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A better understanding of how spatial distribution patterns in important primary
producers and ecosystem service providers such as macroalgae and coral are
affected by climate-change and human activity-related events can guide us in
anticipating future community and ecosystem response. In-person underwater
field surveys are essential in capturing fine and/or subtle details but are rarely
simple to orchestrate over large spatial scale (e.g., hundreds of km). In this work,
we develop an automated spectral classifier for detection and classification of
various macroalgae and coral species through a spectral response dataset
acquired in a controlled setting and via an underwater multispectral laser serial
imager. Transferable to underwater lidar detection and imaging methods, laser
line scanning is known to perform in various types of water in which normal
photography and/or video methods may be affected by water optical properties.
Using off the shelf components, we show how reflectance and fluorescence
responses can be useful in differentiating algal color groups and certain coral
genera. Results indicate that while macroalgae show many different genera and
species for which differentiation by their spectral response alone would be
difficult, it can be reduced to a three color-type/class spectral response
problem. Our results suggest that the three algal color groups may be
differentiated by their fluorescence response at 580 nm and 685 nm using
common 450 nm, 490 nm and 520 nm laser sources, and potentially a subset
of these spectral bands would show similar accuracy. There are however
classification errors between green and brown types, as they both depend on
Chl-a fluorescence response. Comparatively, corals are also very diverse in genera
and species, and reveal possible differentiable spectral responses between genera,
form (i.e., soft vs. hard), partly related to their emission in the 685 nm range and
other shorter wavelengths. Moreover, overlapping substrates and irregular edges
are shown to contribute to classification error. As macroalgae are represented
worldwide and share similar photopigment assemblages within respective color
classes, inter color-class differentiability would apply irrespective of their
provenance. The same principle applies to corals, where excitation-emission
characteristics should be unchanged from experimental response when
investigated in-situ.
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1 Introduction

With the acceleration of climate change related effects onmarine
ecosystems and coastal regions around the globe (He and Silliman,
2019), new developments in ocean coastal monitoring techniques
are essential in following these events and mitigating some of the
impacts. One of the main factors driving environmental changes is
the increase in average temperature worldwide, and regions such as
the Arctic are at the forefront (Box et al., 2019; Jansen et al., 2020).
Elsewhere, warm water coral bleaching events and associated coral
losses are also a well-known and documented example of the impact
of increasing temperatures in the marine environment (Hoegh-
Guldberg, 1999; Carricart-Ganivet et al., 2012). Another
consequence of increasing temperatures is the current trend of
decreasing sea ice cover in Arctic and Antarctic regions, which
has the potential for impact on many levels within the coastal
ecosystem. Where ice normally acts as a barrier for light
transmission to depths below, its loss can lead to an increase in
the underwater light field and positively impact primary production
in coastal ecosystems (Smale et al., 2013; Scherrer et al., 2018; Al-
Habahbeh et al., 2020). Conversely, the loss of nearshore ice by the
same ice-melt phenomenon can lead to coastal soil erosion by
increased wave/storm action (Mentaschi et al., 2018), as well as
glacier/iceshelf meltwater and sediment runoff (Hudson et al., 2014;
Jack Pan et al., 2019), both of which would normally reduce light
availability.

The combination of environmental factor effects makes it a
challenge to forecast impacts without adequate tools for maintaining
an up-to-date knowledge base of ecosystem dynamics. In this sense,
important ecosystem engineers and service providers that are
macroalgae/kelp (Bertocci et al., 2015; Krause-Jensen and Duarte,
2016; Teagle et al., 2017) and corals (Wild et al., 2011; Hoegh-
Guldberg et al., 2017) can necessarily benefit from increased
monitoring. Many kelp and other macroalgae have also long
been important in human food consumption, the making of
natural products and pharmaceutical applications and fertilizers
(see Lähteenmäki-Uutela et al., 2021 for a review) and corals for
similar applications besides consumption (Sang et al., 2019). In this
context, an understanding of stand and/or reef growth dynamics and
changing distributions (see Krause-Jensen et al., 2020) are key in
finding appropriate resource management methods to avoid or limit
overexploitation.

Coastal monitoring surveys using underwater photography and
video transects can normally provide valuable information on
benthic habitats. However, underwater substrates such as
macroalgae and coral have distinct responses to light (Haxo and
Blinks, 1950; Lüning and Dring, 1985; Kieleck et al., 2001; Eyal et al.,
2015), which also makes them suitable for other types of imaging
and detection methods that may provide additional but otherwise
hidden information. Photosynthetic and/or photo responsive
organisms such as these have evolved to exploiting visible light
energy within the PAR range (i.e., 350/400–700/800 nm) for their
metabolism (van den Hoek et al., 1995; Enríquez and Borowitzka,
2010; Suggett, 2010; Kirk, 2011; Lee, 2018) and typical available
underwater light field (Eyal et al., 2015). In turn, this allows their
study via fluorescence, but also reflectance and absorption as they
are light dependent. When found underwater (vs. exposed in the
intertidal), spectral response detection and imaging can be

challenging due to wavelength dependent absorption (Mobley,
1994b) and suspended particle/water scattering effects (Jonasz
and Fournier, 2007). In this context, both the illumination source
and optical sensors are subject to these effects and may lead to loss of
resolution and reduced signal intensity (i.e., Signal-to-Noise-Ratio),
but the latter can be considered for and still allow imaging, detection,
characterization, and classification in biological substrates in
appropriate conditions (Huot et al., 2022). Much work is also
being done towards creating or adapting bio-optical type models
and algorithms for optimizing remote sensing-type applications in
regions characterized by often complex coastal dynamics
(Churnside, 2015; Hieronymi et al., 2017; Mabit et al., 2022). The
information acquired can later be used to infer presence, abundance
and distribution in substrates of interest. Additionally, advanced
imaging and detection methods using lidar (e.g., fluorescence,
differential reflectance) may also provide 3D point clouds of
underwater substrates and eventually allow to estimate biomass.

Macroalgae color type differentiation has been studied
previously using reflectance measurements, either by multi- or
hyperspectral satellite (Oppelt, 2012), aerial (Dierssen et al., 2015;
Douay et al., 2022), or above-ground detection methods (Kutser
et al., 2006; Kotta et al., 2014; Chao Rodríguez et al., 2017; Olmedo-
Masat et al., 2020). While red macroalgae can easily be identified
close range (i.e., up to a few meters) in a mixed macroalgae color
setting via their distinct fluorescence in the 580 nm range, brown
and green macroalgae share the same chlorophyll-a (Chl-a)
fluorescence response at 685 nm and are more difficult to
differentiate solely at emission at 685 nm from the same light
source (Kieleck et al., 2001). They can however be differentiated
via reflectance in the 525–600 nm range (Chao Rodríguez et al.,
2017; Olmedo-Masat et al., 2020) but there is still some imprecision
in the process and is best done using additional observation “bands”.
Comparatively, corals also show various spectral responses to
excitation light (Mazel, 1995; 1997; Hochberg et al., 2004; Roth,
2014; Eyal et al., 2015; Ben-Zvi et al., 2021) which could also vary by
developmental stage (Yamashita et al., 2021). Additionally, four
main fluorescence bands are typically recognized and are
characteristic of most coral species, (Zawada and Mazel, 2014),
where variations in fluorescence output between these spectral
bands may allow a certain level of classification. Detection
methods relying on reflectance require an illumination source
capable of emitting within the proper wavelength range, such as
a white light or broad-spectrum lighting (e.g., sunlight), which can
be used in air without noticeable problems related to light
absorption, unlike in water. However, the use of indirect lighting
in water is subject to scattering and absorption, via the large volume
of water being illuminated, a situation which can be exacerbated in
often less than optically transparent coastal waters. While it is
possible to focus such broad-spectrum lighting to achieve a
narrower target substrate illumination beam, narrow-beam
focused laser imaging (or lidar) light sources are prone to give
much better resolution and overall imaging capabilities (Caimi and
Dalgleish, 2013), by the smaller illuminated water volume at any one
time and the potential for much greater energy density on a given
substrate of interest. Several in-situ methods have been used to
monitor/image coral, notably by special diver-operated underwater
camera (Treibitz et al., 2015), hyperspectral sensor (Chennu et al.,
2017) and single excitation wavelength multispectral fluorescence
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Lase-Line-Scan (LLS) imager (Mazel et al., 2003). These methods
eventually can provide data which can be analyzed in several ways,
either whole (i.e., images) or partially (e.g., image subsets, pixels).

Spectral response remote sensing survey data are regularly
analyzed by Machine Learning (ML) methods, where machine
learners allow classification of data and provide various accuracy
metrics. Methods such as Decision Tree (DT) (Breiman et al., 2017),
Support Vector Machine (SVM) (Pal and Mather, 2005), Random
Forest (RF) (Breiman, 2001) are applicable to multiple research
fields, and are often compared to one another within the same study
(Oppelt, 2012; Rossiter et al., 2020a; Rossiter et al., 2020b) (see
Maxwell et al., 2018 for a review of these). Additionally, substrate
recognition in coral images has also been done by Convolutional
Neural Networks (CNNs) (Beijbom et al., 2016) and used in
combination to ML (Chennu et al., 2017; Deglint et al., 2019).
Otherwise, many satellite, aerial or underwater based multispectral
or hyperspectral imaging methods are well suited to pixel-wise
segmentation and classification by the above machine learners, or
in combination with image validation datasets for data fusion.
Selection of the best ML classifier is often difficult in the sense
that one may perform better in one situation but less adequately in
another (Maxwell et al., 2018), hence the multi-learner or combined
approach.

To complement and improve upon current automated
underwater classification methods for coastal benthic flora and
sessile fauna, our work demonstrates the potential for
differentiating between different macroalgal color types and coral
under different imaging scenarios. Spectral responses generated by
way of multiple laser excitation and emission wavelength parameters
between macroalgae color classes, coral genera, coral species, coral
structure type and coral shape. These results are visualized prior to
classification as part of a process to identify different avenues to
accurate classification. Machine learning classifiers are thereafter
compared for accuracy in classifying spectral response by these
groups.

2 Materials and methods

2.1 Imaging process and data acquisition

The process of acquiring multispectral response image datasets
in macroalgae and coral was made possible using a prototype
multispectral laser serial imager in a wet lab environment (Huot
et al., 2022). The instrument uses 3 continuous-wave (CW) laser
diode emitters operating at 450 nm, 490 nm and 520 nm, and is
operated by successively scanning each laser and synchronously
imaging through separate optical grade viewports into/from a large
diameter experimental tank filled with seawater (approximatively
1.5 mW × 7.0 m L × 1.5 m H). Spectral response in macroalgae and
corals was generated by laser line-scanning a pre-determined size
area measuring approximately 90 cm × 90 cm, at 2.3 m underwater
distance, onto a vertically mounted mixed living benthic substrate
recreation (see Supplementary Figure S1; Supplementary Table S1
Species list). Water quality optical parameters during imaging
corresponded to values in the range of Jerlov 1A waters
(Solonenko and Mobley, 2015), following particulate filtration
and UV sterilization for a minimum of 24 h. During scanning,

reflected and emitted (i.e., fluorescence) light is recorded
sequentially by a highly sensitive photodetector
(photomultiplier – PMT) through a series of narrow wavelength
bandpass emission filters (i.e., 450 nm, 490 nm, 520 nm, 580 nm,
685 nm). These wavelengths correspond to laser source reflectance
wavelengths (i.e., 450 nm, 490 nm, 520 nm) and/or known
fluorescence emission bands in macroalgae and corals. Living
benthic substrates are selected for their healthy appearance
(i.e., wild collected macroalgae, cultivated coral fragments) and
kept attached to a fixed inert substratum inside the large
saltwater biophotonics experimental tank. Specimens were kept
in the stable temperature (i.e., local seawater temperature, current
and lighting) environment to ensure natural spectral response from
laser excitation. Image datasets were obtained for 5 consecutive days
at approximate 24-hour intervals.

Imaging was done manually, with one laser source activated at
a single time and emission filters used in increasing wavelength
sequence for each source. The different excitation and emission
wavelength combinations considered for multispectral analysis
were as follows: 1) 450 nm excitation + 450 nm reflectance,
488 nm, 520 nm, 580 nm and 685 nm emission; 2) 488 nm
excitation + 488 nm reflectance, 520 nm, 580 and 685 nm
emission; and 3) 520 nm excitation + 520 nm reflectance,
580 nm and 685 nm emission. Each image consists of the same
number of pixels (i.e., 1,000 × 1,000, 1,000,000 total) (Figures 1, 2).
The process of image acquisition generated a 12 layer multispectral
response layer stack, per imaging scenario. It is from this stack that
spectral response can be analyzed and compared for each imaged
pixel represented in this case by macroalgae, coral or artificial
substrate/background values. Acquired images initially showed a
typical detector optical effect, mainly a roll-off/vignetting of
luminance, where the PMT sensor is not receiving as much
incident light (i.e., photons) from the outer portions of its field-
of-view. Images were deemed adequately corrected when little or
no illumination gradient was present in the background values
between algal and coral substrate pixels (Figures 1, 2). The
correction was also verified on the technical target for which
the intensity gradient was all but eliminated. For spectral
response analysis, algal and coral pixels are first identified via
thresholding of the fluorescence intensity, and background non-
fluorescing pixels are excluded from analyses.

2.2 Image pixel segmentation

Macroalgae and coral pixel segmentation is done manually,
following the identification of fluorescent biological pixels versus
non-fluorescent background pixels. For macroalgae, the two
fluorescence response layers generated from 490 nm excitation
and 580 nm and 685 nm emission were used as a fluorescence
thresholding binary filter for their detection (in the macroalgae
only imaging test). Comparatively, spectral layers generated from
450 nm to 490 nm excitation and fluorescence emission at 490 nm,
520 nm and 685 nm were selected for identifying coral from the
second imaging scenario with macroalgae and coral (see Figures 1,
2). These response layers were chosen for their strong apparent
fluorescence intensity and to capture the variability in fluorescence
emitted between the various macroalgae and coral specimens. This
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FIGURE 1
Images recorded through spectral response of macroalgae from excitation at 450 nm and reflectance at (A) 450 nm, emission at (B–E) 490 nm,
520 nm, 580 nm 685 nm; excitation at 490 nm and reflectance at (F) 490 nm, emission at (G–I) 520 nm, 580 nm 685 nm; excitation at 520 nm and
reflectance at (J) 520 nm, emission at (K) through (L) 580 nm 685 nm. Images were modified for visual purposes only. Adapted from (Huot et al., 2022).

FIGURE 2
Images recorded through spectral response of macroalgae and coral species from excitation at 450 nm and reflectance at (A) 450 nm, emission at
(B–E) 490 nm, 520 nm, 580 nm 685 nm; excitation at 490 nm and reflectance at (F) 490 nm, emission at (G–I) 520 nm, 580 nm 685 nm; excitation at
520 nm and reflectance at (J) 520 nm, emission at (K) through (L) 580 nm 685 nm. Images were modified for visual purposes only. Adapted from (Huot
et al., 2022).
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optical filtration could in theory be done using other excitation
wavelengths (less so for fluorescence emission wavelengths) since
light absorption in these substrates covers a large portion of the PAR
spectrum.

Using the fluorescence signals as a binary pixel filter,
subsequent pixel segmentation of all spectral layers was
facilitated by programmed fluorescence thresholding and done
using QGIS v3.4 software (QGIS Development Team, 2020). This
method allowed precise pixel selection and subsequent
attribution of corresponding genus and species names, as well
as specimen identification (Figures 3A, B). Macroalgal and coral
substrates were more difficult to segment in areas of overlap
(i.e., more often macroalgae over coral), therefore these pixels
were eliminated from analyses when possible but a few mis-
segmented pixels remained. In the latter situation, a coral covered
by a macroalgae may emit fluorescence at a wavelength
characteristic for coral but may be reduced in intensity by the
covering algae. Additionally, a given pixel may show multiple
spectral response signals, which could increase spectral response
variability in mixed and intricate substrate scenarios and hinder
classification. A data processing and analysis flowchart explaining
the steps from raw data to classification analyses is represented in
Figure 4.

2.3 Classification

First, density plots (see Supplementary Figures S2, S3) were done
to describe pixel spectral response characteristics and their intensity
by substrate type. Following this visualization procedure,
explanatory variables were further examined for their
contribution to spectral discrimination for each imaging scenario
in Principal Components Analyses (PCAs) (R software “prcomp”
library).

Second, spectral classification was evaluated at the pixel level via
supervised ML methods to compare efficiency versus analysis level
complexity. Using R software (v. 4.0.3), “Caret” package, the first
used method was K-nearest neighbor classification (KNN). In this
method, each pixel’s spectral response characteristics (i.e., light
intensity values) are evaluated for its Euclidian distance to every
other pixel and corresponding set of spectral responses in the
dataset, using the following formula:

KNNdistance �
��������������������������������������������
x2 − x1( )2 + y2 − y1( )2 + z2 − z1( )2 + . . . n2 − n1( )22

√
(1)

where x2 will, for example, be the spectral response variable on a
pixel resulting from excitation at 490 nm and emission at 685 nm,
and x1 will represent the previous (or in this case, the initial) pixel

FIGURE 3
Result of segmentation of fluorescent pixels in scenarios with (A) macroalgae and (B) macroalgae + coral, each different algal and coral specimen
represented in different colors for visual purposes. Using fluorescence response as thresholding tool, pixels of fluorescent nature in substrates of interest
are differentiated from the non-fluorescing background.
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for the same variable. Y2 will be a second variable for the same pixel
as the x2 variable, such as another set of excitation and emission
parameters, and so on. KNN distance measurements are considered
in this manner and pixel groups generated based on these distance
measurement similarities. Pixel classification groupings are
generated by assembling or distancing pixels based on these
measurements, and classification verified using a subset of the data.

Secondly, the Decision Tree (DT) algorithm (Breiman et al.,
2017) (R software, “rpart”: Recursive Partitioning And Regression
Trees), allows selection of a single variable (i.e., decision node) from
a dataset (i.e., root node) at a time which separates the dataset into
two, creating either a terminal node (i.e., categorized data) or
additional decision node requiring another variable (i.e., decision
node) to split the dataset. This process is repeated several times while
the variable chosen at one time is always the one that explains the
best split with the remaining data. This process is done for a
predetermined number of variables, until the classification tree
reaches a classification result (i.e., leaf node). Each decision node
is the result of selection of a variable which presents the best

Information Gain (i.e., resulting in less entropy in the classified
data), or lower Gini Index (i.e., impurity index). One same variable
can be used more than once in this process.

Third, in its simplest application, Support Vector Machine (SVM)
(Pal and Mather, 2005), (R software, “caret” package) consists of a
method in which a line is placed within a 2D plot (or plane) in which the
data, organized spatially by similarity in their spectral response
characteristics in this case, is organized to best categorize the data.
This line is placed between the categorical data points in a way that
maximizes the distance/margin between the line and points/samples near
this separation boundary that presents certain difficulty in classification
(Vapnik, 1995). These points-to-line distances are the support vectors for
the line. In a more complex dataset consisting of multiple variables, the
analysis is made to use a Kernel method, in this case Non-linear Radial
Kernel, transforming the data to pass a hyperplane (versus a line, in 2D)
in attempt to classify/separate the categorical data in a way that
minimizes distances to the chosen support vectors.

Fourth, Random Forest (RF) (R software, “randomForest”
package) (Breiman, 2001) is a method where a predetermined

FIGURE 4
Flowchart showing steps from initial raw multispectral dataset to classification.
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number of DTs are run from the same training dataset. While all
variables can be selected at one point in DT analysis explained
previously, variables here are pre-selected randomly and data input
into each tree is taken at random, with replacement (i.e., Bagging, or
Bootstrap aggregation). Contrary to DT, RF allows a predetermined
number of randomly selected predictor variables to be chosen from
for each set of the DT nodes, thereby truly randomizing trees from
one another and evaluating the variability between DTs. These
procedures ensure a set of independently grown DTs and which
lead to classification predictions based on these repeated
classifications.

For additional details on machine leaning classifiers, the reader
is directed to specific works explaining these classification methods.
In all tested classifiers, 80:20 Train:Test datasets were used for model
creation and classification validation. To remove potential spatial
effects and correlation to the developed classification algorithms/
models, the validation datasets taken from the 2D image matrices
underwent an additional row order randomization step prior to
classification validation. Training parameters for all classifiers were:
control_parameters <- trainControl (method = “repeatedcv”,
number = 5, repeats = 5). Training parameters were the same for
all models. Effectively, the training dataset being tested is initially
divided into 5 equal parts and one part is used as training set and the
remaining into test dataset. The model cross-validation of these two
sets is repeated 5 times and the average of the error terms calculated.

Classification analysis models were performed on two main
datasets, the first with macroalgae only and the second macroalgae
and coral, but with macroalgae excluded using segmentation
information. These analyses were run while subtracting non-
fluorescing substrate pixels (206,442 macroalgal pixels/
1,000,000 total pixels) for the macroalgae only scenario, and
64,194 coral pixels for the coral scenario, to reduce processing
time. As stated previously, algal and coral types and species
identification were associated to the appropriate pixels, via
manual/visual (i.e., pixel selection) segmentation, for classification
prediction validations. Classification analyses’ model predictions,
including some analyses where an attempt is made to identify
macroalgae/coral from background pixels, were validated on the
manually segmented datasets.

3 Results

3.1 Density plots

Density plots were first done to validate our hypotheses on
favorable excitation-emission wavelength combinations for
discrimination via spectral response. Initial visualization of the
macroalgae only imaging scenario shows brown macroalgae with
a higher proportion of high reflectance pixel values than the green or
red macroalgae, especially at higher excitation wavelengths of
490 and 520 nm (Supplementary Figure S2). Second, red
macroalgae can be identified in their distinct strong fluorescence
response near 580 nm range, at all three excitation wavelengths
450 nm, 490 nm and 520 nm. Third, macroalgae did not show
significant fluorescence emission in the 520 nm range overall or
among different color classes, as expected by the literature, thereby
excluding this emission wavelength for macroalgae color class

differentiation. Fourth, green macroalgae have a stronger
fluorescence response at 685 nm than brown or red macroalgae,
but seemingly not at 520 nm excitation. The latter observations are
suggestive of a potential for stronger differentiation between greens
and browns by comparing emitted fluorescence at 685 nm from
excitation at 490 nm and 520 nm. From these results, the following
explanatory variables, each corresponding to an excitation-emission
reflectance or fluorescence pair, were chosen as a subset in
classification analyses: 450 nm–450 nm, 450 nm–580 nm,
450 nm–685 nm, 490 nm–490 nm, 490 nm–580 nm,
490 nm–685 nm and 520 nm–520 nm, 520 nm–580 nm,
520 nm–685 nm (9 variables).

Comparatively, spectral response in different coral genera
appears similar in terms of variability to the one observed
between different macroalgal color classes (Supplementary Figure
S3). Fluorescence response is observable at the same wavelengths as
macroalgae, and at lower wavelengths from lower excitation
wavelengths of 450 nm and 490 nm. Hence, the three additional
following excitation-emission fluorescence emission pairs are
included in coral genera classification models: 450 nm–490 nm,
450 nm–520 nm, 490 nm–520 nm, for a total of 12 variables
when added to those selected for the macroalgae classification
models. Additionally, the presence of coral fluorescence emission
at 520 nm from various excitation wavelengths could effectively be
used to differentiate between this substrate and macroalgae, as well
as fluorescence emission at 490 nm.

3.2 Principal component analyses

PCAs done on fluorescence-segmented macroalgal pixels reveal
in more detail how spectral response differs between algal color
groups using the previously selected excitation-emission pairs as
descriptor variables (Figure 5). As expected, green macroalgae show
stronger fluorescence at 685 nm from excitation at 450 and 490 nm,
whereas red macroalgae are unique in their strong fluorescence
response in the 580 nm region, from excitation at 490 and 520 nm
mostly, but also 450 nm. Brown macroalgae are more difficult to
discern from green macroalgae as both respond to excitation at
selected emission wavelengths. The former however appear to have
lower fluorescence response than greens at 685 nm. It is the
reflectance in brown macroalgae that is a potential differentiating
factor between these two algal color types, but there is noticeable
variability in this response for the algae subject to the imaging
process.

PCAs performed on coral genus, specifically excluding
macroalgae after pixel intensity thresholding at 520 nm
fluorescence emission from excitation at 490 nm, show some
differentiation between genera along with some variability
(Figure 6). Species/genera capable of emitting fluorescence at
685 nm, in this case soft corals of the genus Nephthea sp. and
Xenia umbellata, and less at other “non Chl-a associated” emission
wavelengths investigated, drive an important part of group
differentiation of corals in this scenario. Fluorescence emission at
490, 520 and 580 nm comparatively separate other genera/species
from these stronger Chl-a emitting ypes. Overall, PCA plots on coral
species/genera show a certain gradient in the fluorescence response
in 2-D with group overlap.
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An additional variable of interest is reflectance intensity from
450, 490 and 520 nm excitation, where high reflectance is apparent
in most hard coral specimens, and somewhat less for soft corals. Soft
corals are however attached to a hard and possibly more reflective
support substrate, thereby possibly showing low reflectivity and high
Chl-a induced fluorescence in the pixels with the soft coral tissue but
higher reflectivity and low Chl-a induced fluorescence in the pixels
where the coral support structure was located. As expected, no clear
relationship is observable between coral vertical structure and
fluorescence (i.e., erect or flat) (not shown), likely since vertical
structure is not a strict determinant of the fluorescence mechanism,
where both forms can show species of soft and hard corals. However,
soft corals chosen for this study appear to be somewhat
differentiable from hard corals (Figure 7), but this is most likely
since most soft corals in the chosen species emit more in the 685 nm
region from Chl-a fluorescence.

3.3 Classification

The first classification analysis considered was the DT analysis
for its relative simplicity and usefulness when evaluating optical

component selection, and possibly help reduce computational
requirements to classification. Each evaluation node considers
one spectral response descriptor, or “excitation-emission” pairing,
at a time. This allows identification of classification tool based on
hardware (i.e., binary, yes/no) versus more complex computational
means.

3.3.1 Fluorescence intensity thresholding and
Decision Tree for identifying fluorescent substrate
pixels

For macroalgae, results suggest a very high classification
efficiency towards identifying Chl-a fluorescent, macroalgal
components, from zero/low emitting background pixels via the
fluorescence response at 685 nm (i.e., Chl-a) and excitation at
490 nm (Supplementary Figure S4). This response can be used to
identify fluorescent substrates, in this case green and brown
macroalgae, from the surrounding background, if non-
fluorescent. Otherwise, red macroalgae can be identified by
emission at 580 nm, while green and brown macroalgae by their
stronger fluorescence at 685 nm, from excitation at 490 nm.
However, there is a misclassification rate of approximately 30%,
using these two/three classifying variables to differentiate brown

FIGURE 5
Principal Component Analysis plot for the macroalgae only scenario, (left) showing red, brown, and green macroalgal color groups, and (right), by
specimens (or individual fragments) per color class, are identified, by their different response (i.e., pixel intensity) in relation to various excitation (450, 490,
520 nm) and reflectance (450, 490, 520 nm) or emission (580, 685 nm) wavelengths. Confidence level of 95% for ellipses with full scan area of 1,000 ×
1,000 pixels.
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from green macroalgae, which appear to have similar spectral
response.

While many corals can emit fluorescence strongly in the
400–520 nm wavelength range, macroalgae show stronger
fluorescence emission in the 560 nm–700 nm range. This
difference by itself is not sufficient for separation of the two
substrate types since some corals can also emit fluorescence in
this range. However, differentiation of corals from macroalgae
seems efficient from reflectance comparison at 490 nm
(Supplementary Figure S5), and another DT analysis (not shown)
was done and shows differentiation of coral from macroalgae to be
fairly accurate using the single discrimination factor of fluorescence
at 520 nm, following excitation at 490 nm. This is also evident from
the image dataset (i.e., Figures 1, 2) presented in the Materials and
Methods section.

In an analysis where corals are pre-identified and grouped by
genera (e.g., from segmentation, result of fluorescence thresholding)
(i.e., not shown), there is a higher mis-classification rate than for
macroalgal color type classification. This would be partially the
result of there being many more coral types to differentiate by
spectral response to begin with, and possibly caused by the DT’s
classification algorithm which uses one spectral response variable/
descriptor at a time in a situation where spectral responses are

overlapping between genera and species more so than in between
macroalgae color class types. Logically, spectral response for
macroalgae within a same color class are likely to be very similar
as well since the photopigment compositions are known to be
uniform within a given color class. DT algorithm therefore
appears less suited for the analysis of this more complex coral
dataset where genera are considered separately.

For both macroalgae and coral classification, a few aspects of the
imaging process and data preparation methods may play a part in
this classification error. Notably, macroalgal/coral substrate of
different color class and/or genera structural/physical overlap in
adjacent pixels, leading to segmentation error and mixed spectral
response signals. Also, mismatch in pixel location between overlaid
spectral response layer images, due to slight wavelength-dependent
differences in refraction index on the outgoing laser beam and
reflected light or emitted fluorescence. Moreover, inter-pixel
intensity variability within the same macroalgal or coral
specimen could be influenced by pixel dimensions.

3.3.2 KNN, SVM and Random Forest learners
3.3.2.1 Classification—macroalgae

Because of the relative straightforwardness of discriminating coral
frommacroalgae on one or two spectral response band regions by DT

FIGURE 6
Principal Component Analysis plot for the macroalgae + coral imaging scenario, for whichmacroalgae image pixels were removed by fluorescence
thresholding and segmentation. Identified coral species/genera (left) and genus (right) are shown by their variability in spectral response, (i.e., pixel
intensity) in relation to variables consisting of the combination of one excitation (450, 490, 520 nm) and one reflectance (450, 490, 520 nm) or emission
(490, 520, 580, 685 nm) wavelength parameter. Confidence level of 95% for ellipses with full scan area of 1,000 × 1,000 pixels.
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algorithm, classification analyses in these two substrates are done
separately for subsequent machine learners. To begin, classification
results in macroalgae based on KNN, SVM and RF classifiers show
different efficiency between macroalgal color groups (Table 1).
Efficiency is high at 90%–96% for the more complex classifiers
SVM and RF, as well as KNN, whereas DT is showing higher rate
of misclassification, efficiency being at below 80% for all iterations
(macroalgae only, coral only, macroalgae + coral). While DT classifier
is useful in illustrating how the two main substrate groups can be
identified and by which important variables in the early classification
process, the remaining classifiers indicate strong potential when
considering a deeper level of classification. Only RF classification
results are shown in detail for brevity, as it appears to be best of
5 chosen classifiers to properly identify pre-segmented groups, by a

small margin, but with higher Kappa value (see Supplementary Table
S1). A confusion matrix (Figure 8) shows pixel classification numbers
for the testing dataset for each macroalgal color type.

FIGURE 7
Principal Component Analysis plot for the macroalgae + coral imaging scenario, for whichmacroalgae image pixels were removed by fluorescence
thresholding and segmentation. Corals are depicted as either hard or soft with genera/species identified in the latter, according to the variability in
spectral response (i.e., pixel intensity) in relation to variables consisting of the combination of one excitation (450, 490, 520 nm) and one reflectance (450,
490, 520 nm) or emission (490, 520, 580, 685 nm) wavelength parameter. Confidence level of 95% for ellipses with full scan area of 1,000 ×
1,000 pixels.

TABLE 1 NKK, SVM, DT and RF machine learner classification accuracy
comparison on macroalgal spectral response at 450 nm, 490 nm and 520 nm
excitation to 450 nm, 490 nm and 520 nm reflectance and 580 nm and 685 nm
fluorescence emission.

Machine learning classifier Accuracy
(mean)

Kappa
(mean)

K-nearest neighbor 0.9528 0.9277

Support Vector Machine 0.9574 0.9348

Decision Tree - single 0.8491 0.7698

Random Forest 0.9616 0.941

FIGURE 8
Confusion matrix—macroalgae classification between brown,
green and red color classes.
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Since red macroalgae formed a distinct group of clusters in the
macroalgae PCA plot, a separate Random Forest classification
analysis was subsequently run on the subset data to determine if
the two main species (Grateloupia sp. and Halymenia sp.) could be
differentiated in this context. Additionally, although there was some
overlap in the green and brown macroalgal PCA plot, a separate
Random Forest classification analysis was also done with the brown
macroalgae to attempt differentiation between the three species
present (Sargassum sp., Dictyota sp. and Padina sp.)). Separate
PCA plots are not shown but classification analyses show
“acceptable” results for the separate red (88% accuracy) and
brown (88% accuracy) groups, albeit some misclassification (in
red - class error: Grateloupia sp: 11.1%, Halymenia sp.: 11.9%))
(in brown - class error: Sargassum sp: 12.2%, Dictyota sp.: 4.87%,
Padina sp.: 24.9%) (see Supplementary Figures S6, S7 confusion
matrices for pixel sample numbers for each color group and
corresponding species).

3.4 Classification–coral

From a visual analysis of processed spectral response images
(i.e., Figure 2) and PCA grouping by spectral response (i.e., Figures
6, 7), certain coral genera/specimens indicated the possibility of
spectral response differentiation. Following the same analysis
structure as for macroalgae but the additional excitation and
emission wavelength channels, RF algorithm shows once again to
be accurate among classifiers (Table 2), along with SVM and
K-nearest neighbor with near 90% accuracy, in the current test
conditions. In an analysis excluding pixels where macroalgae or
background pixels were present, classification parameters suggest
good separability in coral genera studied (Supplementary Table S2).
These results suggest that the proposed Machine Learning
algorithms are appropriate in pixel-wise image spectral
classification in coral, as for macroalgae.

Compared prediction “accuracy” in the different classification
models, which is the percentage of correctly classified data values
among all data values subject to classification, “Kappa” (Cohen’s
Kappa) is the accuracy but normalized to the baseline of random
chance in the data. More specifically, it takes into consideration the
imbalance in the distribution of data within the categorical data:

Kappa � observed accuracy − expected accuracy

1 − expected accuracy

This is partially the case with the coral dataset, more specifically,
where pixel numbers range from just above 600 for some corals to
over 15,000 in others. Nonetheless, both accuracy and Kappa report
similar average model prediction values for both macroalgae and
coral. This result suggests that the unbalanced pixel ratio between
groups does not appear to affect classification, and a confusion
matrix shows these numbers (Figure 9). Overall, RF classification of
coral as grouped by genus showed noticeable separability. This is
especially the case for genus and or species that showed distinct
fluorescence emission patterns. For example, soft corals Xenia
sp. and Nephthea sp. emitting more so near 685 nm, as well as
for corals emitting fluorescence from excitation at 450 nm, but much
less at 490 nm (refer back to Figure 2).

4 Discussion

This study expands on previous work towards the detection and
classification of macroalgal and coral spectral response (Bates and
Craigie, 1988; Topinka et al., 1990; Kieleck et al., 2001; Baird et al.,
2006; den Haan et al., 2013; Gameiro et al., 2015; Sasano et al., 2016;
Huot et al., 2018).While near-field remote sensing reflectance (aerial
or underwater), and RGB imagery commonly can provide detection
and some level of differentiation between algal color classes and
coral types, we provide an insight into underwater laser imaging
biological substrate classification (e.g., Huot et al., 2022). In this
sense, effective underwater imaging, detection and, ultimately,
classification range are extended compared to these other
methods, making them suitable in a variety of environments and
situations and possibly adapted to lidar techniques. Specifically,
macroalgae and coral differentiability is evaluated in a controlled but
realistic simulated mixed-species benthic environment. Results
show significant differences in spectral responses for different
algal color groups, while certain coral genus and species show
various degrees of differentiation possible.

4.1 Identifying spectral response patterns in
macroalgae and corals

A strong Chl-a associated fluorescence response in green and
brown macroalgae near 685 nm emission is apparent as expected
and is a strong contributor to their respective clustering from red
macroalgae. Additionally, this response in greens appears relatively
stronger when using 450 and 490 nm excitation wavelengths than
for brown macroalgae. The fluorescence intensity disparity however
lessens at 520 nm excitation, indicative of an additional spectral
region that could be essential in more clear-cut differentiation
between green and brown types. This shared 685 nm emission
response in green and brown types is apparent in the partial
overlap of the 2D clusters. Our data also reveals that reds are
readily and as expected, identified from greens and browns by
the former’s strong response in the 580 nm wavelength range.
Meanwhile, reflectance is also important in differentiating
between selected algal types, appearing to be significant when
differentiating brown from green macroalgae. Density plots and
PCA clustering data highlights the importance of reflectance in
differentiating between algal color types. However, while PCA

TABLE 2 NKK, SVM, DT and RF machine learner classification accuracy
comparison on coral spectral response at 450 nm, 490 nm and 520 nm
excitation to 450 nm, 490 nm and 520 nm reflectance and 490 nm, 520 nm,
580 nm and 685 nm fluorescence emission.

Machine learning classifier Accuracy
(mean)

Kappa
(mean)

K-nearest neighbor 0.8894 0.8653

Support Vector Machine 0.8981 0.8758

Decision Tree - single 0.5569 0.4309

Random Forest 0.8902 0.8658
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cluster plots show strong degree of separability at 520 nm excitation,
it is not sufficient by itself to segregate the algal color classes into
well-defined clusters. There is however data suggesting it may
reverse past 520 nm and brown macroalgae may show a higher
532/473 nm, 532/490 nm, 532/450 nm ratio of fluorescence than
greens at 685 nm emission (Huot et al., 2018), and other studies have
observed this pattern as well for reflectance in air (Chao Rodríguez
et al., 2017; Olmedo-Masat et al., 2020).

Reflectance may be a useful feature for classification when
algal types of the same color class are present in the same
environment, but surface reflectivity and/or surface structures
differ, characteristics which are often co-related. This can be
described as surface albedo, when reflection angle is not
considered but only the ratio of reflected light vs. incident
light, but also BRDF (Bidirectional Reflectance Distribution
Function) which considers the angle at which the incoming
light is from as well as at which angles it is reflected. An
example of differences in reflectance values between substrates
could be between northern cold-temperate to arctic waters non-

kelp brown macroalgae (e.g., Desmarestia sp.) versus kelp (e.g.,
Saccharina latissima, Laminaria solidungula, Alaria esculenta).
Flatter surfaces of kelp are more likely to show increased
reflectivity by their characteristic specular surface (i.e., non-
Lambertian) than irregular or filamentous structure, such as
Desmarestia sp. (more Lambertian-like). Known fluorescence
reabsorption processes related to an overlap between
absorption and fluorescence emission in Chl-a photopigment,
occurring within more complex structured macroalgae such as
Desmarestia sp., likely give the species a particular spectral
reflectance and florescence signature to species with less
reabsorption occurring (e.g., uni-surfaced, compact cell-wall
structure) as in many kelp species (Huot et al., unpublished).
Other species showing additional structural complexity, such as
brown macroalgae Agarum clathratum, with its highly perforated
and characteristic “kelp-like” wavy smooth surface, could be
another case of a species somewhere within the spectrum of
highly reflecting and fluorescing (i.e., low reabsorption) and
low reflectance and high reabsorption/lowered fluorescence.

FIGURE 9
Confusion matrix—coral classification using Random Forest classifier.
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Also considered highly reflective, due to their mostly calcareous
nature, coralline algae were also observed on a few spot locations
over Sargassum sp. during imaging tests, but these calcareous
algae were not alive. Since they did not represent a sizeable
surface, they were automatically excluded from datasets as part
of higher valued outliers. However, when alive, their fluorescence
emission at possibly confounding wavelengths to macroalgae (e.g.,
reds) could possibly have been differentiated by the large
difference in reflectance. Similar analysis could be applied to
red coralline algae (e.g., Clathromorphum sp., Corallina sp.,
Lithothamnium sp.), largely found in cold-temperate and arctic
hard substrate sub-tidal environments, where brown macroalgae
and kelp, as well as red macroalgae can be abundant. This is an
example where prior knowledge of species potentially
encountered during a survey is essential in understanding
spectral response patterns and possible explanations in
similarities and differences. In the present study, although
fluorescence at 685 nm and reflectance can provide part of the
information leading to the differentiation of brown versus green
macroalgae, it is fluorescence at 580 nm and 685 nm wavelengths
that is useful at identifying red from green/brown macroalgae,
respectively, based on the random forest classification model
performance. Overall, classification variables/parameters
visualized in the initial PCA clustering analyses show the
evident differentiation potential in spectral responses of
macroalgae of differing color types.

On the other hand, the fluorescence spectral response in coral
of this study does not seem to allow classification using single
fluorescence response parameters as in algae (e.g., green vs. red at
580 nm) to differentiate between types. This can be due to a
higher resemblance in the photopigment and fluoroprotein
assemblages responsible for fluorescence and consequently,
similar fluorescence response signatures, when classification
parameters are considered one at a time. The exception is
with soft octocorals selected in this study which are showing
mostly Chl-a fluorescence response at 685 nm and less/none at
other wavelengths tested, the former being a response associated
to symbiotic dinoflagellate of the genus Symbiodinium (Schubert
et al., 2016). While this Chl-a characteristic fluorescence
response can also be present in some of symbiote-present
Scleractinian corals, the latter also respond at other lower
emission wavelengths by reaction from fluoroproteins (Alieva
et al., 2008). Discrimination for structure, soft versus hard, is also
observable to a certain extent, and can be explained by mostly
Chl-a fluorescence in soft octocorals corals versus multiple
fluorescence emission bands in Scleratinian corals. Species
observed in this study may of course not be present at the
same geographical locations, hence differentiation accuracy is
most likely dependent on whether there are species with
overlapping spectral response characteristics. Although it was
possible to perform classification of macroalgae and coral
simultaneously, we opted to identify/isolate coral image pixels
from macroalgae by coral’s fluorescence response at 520 nm,
which was present in species present in this study (except two
species at 685 nm). Other fluorescence filter wavelengths may
provide similar differentiation efficiency between these two
fluorescence capable organisms. Substrate, hence, pixel overlap
in images with both substrate types, would possibly have an

additional effect towards reducing classification prediction
accuracy since spectral response signature would be
additionally mixed.

4.2 Classifying identified spectral response
clusters by machine learning

Overall, chosen machine learners in this study can differentiate
with high accuracy both macroalgae color classes, as well as the
coral genera chosen for imaging. The 2D PCA visualization
analyses already had shown color-class clustering to a
reasonable degree in macroalgae, and to a lesser but still
present extent for some coral genera, especially along the
horizontal axis (or horizontal-diagonal axis). This visualization
technique also suggests some variability in spectral response
between specimens of the same species, or color class, and
should be taken into account. Naturally, the consideration for
higher dimensionality in the classification algorithms (i.e., SVMs),
and randomized, multi-step/node DTs within Random Forest
algorithm can identify the finer characteristic differences in
pixel spectral response “assemblages” or signatures between
macroalgal and coral specimens. This is characteristic of a few
other studies where SVM and Random Forest scored high in
accuracy among machine learner comparisons, albeit being
relatively simple in application and comprehension.

On a comparative and perspective note, Convolutional Neural
Networks (CNNs) and Deep Learning (DL) methods, are also valid
choices for automated image and object classification and
identification. Having access from thousands to hundreds of
thousands of images is however usually required for good
classification performance in complex images. In the context of
multispectral laser serial imaging, reflectance image stills of different
objects of interest could be isolated for an analysis appropriate
format. Co-acquired high resolution images would also provide the
same image classification potential and benefits. While our study did
not provide sufficient images due to the nature of the experimental
design (i.e., one scene without movement), image resolution shows
possibility in having a CNN or DL classification process running in
parallel to the machine learning fluorescence and reflectance
threshold classification process. Previous authors (Beijbom et al.,
2016) demonstrated promising use of a CNN to images acquired via
a prototype underwater imager (Treibitz et al., 2015), to annotate
and classify coral species to the genera/species level, using just a
small set of images. Their trained CNN showed excellent (i.e., 90%
+) and slightly greater accuracy than traditional machine learning
methods (e.g., SVM) on their own data. In comparison, our current
multispectral approach provides many optical channels from which
a CNN or DL network could be fed based on acquired image spectral
information as well as color, shape, edges, and other exploitable
features. It could effectively be combined to CNN and DL image
classification methodology similar to recently described work on
macroalgae (Mahmood et al., 2020; D’Archino et al., 2021) and coral
(Raphael et al., 2020). While the overall scale and tools used are
different, similar spectral response generation and CNN or DL
classification methods have been used to successfully image and
classify microalgae in flow cytometry conditions (Deglint et al.,
2019).
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4.3 Evaluating possible imaging-related
classification artefacts

In looking closer at the PCA plots of bothmacroalgae and corals,
the fact that some of the data points for different clusters are spread
out can represent variability in spectral response in these biological
substrates. This variability can also be due to a number of factors
related to imaging itself, such as 1) uneven detector response across
the image (i.e., needs proper correction and validation, as shown
earlier); 2) pixel size/resolution—fluorescence signal variability
between pixels of a same specimen); 3) segmentation errors
where pixels are attributed a class but are of another (e.g., coral
underneath algae); 4) coral attachment substrate. The 3rd factor,
pixel resolution, is a factor that can be adjusted during post-
processing and is important in ML classification accuracy (Caras
et al., 2017). Higher resolution has the potential to decrease
classification efficiency when inter-pixel signal variability is high
and individual substrate patch (e.g., one species) is much larger that
the image pixel.

Classification error causes can be summed as the following: 1)
overlapping spectral response characteristics, 2) more highly irregular
macroalgae border/contour, 3) slight misalignment between laser
beams of different color wavelength can cause error in predicting
substrate type at locations where substrate is irregular/complex in
contour, and 4) imaging platform movement during imaging (not the
case here). These problems could be alleviated through the following
methods in an improved system by 1) increasing the number of
excitation sources to attempt generation of more spectral responses
(i.e., fluorescence peaks). It becomes however increasingly difficult to
orchestrate the data acquisition process since it is still necessary to
differentiate between an emission from one excitation wavelength
versus that of another; 2) increasing the total number of independent
detectors and associated emission filters to generate more spectral
emission bands. Spectral response signatures composed of many data
points on the same “Fluorescence Intensity xWavelength (nm) curve”
could provide improved classification; 3) improving image contour
pixel data pre-processing to facilitate segmentation (e.g., averaging by
proximity analysis); 4) performing a more precise alignment of the
optical system to obtain optimally aligned light path for all excitation
sources; and 5) using an adequate Inertial Motion Unit (IMU) sensor
capable of recording movement of the imaging platform and allowing
2D and/or 3D positional corrections in the final data.

4.4 Perspective

In our study and in general, red macroalgae are more easily
identified from green and brown by fluorescence near 580 nm, while
the two latter groups show a somewhat similar fluorescence response
near 685 nm but greens responding more strongly. Methods to isolate
these two latter groups from one another may however not be as
straightforward as hoped, since laser wavelengths optimal for
differentiation may currently be difficult or impractical to come by
for underwater imaging. While 355 nm and 532 nm pulsed lasers can
provide excellent beam quality, power and pulse repetition rate (in
lidar), other lasers in the 400–500 nm range require a compromise
between pulse repetition rate (e.g., from CW to 10 kHz), power and
beam quality. Differential reflectance measurements may be

promising for better results in differentiating algal color types by
working with reflectance signatures through the simultaneous spectral
“interrogation” of two excitation wavelengths (Rehm et al. 2018). The
latter must be selected for optimizing the differentiability in
macroalgal responses, but can be limiting at the time of this
writing since pulsable lasers in the ranges of 450 nm–532 nm are
limited in power (e.g., 473 nm), except 532 nm (i.e., doubled Nd:
YAG). However, a pulsed 355 nm (i.e., tripled Nd:YAG) laser may
provide means to differentiate spectral response by these means and
be integrated to a 532 nm system. Continuous wave lasers could also
be used for this purpose, in tandem with pulsed lasers (lidar), the
former providing a better coverage of spectral excitation range in the
PAR spectral range for macroalgae and coral. Otherwise, our results
show that certain coral genera or species can also potentially be
differentiated by their fluorescence response. The spectral range from
which they may be differentiated by their fluorescence response is
larger than macroalgae (e.g., see Mazel, 1995) and could provide
multiple ways to differentiate groups based on their photoresponse. In
related context, ongoing research on underwater laser imaging
methods has in part been directed towards reducing the effects of
scattering within coastal environments, for example, via laser pulse
temporal modulation (Mullen et al., 2013) and experimenting with
synchronous scan and bistatic configurations (Caimi and Dalgleish,
2013) (and see review by Dalgleish et al., 2013). By such, the
multispectral reflectance and fluorescence detection, imaging and
classification methods presented in our work could eventually be
incorporated into one of these alternative laser imaging designs.

Spectral classification applied to underwater multispectral laser
serial imaging of macroalgae and coral is possible to a degree
through methods shown in our study. While other hyperspectral
imaging methods could increase the potential number of exploitable
spectral bands for spectral response signature characterization specific
to color types and some genera in corals, laser serial imaging methods
may offer better compromise relating to the effective distance to target
as well as for working in more highly scattering and absorptive waters.
This is a critical factor in developing imaging instruments for
deployment on autonomous platforms such as underwater AUVs,
where obstacle and hazard avoidance success should increase at
longer working distances. While laser emitter limitations relating to
wavelength, power and eventually the possibility to pulsate at high
frequency remain important factors in generation of spectral response,
due to biological constraints related to light absorption profile in
photosynthetic substrates, detector architecture may be built to
resemble hyperspectral sensors more closely. For example, one could
assemble amultisensory array using many narrowwavelength emission
filters for as many separate detectors. We may thus improve our
acquisition of color group or genera specific variations in spectral
response in differing biological substrates.

Since light travel in water depends on optical conditions, where
Inherent Optical Properties (IPOs) such as absorption and
scattering are function of wavelength, imaging range and
fluorescence detection can be greatly influenced by these factors.
While imaging conditions were done with success at 2.3 m and in
“clear” Jerlov IA type water, we estimate that some fluorescence
detection and imaging could have been extended (i.e., 3–5 m) in
equally clear waters based on water IOPs, and potentially greater
range with the use of lidar (pulse-gated laser line scan) (Dalgleish
et al., 2009). The range could be augmented by integrating higher
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power CW lasers, bringing additional light to the target substrates
(i.e., imaging via reflectance) and potentially generating a stronger
fluorescence response. This should be optimized, especially since
fluorescence emitted at higher wavelengths (e.g., from chlorophyll at
685 nm), used in detecting and classifying macroalgae and coral, will
be more likely absorbed when imaging at greater range (Jerlov, 1976;
Mobley, 1994b). These constraints place certain limitations on
fluorescence-based underwater imaging, to the benefit of
potentially acquiring higher resolution data while working at a
closer range. Further, while other detection and classification
methods relying on photo or video acquisition, or hyperspectral
acquisition, will also be limited in more turbid waters, CW or pulsed
laser imaging could provide an advantage.

To efficiently use the methods described in this work, prior
knowledge of study site specifics on target substrates should aid in
improving detection and classification success and allow a more
thorough understanding of the results. For example, since brown
macroalgae such as Arctic and cold-temperate kelp species
Saccharina latissima, Agarum clathratum, Alaria esculenta, and
other stand forming species across the globe (e.g., Australia,
New Zealand, California) very often occur in dense and often tall
(e.g., 1–5 m or more) monospecific stands, differentiation from
green macroalgae may not lead to lower classification accuracy
since the latter are generally more of understory or sub-canopy
occurrence. In this sense, greenmacroalgae would be under a canopy
of taller brown species. This type of information is often available in
the form of local knowledge, research centers and local dive shops.
Moreover, the detector design can include interchangeable filter
components for maximal adaptability in specific situations.
Additional sensor types such as still cameras, high-resolution
photos and video can be added as secondary imaging systems to
confirm detections and classification and used as additional
information layers for classification purposes using images in
CNNs and Deep Learning.
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