AUTHOR=Quinn Colin A. , Burns Patrick , Hakkenberg Christopher R. , Salas Leonardo , Pasch Bret , Goetz Scott J. , Clark Matthew L. TITLE=Soundscape components inform acoustic index patterns and refine estimates of bird species richness JOURNAL=Frontiers in Remote Sensing VOLUME=4 YEAR=2023 URL=https://www.frontiersin.org/journals/remote-sensing/articles/10.3389/frsen.2023.1156837 DOI=10.3389/frsen.2023.1156837 ISSN=2673-6187 ABSTRACT=
Ecoacoustic monitoring has proliferated as autonomous recording units (ARU) have become more accessible. ARUs provide a non-invasive, passive method to assess ecosystem dynamics related to vocalizing animal behavior and human activity. With the ever-increasing volume of acoustic data, the field has grappled with summarizing ecologically meaningful patterns in recordings. Almost 70 acoustic indices have been developed that offer summarized measurements of bioacoustic activity and ecosystem conditions. However, their systematic relationships to ecologically meaningful patterns in varying sonic conditions are inconsistent and lead to non-trivial interpretations. We used an acoustic dataset of over 725,000 min of recordings across 1,195 sites in Sonoma County, California, to evaluate the relationship between 15 established acoustic indices and sonic conditions summarized using five soundscape components classified using a convolutional neural network: anthropophony (anthropogenic sounds), biophony (biotic sounds), geophony (wind and rain), quiet (lack of emergent sound), and interference (ARU feedback). We used generalized additive models to assess acoustic indices and biophony as ecoacoustic indicators of avian diversity. Models that included soundscape components explained acoustic indices with varying degrees of performance (avg. adj-R2 = 0.61 ± 0.16;