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Coastal wetlands are among the most productive ecosystems in the world and
provide important ecosystem services related to improved water quality, carbon
sequestration, and biodiversity. In many locations, wetlands are threatened by
coastal development and rising sea levels, prompting an era of tidal wetland
restoration. The creation and restoration of tidal marshes necessitate the need for
ecosystem monitoring. While satellite remote sensing is a valuable monitoring
tool; the spatial and temporal resolution of imagery often places operational
constraints, especially in small or spatially complex environments. Unoccupied
aircraft systems (UAS) are an emerging remote sensing platform that collects data
with flexible on-demand capabilities at much greater spatial resolution than
sensors on aircraft and satellites, and resultant imagery can be readily rendered
in three dimensions through Structure from Motion (SfM) photogrammetric
processing. In this study, UAS data at 5 cm resolution was collected at an
engineered wetland at Poplar Island, located in Chesapeake Bay, MD
United States five times throughout 2019 to 2022. The wetland is dominated
by two vegetation species: Spartina alterniflora and Spartina patens that were
originally planted in 2005 in low and high marsh elevation zones respectively.
During each survey, UAS multispectral reflectance, canopy elevation, and texture
were derived and used as input into supervised random forest classification
models to classify species-specific marsh vegetation. Overall accuracy ranged
from 97% to 99%, with texture and canopy elevation variables being the most
important across all datasets. Random forest classifications were also applied to
down-sampled UAS data which resulted in a decline in classification accuracy as
spatial resolution decreased (pixels became larger), indicating the benefit of using
ultra-high resolution imagery to accurately and precisely distinguish between
wetland vegetation. High resolution vegetation classification maps were
compared to the 2005 as-built planting plans, demonstrating significant
changes in vegetation and potential instances of marsh migration. The amount
of vegetation change in the highmarsh zone positively correlated with interannual
variations in local sea level, suggesting a feedback between vegetation and tidal
inundation. This study demonstrates that UAS remote sensing has great potential
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to assist in large-scale estimates of vegetation changes and can improve
restoration monitoring success.
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Introduction

Coastal wetlands, existing at the nexus of land and water, are
among the most productive ecosystems in the world and provide a
suite of ecosystem services including the ability to sequester carbon,
improve water quality, protect coastal regions from storms, and
provide nursery grounds that support commercial fisheries (Barbier
et al., 2011). Close to sea-level, coastal wetlands are vulnerable to
anthropogenic and climate impacts; many of the world’s wetlands
have retreated due to land conversion and rising sea levels
(Pendleton et al., 2012; Kirwan and Megonigal, 2013). However,
important feedbacks between vegetation growth, water level and
geomorphology allow wetlands to persist under rising sea levels
(Feagin et al., 2010; Kirwan and Megonigal, 2013; Beckett et al.,
2016; Kirwan et al., 2016; Alizad et al., 2018; Schieder et al., 2018;
Flester and Blum, 2020). Long-termmonitoring elucidates emerging
vegetation and soil feedbacks, allowing marsh restoration and
management practitioners to better mitigate threats of sea level
rise and habitat loss.

Wetlands typically have a noticeable zonation of vegetation
controlled by physiological constraints and competitive
displacement due to physical stress, resource competition, and
nutrient availability (Bertness, 1991; Aerts, 1999; Emery et al.,
2001). For example, tidal flooding establishes a stress gradient
with soil anoxia, salinity, and water inundation decreasing
towards the terrestrial border of a marsh (Mendelssohn et al.,
1981). Low marsh vegetation, such as the cordgrass Spartina
alterniflora contain extensive aerenchyma for increased gas
exchange to persist in waterlogged environments (Bertness, 1991)
as well as deeper root profiles that provide higher stability in surging
water (Howes et al., 2010). In times of persistent tidal inundation
from higher rates of sea level rise, wetlands can adapt by vertically
accreting sediment; however, if accretion rates are low due to a lack
of sedimentation or carbon burial, marsh vegetation tends to shift
and migrate inland, a process known as marsh migration or
transgression (Feagin et al., 2010; Kirwan and Megonigal, 2013;
Enwright et al., 2016; Kirwan et al., 2016; Alizad et al., 2018; Schieder
et al., 2018). Globally, coastal wetlands are responding to sea level
rise and increased inundation by migrating upslope, leading to
substantial shifts in zonation, habitat loss, and pond expansion
(Feagin et al., 2010; Qi et al., 2020). Long term monitoring of marsh
vegetation can improve our understanding of how tidal wetlands
respond to sea level rise and assist in restoration management.

For decades, spectral and structural characteristics from high
resolution satellite and aircraft imagery have been used to monitor
and map spatially and temporally complex wetlands (Gross et al.,
1987; Klemas, 2013; Byrd et al., 2014; Evans et al., 2014; Lane et al.,
2014; Massetti et al., 2016; Liu et al., 2017; Qi et al., 2020). Using field
measurements for training and validation, vegetation classification
models are used to monitor large-scale marsh habitat over time
(Mahdavi et al., 2018). However, the spatial resolution of satellite

and airborne imagery, albeit very high (~1–30 m), can still result in a
large fraction of mixed pixels, leading to challenges in differentiating
between vegetation types. Distinguishing between marsh vegetation
species can also be challenging due to similar spectral signatures.
Artigas and Yang (2005); Artigas and Yang (2006) compared in situ
leaf-level hyperspectral reflectance of S. alterniflora and Spartina
patens and found no significant differences in most of the visible and
near-infrared (NIR) region. Some studies have demonstrated that
incorporating an image texture metric (i.e., the spatial variance of
image grayscale levels of one spectral band) can improve marsh
vegetation classifications by incorporating characteristic patchiness
and other structural features into the distinguishing features of each
vegetation type (Dronova et al., 2012; Lane et al., 2014). Additional
data layers such as elevation data from Light Detection and Ranging
(LiDAR) have also improved classification (Halls and Costin, 2016;
Qi et al., 2020). Some LiDAR-derived DEMs, however, tend to
overestimate the marsh platform elevation in marsh environments
due to an inability to penetrate dense canopies (Hladik and Alber,
2012; Elmore et al., 2016). Additionally, synthetic aperture radar
(SAR) imagery has also been successfully used for classifying and
mapping marsh vegetation, proving to be a useful method in dense
vegetation or with frequent cloud cover (Silva et al., 2010; Evans
et al., 2014). However, the spatial resolution of SAR imagery can still
lead to misclassifications of small-scale wetlands.

The emerging technology of unoccupied aircraft systems (UAS,
or drones) combined with Structure from Motion (SfM)
photogrammetry is a promising method for classifying and
assessing complex wetland habitats with high accuracy (Wan
et al., 2014; Kalacska et al., 2017; Doughty and Cavanaugh, 2019;
Durgan et al., 2020; Ridge and Johnston, 2020; Nardin et al., 2021).
UAS can provide ultra-high resolution (<5 cm) overlapping two-
dimensional (2D) images that SfM photogrammetry software can
then reconstruct into 2D orthomosaics and three-dimensional (3D)
point clouds (Westoby et al., 2012). UAS-SfM photogrammetry can
be a low-cost alternative to expensive high-resolution satellite or
occupied aircraft approaches to obtain 2D and 3D radiometric
measurements of an environment. The fusion of multispectral
UAS imagery and SfM-derived digital surface models (DSMs)
have been applied to monitor coastal morphology over time
(Seymour et al., 2018), improve species-specific wetland habitat
classifications (Gray et al., 2018), monitor marsh geomorphology
(Kalacska et al., 2017), and provide an estimate of vegetation height
(DiGiacomo et al., 2020).

Engineered ecosystems such as tidal marsh creation or
restoration and living shoreline placement are a means to
mitigate anthropogenic climate change by replacing or
conserving lost habitat (Duarte et al., 2013). These climate
mitigation tools are becoming increasingly prevalent but often
without a comprehensive understanding of the ecosystem due to
a lack of effective monitoring (Li et al., 2018). The on-demand
capabilities of UAS can be adopted in restoration efforts to improve
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site assessment and provide long-term, real-time monitoring (Ridge
and Johnston, 2020). The overarching objective of this study is to
develop novel methods to improve species-specific marsh vegetation
differentiation using high resolution UAS imagery and SfM
techniques to track marsh vegetation shifts. Specifically, this
study aims to 1) examine long term (17 years) and short term
(4 years) changes in vegetation species distribution in a restored
wetland, 2) determine the optimal time of year for high classification
accuracy of the dominant species, S. alterniflora and S. patens, and 3)
determine what variables are most important in marsh vegetation
classifications. The results of this study demonstrate that interannual
variability of marsh vegetation can be non-linear and long-term
monitoring is needed for an accurate understanding of marsh
dynamics and improved marsh restoration practices.

Methods

Study site

The Paul S. Sarbanes Ecosystem Restoration Project at Poplar
Island, located in mid-Chesapeake Bay, Maryland is a large-scale
habitat restoration site that receives dredged material from the
navigation channels approaching Baltimore Harbor. When
completed, 68 million cubic yards of dredged material will be
used to restore approximately 694 ha of tidal wetland, upland,
and open-water embayment habitat (USACE, 2020). Tidal
marshes are constructed following dredged material placement
in containment cells ranging in size from approximately
12–20 ha (Staver et al., 2020). Tidal exchange is established via

a tidal inlet in the exterior dike of each cell. The site has a mean
tidal range of 0.49 m (NOAA Tides and Currents, station ID
8571892) and surface salinity ranges from 8.89 to 16.13 ppt
(1985–2021, Station CB4.1E, Chesapeake Bay Program). The
present study focused on Cell 3D, a 13 ha marsh which was
developed in 2005. The marsh was planted with nursery grown S.
alterniflora in the low marsh zone and S. patens in the high marsh
zone, with a target of maintaining 85%–90% coverage (USACE,
2020; Figure 1).

UAS description

Multispectral UAS data was collected with a MicaSense
RedEdge-MX sensor (MicaSense, Seattle, Washington,
United States). The sensor is a 8.7 × 5.9 × 4.5 cm
multispectral camera capable of capturing five simultaneous
bands on the electromagnetic spectrum in 12 bit radiometric
resolution: blue (475 nm center, 32 nm full width half maximum,
FWHM), green (560 nm center, 27 nm FWHM), red (668 nm
center, 14 nm FWHM), red edge (717 nm center, 12 nm FWHM),
and NIR (842 nm center, 57 nm FWHM). The sensor was
mounted on a DJI Phantom 4 Pro UAS using a 3D-printed
mount that assured a nadir viewing angle while in flight. The
UAS also contains a downwelling light sensor (DLS) which
measures downwelling hemispherical irradiance in the same
spectral wavebands during in-flight image captures and
contains a calibrated magnetometer to provide heading and
orientation information which, when combined, corrects for
varying illumination conditions. The DLS was mounted above

FIGURE 1
Overview of the study site location. (A) Location of Poplar Island in the Chesapeake Bay, Maryland, United States (B) WorldView-2 satellite image
captured on 15 September 2020 of the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island with Cell 3D outlined in red (C) UAS RGB
composite of Cell 3D collected on 26 August 2020 overlaid with the as-built planting boundaries of high and lowmarsh in yellow and field validation data
used to train the random forest classification.
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the UAS to eliminate shading and collected incident light
centered at a 0° zenith angle.

UAS imagery and ground control point
collection

UAS data was collected over Cell 3D on five different dates
(21 November 2019, 26 August 2020, 16 April 2021, 22 June 2022,
and 7 November 2022) between 10:00a.m. and 2:00p.m. EST, with
tides ranging from 0.29 to 1.1 m, referenced to North American
Vertical Datum established in 1988 (NAVD88). A ~5 cm/pixel
ground sampling distance (GSD) was achieved by collecting
imagery at an average 76 m altitude above sea level with 70%
longitudinal and 80% latitudinal overlap using the flight planning
application Pix4Dcapture (Pix4D, Prilly, Switzerland). Six ground
control points (GCPs) were surveyed in the field with a real-time
kinematic global positioning system (RTK-GPS, Reach RS+, Emlid,
Hong Kong). Three of the GCPs were made from high-density
polyurethane black and white checkerboard tiles (0.0929 m2) and
situated on PVC pipes of differing lengths distributed around the
13 ha survey area (Supplementary Figure S1). The other three GCPs
were locations of permanent structures (e.g., corner of piers). Bundle
block adjustment results were strong across all datasets, with mean
reprojection errors of 0.11, 0.10, 0.12, 0.11, 0.13 pixels, respectively
and relative mean of geolocational accuracy was under 1 m in the
X,Y directions and under 1.5 m in the Z directions for each dataset.

UAS imagery was processed with Pix4D Mapper Pro SfM
photogrammetry software v4.6.4. GCP measurements were
incorporated into the image processing in the software program by
partial automation to georectify all UAS surveys to achieve the greatest
positional and vertical accuracy. Horizontal data were referenced to the
World Geodetic Datum 1984 (WGS 1984) Universal Transverse
Mercator (UTM) Zone 18N, and vertical data were referenced to
NAVD88. Reflectance values were obtained following the workflow
described in Assmann et al. (2018). In summary, the MicaSense sensor
collected radiance values which were stored as arbitrary digital numbers
(DNs). These values were used to obtain reflectance by combining
sensor and illumination information, as follows:

Reflectance = digital number/(radiometrically calibrated pixel
value * illumination).

Within the Pix4D radiometric calibration process, sensor metadata
parameters were used to apply several corrections such as correcting for
vignetting (pixels on the outside of images receive less light than those in
the center), compensating for dark current noise (sensitivity even when
no photons enter device), and correcting for spectral overlap, sensor
sensitivity, and image brightness (ISO, aperture, exposure time).
Illumination values from the DLS and values collected from the
calibrated reflectance panel were applied to the radiometrically
calibrated values to account for variation caused by differences in
ambient light due to weather and sun. This process outputs unitless
surface reflectance values, ranging from 0 to 1 (Assmann et al., 2018).

Blue, green, red, red edge, NIR reflectance orthomosaics were
produced as well as a normalized difference vegetation index
(NDVI) orthomosaic, calculated as the difference between NIR and
red reflectance divided by their sum. Orthorectified digital surface
models (DSMs) were also created by applying an inverse weighted
distance (IDW) interpolation from the 3D classified point cloud,

resulting in a GSD of 5 cm/pixel. Since the DSM is created from
the altitude of the highest point in the point cloud, the DSMs are
considered vegetation canopy models. Orthorectified digital terrain
models (DTMs) were also created by applying an IDW interpolation
to the lowest points; however, they were not used in this study since
values were highly correlated with the DSM elevations (r2 = 0.99) due to
a lack of bare earth elevation points in the point cloud from dense
vegetation (see Supplementary Material and Supplementary Figure S2).
The reflectance orthomosaics and DSMs were transferred to ArcGIS
Pro 2.4.0 mapping software (ESRI Inc. Redlands, CA, United States) for
geospatial analyses.

Field data collection

Field data were collected to use as a training dataset using a
range of methods. Field vegetation identification was collected at the
time of each UAS flight using a RTK GPS (6–10 points per dataset,
0.01 m average lateral root mean square error). Additional
vegetation identification points were collected throughout the
study period by wetland restoration partners and used as training
data for each respective flight. U.S. Fish and Wildlife Service
personnel collected sixteen vegetation identification data in
2019 and 2021 across four transects spanning high marsh and
low marsh vegetation; U.S. Army Corps of Engineers personnel
collected annual vegetation identification of one low and one high
marsh quadrat; and an ongoing vegetation biomass monitoring
study (Staver et al., 2020) provided annual vegetation
identification data in six high marsh and six low marsh locations.
Despite this extensive field collection effort, the size of the training
data was increased by 90%–95% through visual inspection of the
high resolution UAS imagery which was reinforced by known
identification of the field data. In total, habitat from 35 to
155 points (pixels) were identified for each class: S. alterniflora,
S. patens, structure (any human made material), shrub (vegetation
mainly on the surrounding dike), and water (Figure 1). For each
dataset, all field data points from the multiple sources were
randomly split into a training set (70%) to train a classification
model and a test set (30%) for assessing the prediction accuracy of
the models.

Multispectral reflectance spectra

For each UAS dataset, reflectance values from all bands were
extracted from the S. alterniflora and S. patens field training pixels to
calculate an average multispectral spectrum of each vegetation
species. These spectra were compared across seasons to
determine differences in vegetation reflectance. Additionally,
following methods of Artigas and Young (2006), the red-edge
first derivative, or slope, of reflectance at 668 and 717 nm was
measured to further separate the two vegetation species.

Texture analysis

Image texture was derived from gray-level co-occurrence
matrices (GLCM) (‘glcm’ package in R v 4.2.1). GLCM textural
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features are based on statistics which describe how often one gray
tone appears in a specified spatial relationship to another gray tone
which can reflect changes in uniformity, variation, and similarity in
different directions and intervals (Haralick et al., 1973; Wang et al.,
2018). Specifically, in this study the variance was chosen as the
texture metric which can be represented by this sum of squares
equation:

Variance � ∑
N

i�1
∑
N

j�1
i − μ( )2p i, j( )

Where N is the total number of gray levels in the image (NIR
reflectance is scaled to 32 levels), p(i,j) is the (i,j)-th entry of the
normalized GLCM, that is p(i,j) = P(i,j)/∑i,j P(i,j), where P(i,j) is the
(i,j)-th entry of the computed GLCM, and μ is the mean of the rows
and column sums of the GLCM. A high variance value stems from
increased variation of reflectance intensity in the pixel window and
is associated with jagged and rough textures, such as differing
vegetation heights of S. alterniflora, while a low variance value is
associated with smooth or fine textures such as the more planophile
leaf orientation of S. patens. Average texture metrics were calculated
over all directions (e.g., using shifts of 0°, 45°, 90°, and 135°) in a 43 ×
43 moving pixel window (2.15 × 2.15 m) using one high-contrast
band to lessen redundancy (NIR). The window size was chosen to
best represent the average size of vegetation, following the methods
of Feng et al. (2015).

Classification model generation

Random forest decision tree models (RandomForest package, R
v 4.2.1) were used for the marsh vegetation classifications. A random
forest model is an ensemble of classification and regression trees
(CARTs) fed by bootstrapped training data (Breiman, 2001; Belgiu
and Dragut, 2016). It has been used in numerous applications of
wetland classifications (Mutanga et al., 2012; Elmore et al., 2016;
Pricope et al., 2022) and has been shown to be a robust machine
learning classification algorithm that overcomes overfitting due to
the large number of decision trees (Breiman, 2001; Feng et al., 2015;
Belgiu and Dragut, 2016; Berhane et al., 2018). A random forest
implementation was generated for each UAS dataset by training
1,000 decision trees (ntree = 1,000) with an optimum number of
features (mtry) calculated using the ‘tuneRF’ function. Input into the
random forest consisted of reflectance from the five wavebands,
NDVI, elevation from the DSM, and texture (variance calculated
from GLCM).

Since training data was collected concurrently with each survey,
each classification was independently generated and validated against
each unique survey. Each random forest model was fitted to raster data
using the ‘predict’ function to produce a classified output for each
dataset. To remove some noise, a majority filter was applied that
replaced cells based on the majority of their eight contiguous
neighboring cells in a 3 × 3 pixel window. To assess the benefit of
including the structural components of elevation and texture, random
forest classifications were applied to just the five multispectral bands +
NDVI, the five multispectral bands + NDVI + texture, and the five
multispectral bands + NDVI + elevation. To assess the benefit of the
high resolution of the UAS imagery, random forest classifications were

applied to resampled UAS five bands at the following resolutions: 1.2,
2.4, 4, and 10 m.

Variable importance was measured using the Mean Decrease in
Accuracy (MDA) which represents how much removing each
variable reduces the accuracy of the model, also known as
permutation importance (Breiman, 2001). This is done by
computing the prediction error on the out-of-bag (OOB) portion
of the data before and after permutation, averaging the difference
over all trees, and normalizing by the standard deviation of the
differences. Classification performance was analyzed using three
different metrics. Overall accuracy expresses the percentage of map
area that has been correctly classified when compared to reference
data, calculated by dividing the total number of correctly classified
pixels by the total number of reference pixels (Story and Congalton,
1986). To assess how accuracy was distributed across individual
categories, Producer’s and User’s accuracy were calculated.
Producer’s accuracy is a performance measure of how well
reference pixels are classified in each class and is calculated by
dividing the number of correctly classified reference pixels in each
class by the number of reference pixels known to be of that class.
User’s accuracy is a performance measure of how well pixels
classified represent the true class and is calculated by dividing the
number of correctly classified pixels in each class by the total
number of pixels that were classified in that class. In brief,
Producer’s accuracy is a measure of omission error where pixels
that have not been correctly classified have been omitted from the
correct class and User’s accuracy is a measure of commission error
where pixels from the classified image do not represent that class on
the ground (Story and Congalton, 1986).

Calculating vegetation change

To study temporal vegetation change, the UAS classifications
were compared to the 2005 as-built boundaries where only S. patens
was planted upslope of the high marsh/low marsh boundary (high
marsh zone) and S. alterniflora was planted downslope of that
boundary (low marsh zone) (Figure 1). The UAS classified maps
were converted to a polygon and vegetation area (m2) was calculated
in the high marsh zone for each vegetation species across each
dataset.

Results

Spectral and structural observations of
marsh vegetation from UAS data

Average multispectral reflectance spectra demonstrates that S.
patens exhibits higher reflectance across all wavebands than S.
alterniflora, particularly in the longer wavebands (717 nm,
842 nm, Figure 2). The separation in the longer wavelengths is
more apparent in the November, August, and April datasets
compared to the June dataset, likely due to differences in
chlorophyll levels between the two vegetation species during
these seasons (Figure 2). Similarly, there are subtle peaks in the
green waveband (560 nm) for both species in the June and August
datasets while the spectra appear flatter across wavebands for the
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November and April datasets likely due to increased pigmentation
during the summer months.

Figure 3 depicts broad differences between canopy elevation,
NDVI, and red edge slope between species and seasons. Across all
seasons, canopy elevation derived from the DSM of S. alterniflora
and S. patens ranged from 0.03 m to 2.02 m and 0.12 to 2.56 m,
respectively. The average S. alterniflora canopy elevation was highest
in June (1.05 m), lowest in August (0.5 m) and the average S. patens
canopy elevation was highest in June (1.16 m) and lowest in
November (0.79 m and 0.85 m for 2019 and 2022, respectively).
S. alterniflora and S. patensNDVI values range from 0.08 to 0.91 and
0.14 to 0.93, respectively with June containing the highest average
NDVI for S. alterniflora (0.91) and August containing the highest
NDVI for S. patens (0.93). April contains the lowest NDVI value for
both species (0.08 and 0.14, respectively). Red edge slope is on
average higher for S. patens across all datasets ranging from 0.007 to
0.14 with the lowest values in April. Average red edge slope was
highest for both species in the August and June datasets (Figure 2).

Random forest classification

When applying all five UAS spectral bands, NDVI, texture,
and elevation to each random forest classification, overall
classification accuracy ranged from 97% to 99% across all
datasets, with a mean of 98% (Supplementary Table S1). S.
alterniflora user accuracy ranged from 95% to 100% with a
mean of 97%, and producer accuracy ranged from 94% to
100%, with a mean of 99%. S. patens user accuracy ranged
from 96% to 100% with a mean of 99% and producer accuracy
ranged from 96% to 100%, with a mean of 98% (Supplementary
Table S1). Overall, November 2019 produced the highest
classification accuracy while June 2022 produced the lowest
(Supplementary Table S1). This finding is also represented in
the November 2019 classification prediction map (Figure 4, Panel
H) which demonstrates the least amount of variation in
classification while the June prediction map (Figure 4, Panel
K) shows the most amount of variation.

FIGURE 2
Multispectral reflectance spectra averaged from all Spartina alterniflora (solid line) and Spartina patens (dashed line) field training points across (A)
November 2019 (orange) and November 2022 (red), (B) August 2020 (dark green), (C) April 2021 (brown), (D) June 2022 (light green). Error bars represent
standard deviation of reflectance at each band.

FIGURE 3
Boxplots of DSM canopy elevation (m) (yellow), NDVI (green), and the red edge slope (red) of Spartina alterniflora (dark hue) and Spartina patens (light
hue) for each dataset.
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Variable importance

Variable importance plots demonstrated that across all seasons,
canopy elevation was the most important variable in the accuracies
of the random forest classifications, except for April where texture
was the most important (Figure 5). Texture was the second most
important variable in November and August while red reflectance
was the second most important in June. Following canopy elevation
and texture, NDVI was the most important spectral variable in
November and April, likely due to high contrast in the red and NIR
bands from senescing vegetation. In August, the blue band was the
most important spectral variable and in June, the red and red edge
reflectance were the most important spectral variables which is the
narrow range (600–750 nm) where (Artigas and Yang, 2005; Artigas
and Yang, 2006) found separability in hyperspectral spectra of the

two species. The red edge reflectance was the least important
variable for November 2019, August, and April.

When excluding both texture and elevation from the
classification model, overall accuracy declined an average 4%.
When excluding just elevation, average overall accuracy declined
1%, and when excluding just texture, average overall accuracy stayed
the same (Figure 6). Average overall accuracy of classifications
applied to resampled UAS bands + NDVI were in general lower
than the original classification accuracy. Average overall accuracy
for 1.2, 2.4, and 4 m resolution were all 3% lower and the 10 m
resolution was 7% lower average overall accuracy (Figure 6). Across
all classification combinations, S. alterniflora user’s accuracy was the
lowest, followed by S. alterniflora producer’s accuracy,
demonstrating that S. alterniflora was more challenging to
classify (Figure 6).

FIGURE 4
(A) Aerial image (1 m) of Cell 3D taken in May 2007, (B–F) UAS red-green-blue (RGB) reflectance orthomosaics (0.05 m) of Cell 3D collected in (B)
November 2019, (C) August 2020, (D) April 2021, (E) June 2022, and (F)November 2022, (G)Classifiedmap according to the 2005 as-build planting (H–L)
Random forest classification prediction maps for each UAS orthomosaic shown in panels (B–F). Yellow lines on classified maps represent the 2005 as-
built planting boundaries of high and low marsh. White patch on Panel E is the result of the SfM software failing to stitch together images in that
location.
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Discussion

This study demonstrates how ultra-high resolution UAS remote
sensing can result in high classification accuracy allowing for fine scale
interannual wetland vegetation change monitoring. Supervised
classification models incorporated the synergy between UAS-derived
multispectral bands, canopy elevation, and texture to produce predicted
habitat classes that were validated with field data. Overall, producer’s
and user’s accuracy were evaluated between different combinations of
variables and with down sampled (coarser) UAS imagery. Results have
broad implications for improving remotely sensed vegetation
classifications of wetlands, but several aspects and caveats of this
study merit additional discussion.

Spectral and structural differentiation of S.
alterniflora and S. patens

Belonging to the same genus, S. alterniflora and S. patens are
easily distinguishable by the human eye, with S. alterniflora

dominating in the low marsh growing as a tall and straight grass
and S. patens dominating in the high marsh having a decumbent
growth habit, earning it the nickname “marsh hay” (Figure 7).
However, these species can be spectrally similar and oftentimes
indistinguishable from a 2D aerial view. Like most vascular
vegetation, Spartina spp. change color due to differences in light
absorption and reflection properties deriving from changes in
pigment concentrations throughout the growing season. In the
visible spectral region, high absorption of radiation in the blue
and red wavelengths is primarily due to the photosynthetic pigment,
chlorophyll a. Absorption is not quite as strong at green
wavelengths, which is why vegetation often appears green and
contains a small reflectance peak around 560 nm (Figure 2).
After the growing season (May–October), as both vegetation
species begin to senesce, other pigments such as the carotenoids,
xanthophylls, and anthocyanins also influence absorption properties
(Knipling, 1970). During this time, the Spartina species are more
easily distinguished, with S. alterniflora adopting a browner hue and
S. patens remaining greener, which was observable in the November
and April datasets (Figure 4).

In this study, reflectance was overall lower in the blue, green, and
red wavelengths (475, 560, 668 nm) compared to the red edge and NIR
wavelengths (717 & 842 nm, Figure 2), similar to findings of other
studies (Hardisky et al., 1983; Artigas and Yang, 2006; Kearney et al.,
2009). High reflectivity in the NIR across all seasons is due to the
internal cellular structure where radiation is scattered from interior
parts of a leaf such as themicrocavities and cellulose cell walls (Knipling,
1970). Peak NIR reflectance varies across different plant species;
therefore, the ratio or slope of red and NIR wavelengths is often
used for distinguishing different plant species (Knipling, 1970;
Artigas and Yang, 2005; Artigas and Yang, 2006; Kearney et al.,
2009; Mutanga et al., 2012). The ratio of red and NIR (NDVI) of S.
patens was consistently higher across all seasons, except for April and
June when the species appear spectrally similar during the growing
season (Figure 3). The red edge slope of S. patens was also consistently
higher than S. alterniflora, in contrast to other studies where a slightly
higher red edge slope was associated with S. alterniflora (Artigas and
Yang, 2006). The disparity between these two studies could be due to a
number of factors, including the difference between in situ and UAS-
derived reflectance, lighting conditions, or the time of year
measurements were collected. Both Spartina species produced a
similar spectral shape with a green reflectance peak apparent in the
August and June datasets, due to stronger absorption in the blue and red
wavelengths from higher chlorophyll a concentrations (Figure 2).
However, S. patens reflectance was overall higher in magnitude than
S. alterniflora, predominantly due to canopy geometry with the stems
and leaves of S. patens laying horizontally, increasing surface area
compared to upright canopy forms like S. alterniflora, with less
surface area to capture light (Bartlett, 1981).

Studies have demonstrated how the inclusion of structural
characteristics such as elevation can improve wetland vegetation
classification due to distinct differences in the vertical structure of
vegetation species (Maxa and Bolstad, 2009; Halls and Costin, 2016;
Samiappan et al., 2017; Pricope et al., 2022). Studies have traditionally
derived elevationmeasurements using airborne LiDARwhich performs
well in coastal environments like dunes (Mancini et al., 2013; Seymour
et al., 2018), but tends to overestimatemarsh “bare earth” elevations and
vegetation height due to an inability to penetrate dense vegetation

FIGURE 5
Variable importance plots calculated using the mean decrease
accuracy (MDA) from random forest classification models generated
independently for each dataset. MDA is a measure of the performance
of the model without each variable, where a higher value
indicates greater importance of that variable in predicting vegetation.

Frontiers in Remote Sensing frontiersin.org08

Windle et al. 10.3389/frsen.2023.1140999

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1140999


(Hladik and Alber, 2012). Many studies instead incorporate canopy
elevation, which is elevation of the highest point in the point cloud,
referenced to a vertical datum. Elevation from UAS-SfM produces
results similar to terrestrial LiDAR and RTK GPS measurements
(Mancini et al., 2013; Kalacska et al., 2017; Seymour et al., 2018),
but still tends to overestimate ‘bare earth’ elevation from a lack of bare
earth points in the SfM point cloud (Supplementary Figure S2,
DiGiacomo et al., 2020). In this study, the UAS-SfM DSMs were
applied in the classification models representing canopy elevation
which improved classification accuracy. Canopy elevation of S.
patens was higher than S. alterniflora across all seasons, except June
which could potentially be due to comparable vegetation heights
between the two species during the growing season.

While reflectance spectra can describe average spectral variations of
vegetation across bands, textural features can provide information
about the spatial distribution of spectral variations within a band
(Haralick et al., 1973). Incorporating textural features into wetland
classification is a common approach since spectrally similar vegetation
can exhibit distinguishable textural properties. Laba et al. (2010) and
Lane et al. (2014) demonstrated higher overall accuracy of coastal
wetland classification mapping when incorporating NIR derived
textural features in high resolution satellite imagery. Feng et al.
(2015) also showed improved overall accuracy results when
incorporating a texture analysis of 7 cm UAS imagery. The size of

the moving window upon which texture features are calculated is an
important consideration since a larger window can average distinct
vegetation species. It is recommended to choose a window size at the
optimal scale that represents the highest between-class variation and
lowest within-class variation, which should be in accordance with the
average size of vegetation at a study site (Feng et al., 2015).

Random forest model classification results

The classified outputs from each dataset contained high overall
accuracy with values ranging from 97% to 99% (Figure 6;
Supplementary Table S1). The November 2022 dataset had the
lowest overall accuracy (97%) stemming from low producer’s
accuracy for each class (80%–100%). Low producer’s accuracy is
equivalent to high omission errors, which indicates that confirmed
vegetation classes were not correctly predicted in the classified output.
In this dataset, the “structure” class (e.g., roads, docks) had the lowest
producer’s accuracy (80%), which could potentially be due to high glare
present in the imagery being misclassified as high reflecting structure.
The November 2022 imagery was collected the earliest of all flights (10:
00 local time); therefore, it is suggested to fly near solar noon to
eliminate misclassifications of glare. In contrast, the November
2019 dataset had the highest overall accuracy (99%) and producer’s

FIGURE 6
Bar plot of random forest classification accuracies (%) averaged across datasets when applied to various combinations of raster layers. OA = Overall
accuracy, UA = User’s accuracy, PA = Producer’s accuracy.

FIGURE 7
Field photos capturing spectral and structural differences between Spartina alterniflora and Spartina patens during the (A) fall and (B) summer
seasons.
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accuracy of S. alterniflora and S. patens (100%), likely due to the
significant contrasting spectral differences that appear after S.
alterniflora senescence. Producer’s accuracy of the “structure” class
was still low (80%), which could be misclassification of glare or bright
reflectance from bare Earth (such as in the habitat island, Figure 4).

One of the main objectives of this study included identifying which
variables were most important to make accurate predictions of wetland
vegetation. Variable importance differed between the random forest
models due to differences in the spectral and structural characteristics of
the marsh vegetation at the time of data collection. The overall high
MDA for the canopy elevation and texture variables indicates the
importance of these structural characteristics and the reduction in
accuracy of classification models lacking these variables (Figure 5).
Across all datasets except April, canopy elevation was the most
important variable with much higher MDA, similar to findings from
Pricope et al. (2022). In April, texture was slightly higher in importance
presumably due to structural differences at the end of winter; the
structure of S. patens is typically persistent while S. alterniflora tends to
shed leaves and decomposes. Similarly, texture was also high in
importance for the November and August datasets likely due to
considerable structural differences during and right after the growing
season. Across seasons, MDA was lowest for the visible bands,
demonstrating that using only visible bands can lead to lower
classification accuracy. NDVI and the NIR band were higher in
importance than the visible bands, due to distinct differences in NIR
reflection between the two species (Knipling, 1970).

The high spatial resolution of the UAS imagery (0.05 m) produced
higher classification accuracies than the down-sampled UAS imagery,
demonstrating that higher spatial detail is important for accurate marsh
vegetation classification (Figure 6). Overall accuracy decreased 3% when
down-sampling to 1.2, 2.4, and 4 m and 7% when down-sampling to
10 m. This was likely due to larger pixel sizes averaging two or more
classes, leading to misclassifications of the true habitat class.
Supplementary Figure S3 illustrates the differences in spatial
resolution between UAS and high-resolution WorldView 2 (2.4 m)
and 3 (1.2 m) imagery, demonstrating how vegetation classification
would be challenging and imprecise with coarser pixel sizes. Future
work should consider calculating a “Pareto Boundary,” a method that
quantitatively analyzes the influence of low-resolution bias. This concept
can provide insight into whether lower classification accuracy of a low
spatial resolution map is given by poor performance of the model or by
the low resolution of the remotely sensed data (Boschetti et al., 2004).

The classification accuracies from this study are comparable to
results from other UAS wetland vegetation classification studies
(Feng et al., 2015; Samiappan et al., 2017; Abeysinghe et al., 2019)
These studies, along with the present study, demonstrate that ultra-
high resolution data produced by a low-altitude UAS can improve
classification results and is a superior method to other remote
sensing platforms. To distinguish wetland vegetation with high
accuracy, it is recommended to collect data during the fall after
S. alterniflora has senesced to obtain more pronounced spectral and
structural differences between species at that time.

Marsh vegetation change at Poplar Island

Widespreadmarsh lateral migration has been observed alongmany
Mid-Atlantic wetlands, with rates ranging from 0.1 mm yr-1 to

6.78 m yr-1 (Flester & Blum, 2020; Molino et al., 2021). However,
these rates are not necessarily continuous and can be episodic with
high interannual variability, as shown in this study. From 2005 to
2022, the high marsh zone that was planted with 100% coverage of S.
patens, shifted to 45% S. patens coverage, indicating a significant
vegetation change and evidence of marsh migration (Figure 4).
From 2019 to 2022, interannual variability of high marsh S. patens
coverage estimated from the classification model ranged from 42%
to 56%. Interannual variation is common in tidal wetlands whose
vegetation tends to stabilize through feedbacks that vary with depth
and duration of tidal inundation (Kirwan and Megonigal, 2013).
Morris et al. (2002) found that the growth of S. alterniflora is
positively correlated with interannual variations in sea level.
Relative annual mean sea level at Poplar Island has gradually
increased since 1971 at an estimated rate of 3.9 mm yr-1 (NOAA
Station 8571892, NOAA Tides and Currents) (Kent, 2015). While our
UAS sample size is small (n = 4), the percentage of classified S.
alterniflora in the high marsh boundary appears to correlate with
annual mean sea level (r2 = 0.92), with a lag of about 1 year. This
finding suggests that S. alterniflora growth is influenced by water
levels the previous year; however, more data is needed to confirm this
potential lag in the vegetation response to water levels.

Marsh vegetation change can also be attributed to other factors
including nutrient enrichment. Studies have shown that increased
nutrient availability can change ratios of above and belowground
biomass (Darby and Turner, 2008), competitive interactions
(Bertness et al., 2002) and vertical accretion rates (Morris et al.,
2002), potentially altering vegetation zonation, community
composition, and resilience to sea level rise (Emery et al., 2001;
Morris et al., 2013). The dredged material used for tidal marsh
creation at Poplar Island is fine-grained and contains high levels of
nitrogen (Staver et al., 2020); therefore, it is possible that detected
vegetation changes are an indirect result of nutrient enrichment.
Furthermore, the small interannual differences in classified marsh
vegetation could be related to the classification accuracy of the
random forest model developed for each year. While overall
accuracy is high across all datasets, there is still potential for
misclassification of vegetation, leading to small discrepancies in
predicted vegetation coverage among years.

Benefits and caveats of UAS remote sensing
in marsh environments

UAS remote sensing is a low cost, rapid, and repeatable method
for collecting high resolution imagery that can be used to resolve fine
scale changes in coastal wetlands without significant disturbance of
the sensitive ecosystem (Joyce et al., 2019; Davis et al., 2022;
DiGiacomo et al., 2022). UAS provides flexibility in obtaining
imagery and can do so under optimal conditions which is useful
for smaller scale projects that may be limited in field monitoring
resources or projects where aircraft flights and access to satellite
imagery are beyond the scope or budget. Consumer grade UAS can
cover a relatively large area (13 ha in ~40 min), which will only
improve with advancements in battery life. For assessing larger
wetlands, fixed-wing UAS can cover larger areas due to increased
flight efficiency or UAS data can be used for training and validating
satellite-based classification models (Gray et al., 2018).
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As with any developing technology, there are some caveats
with UAS remote sensing that should be discussed. Operating a
UAS is highly dependent upon the legal restrictions governing an
area and can be prohibited in some areas. In the United States,
UAS pilots are required to be licensed (i.e., obtain a Federal
Aviation Administration (FAA) Part 107 remote pilot license)
and follow local, state, and federal regulations on UAS
operations. Furthermore, the cost-benefit of UAS technology
should also be considered. Currently, UAS pricing can range
from $500 (USD) for consumer-grade aircraft to $10K-$20K
(USD) for professional-grade aircraft and sensor packages,
with more advanced sensors (e.g., hyperspectral, LiDAR)
reaching $50K–$100K (USD). Additionally, the software
typically used for post processing (e.g., Pix4D, Agisoft
Metashape) can add additional costs on the order of $1K–$5K.
Computing power and storage is also a consideration since a large
number of images to be processed requires large amounts of
computer random access memory (RAM), large graphics
processing units (GPUs) and extensive storage (Morgan et al.,
2022).

UAS remote sensing in marsh environments also has its
specific challenges. Studies have shown that vegetated areas with
standing water and changing tide levels can interfere with the
radiance being collected by the UAS and alter vegetation indices
such as NDVI (Kearney et al., 2009; Doughty and Cavanaugh,
2019). Canopy structure can also influence classification results;
with changes in vegetation orientation or geometry (e.g.,
vegetation folding over from wind or water) altering canopy
optical properties and leading to errors in classifications
(Knipling, 1970).

There are also some caveats and considerations with the
classification approach used in this study. Other machine
learning classification algorithms exist such as support vector
machines, K-Nearest neighbors, or artificial neural networks
(Dronovo et al., 2012; Berhane et al., 2018; Morgan et al.,
2022) that could perform better or similar to the random
forest models applied in this study. Some studies have
evaluated various classification approaches and found random
forest outperforming others (Berhane et al., 2018) or concluded
that no single approach is consistently better and should be
matched to the research or management question (Dronova
et al., 2012). Some studies have also shown promising results
using an object-based image analysis (OBIA) of wetland
vegetation classification where images are segmented into
spectrally homogeneous “objects” or groups of pixels that can
be classified (Moffett and Gorelick, 2013; Dronova, 2015;
Durgan et al., 2020). OBIA approaches cannot be fully
automated and require user inputs to set segmentation and
scale settings, which depend on the type of vegetation being
classified and imagery resolution. Due to a range of wetland
vegetation sizes, it can be challenging to select optimal
segmentation settings for an entire wetland landscape, leading
to over-segmentation and under-segmentation errors (Liu and
Xia, 2010; Kim et al., 2011; Moffett and Gorelick, 2013). In
contrast, several studies have found pixel-based classifications
performing better than object-based approaches, demonstrating

the model being able to identify smaller patches of vegetation
(Abeysinghe et al., 2019).

Conclusion

This study demonstrates that high resolution UAS imagery is
an effective tool for detecting fine scale changes in the
distribution of wetland vegetation. The combination of
multispectral reflectance, texture, and canopy elevation derived
from UAS and SfM processing in a supervised random forest
classification model led to high overall accuracy as compared to
other studies. Results from the classification maps demonstrated
a shift in species distribution affecting 45% of the high marsh
zone over a ~17 years time frame; although recent distributions
(past 4 years) were more stable, suggesting temporary
equilibrium. The increased awareness of marsh habitat loss
has prompted an era of creation and restoration of coastal
wetlands to mitigate the effects of marsh habitat loss. Similar
to large scale experiments, restoration projects require clear
goals, monitoring, and adaptive management practices in
order to understand site specific relationships between coastal
wetlands and the surrounding environment (Zedler, 2000; Li
et al., 2018). For decades, satellite and aircraft remote sensing
have been used to assess and monitor coastal wetlands; however,
spatial resolution, satellite revisit times, and the high cost of
flying an aircraft can significantly limit the ability of managers to
accurately detect fine scale vegetation changes. This study
demonstrated that classification performance metrics are
similar when UAS imagery is down-sampled to 1–2 m; but
performance decreases with lower spatial resolution beyond
this point. Repeatable, on-demand, ultra-high resolution UAS
surveys can detect instances of vegetation change which can
ultimately be used as early warning signals of marsh habitat
loss and help identify areas for restoration efforts.
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