AUTHOR=Windle Anna E. , Staver Lorie W. , Elmore Andrew J. , Scherer Stephanie , Keller Seth , Malmgren Ben , Silsbe Greg M. TITLE=Multi-temporal high-resolution marsh vegetation mapping using unoccupied aircraft system remote sensing and machine learning JOURNAL=Frontiers in Remote Sensing VOLUME=4 YEAR=2023 URL=https://www.frontiersin.org/journals/remote-sensing/articles/10.3389/frsen.2023.1140999 DOI=10.3389/frsen.2023.1140999 ISSN=2673-6187 ABSTRACT=
Coastal wetlands are among the most productive ecosystems in the world and provide important ecosystem services related to improved water quality, carbon sequestration, and biodiversity. In many locations, wetlands are threatened by coastal development and rising sea levels, prompting an era of tidal wetland restoration. The creation and restoration of tidal marshes necessitate the need for ecosystem monitoring. While satellite remote sensing is a valuable monitoring tool; the spatial and temporal resolution of imagery often places operational constraints, especially in small or spatially complex environments. Unoccupied aircraft systems (UAS) are an emerging remote sensing platform that collects data with flexible on-demand capabilities at much greater spatial resolution than sensors on aircraft and satellites, and resultant imagery can be readily rendered in three dimensions through Structure from Motion (SfM) photogrammetric processing. In this study, UAS data at 5 cm resolution was collected at an engineered wetland at Poplar Island, located in Chesapeake Bay, MD United States five times throughout 2019 to 2022. The wetland is dominated by two vegetation species: