is weak (Chowdhary et al., 2019). PACE-MAPP will
implement two ocean bio-optical models to represent the ocean
which is modeled as pure water with embedded particulate and
dissolved impurities. A one-parameter model for the global ocean
is chlorophyll-a-based using one parameter, and is based on the
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DP-I bio-optical model (Chowdhary et al., 2012), which will be
denoted as xbio-optical model = [Chla]. This one-parameter ocean bio-
optical model is suitable for the Earth’s global ocean and is partially
based on empirically-derived relationships for the spectral
dependence of the absorption of pigmented particles and the
hemispherical backscattering coefficient of the bulk population
of particles. A second multi-parameter bio-optical model will be
based on a new bio-optical model that we are developing to
connect the inherent optical properties of oceanic particles to
optical and microphysical properties using a database of coated
and uncoated hydrosol single-scattering properties, and will be
denoted by the state vector xbio-optical model = xbio-optical model,DP5.
This new multi-parameter model is expected to be suitable for
complex waters in which current assumptions about the spectral
absorption and scattering coefficients are either invalid, or do not
follow the empirical models assumed in our global ocean model.
PACE-MAPP also retrieves the roughness of the ocean surface,
which is modeled using a 1-dimensional Cox-Munk surface (Cox
and Munk, 1954). The ocean state vector is thus given by

xocean � 〈v xbio−opticalmodel〉 (9)
where v is the wind speed in m/s that determines the ocean surface
roughness1.

5.1 Ocean state vector

The PACE-MAPP one-parameter ocean bio-optical model is
described by the chlorophyll-a concentration (Chowdhary et al.,
2012; Stamnes et al., 2018b) so that the ocean state vector is given by

xocean � 〈v Chla[ ]〉 (10)
where [Chla] is the chlorophyll-a concentration in mg/m3. The
ocean parameters included in PACE-MAPP are listed in Table 2 as
parameters 10–11.

6 PACE-MAPP neural network forward
model

The PACE-MAPP neural network forward model is a dense,
fully-connected neural network that was trained using TensorFlow
2. Accurate vector radiative transfer codes are slow and
computationally intensive, particularly when performing high-
accuracy computations using a large number of streams as
needed for calculations that include scattering by large oceanic
particles or large ice crystal particles found in cirrus clouds. The
PACE-MAPP neural network forward model was created to
replace the need for online vector radiative transfer calculations
by leveraging the tremendous speed improvements achieved by
neural networks. The training uses a synthetic dataset (SD) that we
created by running a large number of forward model computations

with all state vector inputs randomized, where the state vector is
discussed in Section 6.1, the details of the neural network training
including the SD size are explained in Section 6.2, and a summary
of the neural network is provided in Section 6.4. Use of realistic
combinations of aerosol and water IOPs that occur in nature would
be useful for developing inverse neural networks that can map
from TOA radiances directly to the aerosol and ocean state vector.
It is also important to ensure that the combinations of water IOPs
from the bio-optical models are realistic, and to ensure that the
forward model provides a smooth transition from complex coastal
environments to simple open ocean environments, as discussed by
Fan et al. (2021).

6.1 PACE-MAPP state vector

The state vector of PACE-MAPP retrieval parameters is
defined as

x � 〈xaerosol xocean〉 (11)
where xaerosol is the bimodal (or trimodal) aerosol state vector defined in
Section 4 and xocean is the ocean state vector defined in Section 5.We
compute the factors RI, RQ, RU at 160 VZA from −65° to 65°, where the
negative VZA denotes viewing angles shifted by 180° in azimuth from
the positive VZA. The bounds with which the parameters are modeled
can be viewed in Table 2. The VZA are generated at 11 channels
centered at the 11 channels selected for PACE-MAPP as described in
Section 2.

6.2 PACE-MAPP neural network input/
output

The PACE-MAPP neural network accepts 14 input parameters
using the bimodal aerosol model, which we will refer to as the
bimodal PACE-MAPP neural network, or 17 input parameters using
the trimodal aerosol model, which we will refer to as the trimodal
PACE-MAPP neural network. We label these input parameters as
the neural network state vector:

xNN � 〈SZA RAA VZA x〉 (12)
where the cosines of the three solar-instrument observation
geometries (SZA, RAA, and VZA) are followed by the state
vector x. The PACE-MAPP neural network outputs RI and
DoLP for a given atmospheric-ocean state vector and solar-
instrument observation geometry. The bimodal PACE-MAPP
neural network model maps these 14 input parameters to
22 output values: RI and DoLP at 11 channels at a single
VZA. We randomly select 40 VZA between 0° and 65° for
every combination of SZA, RAA, and x. For training purposes
we note that VZA between 0° and −65°, where the negative value
indicates VZA that are viewed by changing the azimuth by 180°,
can be obtained by azimuthal symmetry from (180°+ RAA). Very
low surface roughness, which occurs rarely over the global ocean
but which leads to mirror-like reflection that results in extreme
reflectance values that can require additional training to capture,
was avoided by removing all cases where the wind speed is less
than 1 m/s. For training and validation purposes, the data are

1 Although we use “wind speed” as our retrieval parameter, strictly speaking
we are sensitive to and retrieve the variance of the probability distribution
of facet slopes, which is proportional to the wind speed through the
relation facet surface slope variance = 0.0015 + 0.00256v.
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split such that 85% of the data is used for training while the
remaining 15% is used for validation. This allocation leads to a
total of 45,495,680 samples for training and 8,848,320 samples
that can be used for validation. Since all of the input and output
parameters have different ranges of values, the neural network
may become biased to larger numbers. To prevent such biases, we
use min-max normalization to scale all values between 0 and 1,
defined as

v − vmin

vmax − vmin
(13)

where v is all of a variable’s data, vmin is the smallest value for v,
and vmax is the largest value for v. For the training set, the solar-
instrument observation geometries, x, and outputs (I and
DoLP) are all normalized independently. Using the same
normalization values from the training set, the solar-
instrument observation geometries and x are also normalized
on the validation set.

6.3 PACE-MAPP neural network forward
model performance

The performance of the bimodal PACE-MAPP neural network
forward model is depicted in Figure 3. The performance of the
neural network model for the trimodal aerosol model is similar, and
the RMSE and MAE for the both the bimodal and trimodal PACE-
MAPP neural network forward models are tabulated in Table 1. The
bimodal PACE-MAPP neural network is 25.8 MB in size. Table 3
summarizes how long it takes the bimodal PACE-MAPP neural
network to compute the I and DoLP for all 11 channels for
varying numbers of viewing zenith angles. The approximate speed
to run one forward model simulation for 125 VZA corresponding to
combined SPEXone andHARP2 observations is ~0.045 s. TensorFlow
2 can parallelize multiple inputs so that the performance does not
increase linearly. The performance of the neural network scales very
well as the number of samples increases. We take advantage of this
scaling by noting that we need to call the neural network model
multiple times per iteration to find solutions at multiple VZAs and to
compute the Jacobian required for optimal estimation retrieval by
taking finite differences. The Jacobian thus involves 12 forward model
calculations per iteration for the bimodal aerosol model. Since each
retrieval uses 20 iterations, there are a total of 12 × 20 = 240 neural
network forward model calls including the Jacobian computation.
However, by consolidating the calls at multiple angles and the finite
difference Jacobian computation into a single call for efficiency, this
results in only 20 separate TensorFlow calls per retrieval.

6.4 PACE-MAPP neural network summary

The PACE-MAPP neural network is trained using scientific
machine learning, which is distinguished from machine learning in
that it is trained to reproduce the results from a scientific model,
namely, a vector radiative transfer model. The PACE-MAPP neural
networkmaps from xNN to the outputRI andDoLP at 11 channels at a
single VZA.However, since we consolidate all the input VZAs and the
input perturbations for the Jacobian K into a single TensorFlow call,

we efficiently obtain the fullRI andDoLP at all requested channels and
all VZAs and the corresponding Jacobian K in one pass. The PACE-
MAPP neural network is fully connected with an architecture of 14 ×
1,024 × 1,024 × 1,024 × 22 and has three dense hidden layers that use
the ReLU activation function. For training, the adam optimizer is used
in relation to the mean_squared_error loss function. The learning rate
is kept fixed at a constant 10–5. Updates to the model are made in
batches of 200 samples at a time. Peak model performance for the
bimodal aerosol model is achieved after training for 285 epochs.

7 Results

A total of 120,000 simulated retrievals are performed by running the
PACE-MAPP forwardmodelwith input generatedMonte-Carlo-style on
samples taken from uniform random distributions for all 11 state
parameters using the ranges in Table 2. The solar-instrument
geometries are also randomly varied. The actual solar-instrument
geometries observed by PACE will not vary randomly, and will have
a seasonal dependence, but are not expected to significantly impact
aerosol retrieval performance over the ocean. Instrument noise is added
as described in Section 2.We select retrievals that have a normalized cost
function below 0.05 to represent cases that successfully converge. This
convergence filter results in a total of 92,426 successful bimodal cases for a
convergence rate of 77%. The resulting scatter-plot of truth vs. retrieved
state parameters is depicted in Figure 4 (bimodal) and Figure 5
(trimodal). The performance of the bimodal and trimodal aerosol and
ocean retrieval parameters are summarized in Table 4 and generally agree
with expectations for aerosol retrievals from the SPEXone instrument
(Hasekamp et al., 2019). Choosing the RMSE as an estimate of the 1σ
product uncertainty, we find that for bimodal aerosol scenes that we
expect to retrieve AOD to ~0.01, fine-mode AOD to ~0.02, and coarse-
mode AOD to ~0.01. The total aerosol single-scattering albedo
uncertainty at 556 nm, SSA556, is ~0.01. We expect to retrieve the
fine-mode effective radius to ~0.02 μm, the coarse-mode effective
radius to ~0.29 μm, and the fine- and coarse-mode effective variances
to ~0.06 and ~0.08, respectively.We expect to retrieve the fine-mode RRI

TABLE 3 PACE-MAPP neural network speed. The time, in seconds, to run the
bimodal PACE-MAPP neural 4network forward model for different numbers of
samples. One sample refers to computing the output corresponding to one
input neural network state vector using a single core. Prediction time refers to
the amount of time to call the TensorFlow 2 neural network. Denormalization
time refers to the amount of time to undo the min-max normalization.

Samples Time

Prediction Denormalization Total

1 0.038441 0.000018 0.038459

10 0.038747 0.000064 0.038811

100 0.042749 0.000079 0.042828

125 0.044491 0.000086 0.044577

1,000 0.081455 0.000190 0.081645

10,000 0.131687 0.001086 0.132774

100,000 1.068054 0.010267 1.078321

1,000,000 10.582140 0.131255 10.713396
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to ~0.03, and the IRI to ~0.004, corresponding to a fine-mode SSA556f

uncertainty of ~0.02. The FTL base height is retrieved to ~0.9 km. Surface
slope is retrieved to ~0.002 corresponding to a wind speed retrieved to
~0.7 m/s. Chla is retrieved to ~0.8 mg/m3. Note that these are modeled

estimates of the approximate retrieval performance using synthetic
measurements using the 11 channels that are sampled at the
combined 125 viewing angles we have selected in Table 1. The real-
world uncertainties for clear-sky PACE observations over the ocean

FIGURE 3
PACE-MAPP neural network forward model performance for I and DoLP using the bimodal aerosol model.
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without thin cirrus will depend on the instrument performance on-orbit,
forwardmodel errors, and the availability of suitable a priori information
that can be used to help constrain the retrieval. The average time to run
one simulated retrieval is ~4.5 s on a single core of an Intel Gold
6148 Skylake processor. Our objective for processing PACE L1C data
files is to enable low latency aerosol, cloud, and ocean product acquisition
with an average retrieval speed of ~1 s per L1C pixel.

8 Future perspectives

In this section we briefly discuss future planned upgrades. In
Section 8.1 we discuss the bio-optical model that uses coated and
uncoated hydrosol particles. We discuss the simultaneous retrieval of
aerosol and thin cirrus properties in Section 8.2. Other planned
upgrades include the use of OCI SWIR channels, some of which
must include a retrieval or correction for water vapor,

parameterization of the dust complex refractive index using
principal component analysis (Wu et al., 2015), increased absorption
due to brown carbon aerosol in the UV, deviations in the total pressure
thickness of the atmosphere which controls Rayleigh scattering, and the
window channel corrections for any minor attenuation due to
absorption by gaseous species such as water vapor, nitrogen dioxide,
ozone, methane and carbon dioxide.

8.1 Multi-parameter bio-optical model with
coated and uncoated hydrosol particles

The coated sphere model has recently been found to result in much
more realistic number concentrations for particles, while still yielding
realistic hemispherical backscatter values (Organelli et al., 2018). This
coated sphere model allows us to develop a biologically-founded
mechanistic representation of phytoplankton inherent optical

FIGURE 4
PACE-MAPP bimodal aerosol and ocean parameter retrieval performance. The top left corner of each scatter represents the following information:
r = R, m = MAE, d = RMSE, and s = STD.
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properties, where the coated sphere is modelled with a weakly refractive
cytoplasm core surrounded by a much more refractive shell of
photosynthetic pigments (Bernard et al., 2009). The incorporation of
a bio-optical model that includes coated spheres allows for investigations
into how the coated sphere model impacts the results for the aerosol and
ocean products compared to a bio-optical model that uses only
homogeneous spheres. Depigmented particles are another important
oceanic optical constituent that can often vary independently from the
chlorophyll-a concentration, particularly in coastal environments. The
PACE-MAPP multi-parameter ocean bio-optical model uses a mixture

of coated and uncoated hydrosol particles with a Junge particle size
distribution. Note that although these coated particles are still spherical
particles, rainbow-like features are significantly dampened between
scattering angles of 137–165° because the relative real refractive index
(RRI) is well below the 1.33 corresponding to cloud droplets in air. And
the integration over size is performed using a Junge size distribution that
covers over three orders of magnitude of radii values, smoothing out
oscillations. Depigmented particles aremodeled as uncoated spheres with
a radius range between 0.01 and 100 μm, a constant RRI, and an
exponentially decaying imaginary refractive index (IRI) with respect

FIGURE 5
PACE-MAPP trimodal aerosol and ocean parameter retrieval performance. The top left corner of each scatter represents the following information:
r = R, m = MAE, d = RMSE, and s = STD.
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to wavelength. Plankton are modeled as coated spheres with a radius
range between 0.15 and 100 μm, a fixed core volume ratio (85%), and a
weakly refractive core and a more refractive shell relative to that of water
(Chemyakin and Stamnes, 2023). Table 5 lists the input Lorenz-Mie
parameters covered by our coated and uncoated hydrosol LUTs. These
LUTs are expected to be valid across the entire UV-VIS-NIR spectral
range for PACE.

8.2 Simultaneous retrieval of thin cirrus
properties

Optically thin cirrus is an important issue since current
MODIS retrievals have demonstrated biases in aerosol optical
thickness due to contamination by thin cirrus clouds (Sun
et al., 2011). In fact, any retrieval in which the impact of cirrus
has not been carefully considered will likely have cirrus
contamination since detecting thin cirrus is difficult with
existing detection schemes due to confounding scattering and
absorption from aerosols and the surface (e.g., ocean and land).
The best way to retrieve thin cirrus properties over the ocean using
multi-spectral total and polarized radiance measurements may be
using a simultaneous retrieval along with the aerosol and ocean
components. Multi-angle polarimetry offers unique sensitivity to
thin cirrus as its spectral polarimetric signal differs substantially
from the aerosol signals (Sun et al., 2015). We plan to target
retrievals of aerosol and ocean properties together with thin cirrus
of optical depth 0.5 or less at 670 nm. The aerosol and ocean signal
will in general significantly weaken as the cirrus optical depth
increases, but also depends on the relative aerosol-to-cirrus
loading, the ocean surface roughness, and the ocean subsurface

TABLE 5 PACE-MAPP coated and uncoated hydrosol particle LUTs.

Parameter [Unit] Coated Hydrosol LUT Hydrosol LUT

Rmin [μm] 0.15 0.01

Rmax [μm] 100 100

Min λ (air) [μm] 0.355 0.355

Max λ (air, est.) [μm] 2.3 2.3

Num. of scatt. angles 123 123

Radii grid bins 650 650

Relative IRI (shell) 0 to 0.3 –

Relative IRI (core) 0 to 0.001 0 to 0.03

Relative RRI (shell) 1.05 to 1.24 –

Relative RRI (core) 1.02 1.02 to 1.24

Core-to-shell frac 0.85 1

LUT size [GB] 16 3

Software code scatnlay (Peña and Pal, 2009) spher.f (Mishchenko et al., 2002)

Software code validation scatnlay (Peña and Pal, 2009) BHMIE.f (Bohren and Huffman, 2008)

TABLE 4 Simulated PACE-MAPP aerosol and ocean retrieval performance for
the bimodal and trimodal aerosol models. Refer to Table 2 for symbol
descriptions.

Parameter [Unit] Bimodal Trimodal

MAE RMSE MAE RMSE

AOD556 or τ556 0.007 0.011 0.011 0.017

τ556f 0.009 0.017 0.014 0.024

τ556c 0.006 0.012 0.011 0.021

τ556d - - 0.010 0.017

SSA556 0.009 0.013 - -

SSA556f 0.012ι 0.017ι 0.015ι 0.022ι

reff,f [μm] 0.013ι 0.020ι 0.016ι 0.028ι

reff,c [μm] 0.145ξ 0.294ξ 0.212ξ 0.353ξ

reff,d - - 0.341ξ 0.512ξ

veff,f 0.05ι 0.06ι 0.06ι 0.08ι

veff,c 0.06ξ 0.08ξ 0.07ξ 0.10ξ

veff,d - - 0.083ξ 0.109ξ

nrf 0.019ι 0.028ι 0.023ι 0.032ι

nif 0.003ι 0.004ι 0.004ι 0.006ι

nrc scaling factor - - 0.005 0.006

FTL base height [km] 0.67ι 0.92ι 0.60ι 0.82ι

Chla [mg/m3] 0.41ζ 0.85ζ 0.38ζ 0.81ζ

v [m/s] 0.32 0.68 0.37 0.75

Surface slope variance 0.0008 0.0017 0.0009 0.0019

All uncertainty is specified for retrievals that have a normalized cost function below 0.05.
ζ[Chla] uncertainty is specified for τ556 ≤ 0.3.
ι[nrf, nif, FTL, base height, reff,f, veff,f, SSA556f] uncertainty is specified for τ556f ≥ 0.05.
ξ[reff,c, veff,c] uncertainty is specified for (τ556c ≥ 1

15τ556f) and (τ556c ≥ 0.02) and (τ556f ≤ 0.25).
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brightness. The three thin cirrus parameters that are expected to be
included in PACE-MAPP are listed in Table 2 as parameters
15–17.

9 Conclusion

We have described the development and preliminary
performance of PACE-MAPP which retrieves fine- and coarse-
mode optical and microphysical properties and the ocean
chlorophyll-a concentration and wind speed using both
polarimeters and OCI for the PACE mission. The PACE-
MAPP algorithm retrieves the following column-averaged
total, fine-mode, and coarse-mode ambient aerosol optical and
microphysical properties: aerosol optical depth, effective radius,
complex refractive index, and aerosol absorption or single-
scattering albedo using the total and/or polarized spectral
bands from 380–2,260 nm (Mishchenko et al., 2004;
Chowdhary et al., 2005; Stamnes et al., 2018b). The vector
radiative transfer model used in PACE-MAPP treats the ocean
surface roughness by using the wind speed to parameterize the
ocean surface facets and includes coupling to the ocean
subsurface parameterized by the chlorophyll-a concentration
(Chowdhary et al., 2006; 2012), and an upgraded multi-
parameter bio-optical model that will be used for coastal
waters which cannot be described adequately by a one-
parameter model. The PACE-MAPP aerosol LUTs and the
coated and uncoated hydrosol LUTs and bio-optical model
are available for free download and assessment by the
community. Future work will involve training neural
networks that include the complex ocean bio-optical model
for coastal zones, non-spherical coarse-mode dust aerosol and
thin cirrus clouds, and to compute the water-leaving radiance
using the retrieved aerosol-ocean state vector. One objective of
the improved bio-optical model is to allow for a smooth
transition from open ocean water to complex coastal
environments as described by Fan et al. (2021). In addition to
the performance on simulated data presented here, in the
future the PACE-MAPP retrieval algorithm can be tested with
airborne PACE-like data collected during the SABOR,
NAAMES, and ACEPOL campaigns, and the future
ACTIVATE dataset. Validation of the ocean retrieval
products from airborne RSP, SPEXairborne, and AirHARP
will be accomplished using ship-based in situ measurements
and collocated High Spectral Resolution Lidar (HSRL) (Hair
et al., 2008) ocean measurements. Validation of the aerosol
retrieval products will be accomplished via HSRL aerosol
measurements and AERONET station overpass comparisons.
The PACE-MAPP retrieval algorithm will be robust so that it

will have the capability to provide improved results for aerosol and
ocean products data as long as either SPEXone or HARP2 is
operational, by combining data from a single polarimeter with
the OCI SWIR channels, or using only data from both the
polarimeters without the OCI SWIR channels. PACE-MAPP is
extremely fast due to the incorporation of neural networks into its
framework, which is expected to make its products suitable for
low-latency applications such as weather forecasting and air
quality monitoring.
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Appendix A: Effective radius and
variance

Themedian radius andmode width are related to the effective radius
and variance through the following analytic formulas. For the fine (index
f) and coarse (index c) modes we can obtain the effective radius from

reff j � rn je
2.5σ2g j , j � f, c (14)

and the effective variance as

]eff j � eσ
2
g j − 1, (15)

where rn [μm] is the median radius in number-density space. The
median radius is defined as the radius above which there are as
many particles as there are particles with radii below rn. The term
σg is the size distribution width. For the total size distribution, the

effective radius is equal to three times the volume divided by the
surface concentration, and can also be written in terms of
moments of the size distribution as follows (Hansen and
Travis, 1974)

reff � 3

∑
j�f, c

Vj

∑
j�f, c

Sj
� m3

m2
, (16)

where Vj is the volume concentration [μm3/cm3] and Sj is the
surface-area concentration [μm2/cm3]. mk is the kth moment
defined by mk � ∫∞

0
rkn(r)dr. The total effective variance is

given in terms of moments by (Hansen and Travis, 1974)

]eff � m2 ·m4

m3( )2 − 1 � m4

reff ·m3
− 1. (17)
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