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Lidar profiling of the atmosphere provides information on existence of cloud and
aerosol layers and the height and structure of those layers. Knowledge of feature
boundaries is a key input to assimilation models. Moreover, identifying feature
boundaries withminimal latency is essential to impact operational assimilation and
real-time decision making. Using advanced convolution neural network
algorithms, we demonstrate real-time determination of atmospheric feature
boundaries using an airborne backscatter lidar. Results are shown to agree well
with traditional processing methods and are produced with higher horizontal
resolution than the traditional method. Demonstrated using airborne lidar, the
algorithms and process are extendable to real-time generation of data products
from a future spaceborne sensor.
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1 Introduction

One of the biggest strengths of lidar remote sensing is the inherent ability to provide
vertically resolved profiles of cloud and aerosol features. Concomitantly, the ability to
identify the height of an atmospheric feature (i.e., top/bottom of cloud or aerosol layer) is one
of the most basic and easily achieved results obtained from lidar. Accurate height
information is a critical and highly desired input parameter for atmospheric models
[Marchand and Ackerman, 2010; Kipling and Co-authors, 2016; O’Sullivan et al., 2020;
Krishnamurthy et al., 2021]. Using lidar, features can typically be resolved with vertical
resolution (10s m) that easily exceeds the needs of models. Determining existence of a feature
and feature height does not, to first order, require calibration or detailed retrieval methods
although historically data is calibrated and then a thresholding method is applied to
determine feature boundaries (as in, e.g., Yorks et al., 2011 or Hlavka et al., 2012).
Higher-order data products, such as calibrated backscatter, optical depth, or extinction,
are derived from lidar data by use of retrieval techniques (e.g., Klett, 1981) and ascribing a
feature type (e.g., classifying type of cloud or aerosol) to a feature does, typically, require use
of retrieval methods.

In the simplest form, determining feature heights is traditionally accomplished by
defining a threshold to separate signal from noise. Thresholding is, however, subject to a
degree of arbitrariness because the threshold has to be defined and, of course, as signal and
noise levels change the threshold can change. Setting the threshold too high will result in loss
of weaker signals and setting the threshold too low will allow noise to be claimed as features.
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Nevertheless, to-date the thresholding technique has persisted
simply because it is easy to understand and implement, even if it
does involve a degree of subjectiveness.

Assimilation of lidar vertical profiles can improve simulations of
aerosol transport, but improved accuracy and, more critically,
improved latency of lidar data products are required to
implement the assimilation operationally and inform decisions
during hazardous events. There are several operational or quasi-
operational aerosol transport and air quality models that are critical
tools for forecasting aerosol plume transport during hazardous
events (Benedetti and Co-authors 2018). Proper estimation of
aerosol vertical distributions remains a well-documented
weakness in these models, yet is a key component of simulating
transport (Janiskova et al., 2010; Zhang et al., 2011). Hughes et al
(2016) shows that experimentally assimilating height estimates from
space-based lidar into an aerosol transport model enabled more
accurate 4-D volcanic ash dispersion forecasts. Without the accurate
volcanic plume injection height provided by lidar, the placement of
the mass is assumed using trajectory analysis, resulting in large
uncertainties in the predictions. Operational global aerosol models
are not currently assimilating lidar vertical profiles because there are

no current space-based lidar sensors providing near-real-time
(NRT) data products necessary to support this application.
Additionally, lidar real-time data products are desired for
Department of Defense (DoD) applications and for real-time
decision-making by groups such as the Volcanic Ash Advisory
Centers (VAACs) and US Forest Service. The science-enabling
real-time data product capability presented in this paper meets
the needs of these user communities.

2 Real-time feature detection

Finding atmospheric features in lidar data normally begins by
subtracting undesired solar background noise. In traditional
analysis, background signal from a range below the level of the
Earth surface (i.e., thus guaranteed to be free of any laser-induced
signal) is averaged and subtracted from each measured profile.
While simple in concept and easy to implement, the resultant
data can still be noisy owing to low signal levels. Previous work
by Yorks et al (2021) described removal of residual background
noise, or “denoising,” using artificial intelligence/machine learning
(AI/ML) techniques as applied to spaceborne photon-counting lidar
data. That paper demonstrated a substantial improvement in both
number of layers detected and in horizontal resolution of the data
product when the AI/ML analysis was used, although it was
demonstrated using existing data sets. Work by Palm et al (2021)
applied AI/ML algorithms to existing spaceborne data, detecting
layer height and boundaries at greatly improved resolution. In this
work we apply AI/ML-based algorithms for real-time detection of
atmospheric features and determination of feature height during
instrument operation. Initial application and testing was conducted
using a high-altitude airborne lidar, but the extension to spaceborne
lidar should be immediately apparent.

Convolution Neural Network (CNN) algorithms to produce
real-time feature detection and layer height were developed and
tested using the long-standing airborne Cloud Physics Lidar (CPL;
McGill et al., 2002) instrument. Flying on the NASA ER-2 high-

FIGURE 1
Overview of CPL data collection, data interfaces, and Jetson TX2 processing flow. Owing to bandwidth limitations on the aircraft data network, only
one (of ten) CPL profiles per second is transmitted to the TX2 board.

TABLE 1 Parameters used for the CNN.

Input wavelength 532 nm

Training samples 1,343

Validation samples 236

Sample height (bins) 1024

Sample width (records) 512

Convolutional filters 32

Trainable parameters 8,635,809

Batch size 16

Loss function Jaccard
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altitude aircraft, the CPL operates at 5 kHz repetition rate with data
integrated to 10 Hz (corresponding to −20 m along-track horizontal
resolution at typical aircraft speed of −200 m/s). Thus, the native
resolution of CPL data is −20 m horizontal by 30 m vertical. The
CPL instrument transmits a serial data stream of one subsampled
data channel (normally 532 nm raw photon counts) that can be
downlinked from the aircraft to a ground computer during science
flights. Because the aircraft downlink only samples the data once per
second, a single 10 Hz profile is transmitted once every second.

For these tests, the CPL serial data stream (10 Hz data rate
subsampled at 1 Hz) was routed to a Nvidia Jetson TX2 board. In
simple terms, a Jetson TX2 is a processor with an operating system
(OS), so it functions like a normal computer. Designed for
embedded systems, the TX2 board has input connectors to
enable easy interface to the CPL serial real-time data feed. It has
RAMmemory on which code can be loaded that can be accessed and
run by the processor. A data profile is received, via serial input line,
from the CPL instrument. The Jetson also receives airplane
navigation data (for altitude/pitch/roll/yaw) that is used to adjust
the profile by calculating any altitude or pointing offset, which is
especially necessary when the airplane banks into turns. The Jetson
then applies the CNN to the accumulated CPL profiles (512 profiles)
and outputs a corresponding binary image where detected layers are
‘one’ and non-layers are “zero”. The CNN algorithm was loaded on
the Jetson board, and the resultant real-time data products were then

transmitted to the ground, once per second, during operation.
Figure 1 illustrates the overall flow of data collection and
processing and the steps involved.

A standard U-Net (Ronneberger et al., 2015) CNN was trained
for binary feature detection on the CPL real-time data stream. Being
two dimensional data (profiles of height by time), lidar data is well
suited to processing by a CNN. Although CPL data are collected at
10 Hz, the real-time serial output is subsampled at 1 Hz owing to
aircraft network limitations. Therefore, training data were sampled
to 1 Hz to mimic the aircraft real-time data stream. The standard
CPL layer detection product, produced at 5 s (~1 km) resolution,
was up-sampled back to 1 s to label the input signal (photon counts).
Each input and output sample pair were 512 records (or profiles)
horizontal by 1024 bins vertical. Extra bins are zero-padded since
1024 was the minimum power of two that accommodated the
full vertical extent. Additional details of the CNN are shown in
Table 1. Prior CPL data was used as training data (all CPL data is
freely available at https://cpl.gsfc.nasa.gov). There was one
training data set used, and its details are given in Table 1.
However, because some prior flights were highly biased towards
specific science targets (i.e., convective clouds or other specific
targets), the training data were curated to avoid excessive
frequencies of certain features and thereby create a better
statistical balance of features that may be observed on any given
flight. Although CPL data is high quality, standard definitions of

FIGURE 2
(A) CPL 532 nm attenuated backscatter profiles for 08 February 2022. (B) Result of layer detection using traditional method. (C) Result of real-time
layer detection using AI/ML method.
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‘quality’ do not apply as the CNN only operates on normalized
uncalibrated data.

The CPL raw photon count data (i.e., a profile of photon counts)
enters the Jetson TX2 board via a serial input line. Navigation data
from the aircraft is also fed into the Jetson TX2 board, and this
allows real-time correction for aircraft pointing in pitch-roll-yaw.

More importantly, it allows for vertical alignment of the profiles
based on the aircraft GPS altitude. The next step is to subtract solar
background signal from the profile. Given the relatively high signal-
to-noise (SNR) in the airborne data, background is simply
subtracted using an average value for the profile (not using the
advanced denoising method). Then data are scaled (so it is in the
same form as the training data) and input into the CNN feature
detection algorithm. To accommodate the expected sample size of
512 records, upon first receiving data the algorithm must wait to
accumulate 512 1-Hz profiles (8.53 min) of data. Afterward, the
CNN performs feature detection every time it receives a new profile,
which is notionally every second assuming no data dropouts. This
detection interval is adjustable but was selected to allow ample
margin for computation and downlink.

3 Initial results

The CPL instrument with the real-time data product capability
was flown in the Investigation of Microphysics and Precipitation for
Atlantic Coast-Threatening Snowstorms (IMPACTS) field
campaign during January-February 2022 (McMurdie et al., 2022).
Most flights were over thick convective cloud systems although
many scenes displayed complex multi-layered structure. Figure 2
shows an example of such a scene from 8 February 2022. The top
panel in Figure 2 shows the CPL 532 nm profiles of attenuated
backscatter coefficient. The 532 nm profiles are the data fed to the
Jetson TX2 board for real-time layer detection and height
determination. The second panel in Figure 2 shows the layer

FIGURE 3
Confusion matrix for 08 February 2022 example.

FIGURE 4
10-min data segment from near the end of Figure 2. Top panel shows the full raw data volume, with profiles saved at 10 Hz. Bottom panel shows the
subsampled data volume, where a single 10 Hz profile is transmitted each second. This is the data the AI/ML algorithm uses, at the native resolution
(i.e., no averaging of profiles).
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finding results from standard CPL data processing (i.e., using
traditional processing methods and at 5 s/1 km horizontal
resolution). The bottom panel in Figure 2 displays the real-time
AI/ML-derived layer detection (at 1 s/200 m horizontal resolution
but using only the 1 Hz sub-sampled data at the aircraft downlink
rate).

From Figure 2 it is visually evident that the real-time algorithm is
performing well compared to the traditional method. The
accepted method of quantifying algorithm performance is to
examine the so-called confusion matrix, or error matrix (Ting,
2011). The confusion matrix compares the AI/ML-derived result,
in a supervised learning environment, to truth. In this case,
because the CPL data is real and not modeled the “truth” is
taken to be the results obtained via the traditional processing
method. In this sense, the confusion matrix is comparing the AI/
ML-derived product to the traditional product, with inherent
understanding that the traditional product is itself not perfect.
The confusion matrix for the data displayed in Figure 2, shown in
Figure 3, shows good agreement with over 98% agreement that
“no layer” data bins were properly categorized and 89% of layer-
containing data bins were properly categorized. In this particular
example, the largest divergence is the AI/ML method missing
layers that the traditional method identifies (−10% of those data
bins misclassified). That discrepancy is mostly due to the

traditional method averaging over 5 s (or 50 profiles per
result) whereas the AI/ML method is operating on a single
profile (that is, a single subsampled 1 Hz profile per result).
Thus, the traditional method is operating on profile data with
inherently higher SNR. Yet, the AI/ML results are highly
comparable even though using only 1/50 the signal. The
performance of the AI/ML method, in real time, is comparable
to traditional post-flight processing, demonstrating that the data
products generated in real time are highly credible.

To better emphasize this point, Figure 4 shows a 10-min data
segment of the CPL 532 nm attenuated backscatter profiles for
08 February 2022 from near the end of Figure 2. The top panel
shows the full resolution data volume, with profiles saved at 10 Hz.
This is the data the traditional processing method uses when
averaged to 5 s (i.e., 50 profiles are averaged together and then a
layer detection is performed). The bottom panel shows the
subsampled data volume, where a single 10 Hz profile is
transmitted each second. This is the data the AI/ML algorithm
uses, at the native resolution (i.e., no averaging of profiles). Figure 4
makes it more visually apparent that the AI/MLmethod is operating
on noisier data and at higher horizontal resolution. Moreover, the
AI/ML method is detecting layers in real time (meaning, within
about one second of data collection) as each profile is received at the
Jetson TX2 board.

FIGURE 5
(A) CPL 532 nm attenuated backscatter profiles for 22 February 2022. (B) Result of layer detection using traditional method. (C) Result of real-time
layer detection using AI/ML method.
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A second example, from 22 February 2022, shows similar results over
a noticeably different scene. Similar to Figure 2, Figure 5 shows the CPL
532 nm attenuated backscatter profiles, the layer detection from the
standard processing technique, and the layer detection result using the
AI/ML technique. Note that in this example the boundary layer is evident
through most of the flight, with few higher level clouds present. The
confusionmatrix, in Figure 6, is similar to the previous example even given
the dramatically different scene type. Similar analysis over other, varying
scene types provide confidence that the technique works over the range of
atmospheric scenes experienced by airborne and spaceborne sensors.

4 Conclusion

In this work we apply CNN algorithms for true real-time
detection of atmospheric features and determination of feature
height. The real-time layer heights enabled by the technology
outlined in this paper can provide information about the vertical
structure of hazardous plumes and directly address critical data
needs identified by forecasting agencies. Initial application and
testing was accomplished using a high-altitude airborne photon-
counting lidar, but the extension to spaceborne photon-counting
lidar should be immediately apparent. Although spaceborne data
may be more noisy compared to data from aircraft altitudes, the
prior denoising work [published in (Yorks et al., 2021) using
spaceborne data] demonstrates the effectiveness of the AI/ML
techniques when presented with noisy data sources.

The demonstrated ability of the CNN algorithm to provide true
real-time layer detection at native data resolution provides a dramatic
increase in both data product availability (real time, within −1 s of data
collection, as opposed to post-processed) and horizontal resolution of
the feature heights (in this case, 20 m compared to 5 km). The
confusion matrices that compare the CNN algorithm performance

to baseline traditional processing results show >95% agreement with
the thresholding techniques traditionally used to find layers, thus
providing good confidence that the CNN method produces reliable
real-time data products even at the higher horizontal resolution.

Although developed and tested using a high-altitude aircraft
instrument, extension of the analysis techniques to spaceborne
photon-counting lidar data is conceptually apparent. This is of
importance for future spaceborne lidar sensors, where real-time data
and data products will be essential as inputs to forecast models.
Moreover, the ability to generate accurate data products at native
resolution, in contrast to the normal approach of averaging multiple
profiles to obtain a result, portends a sought-after increase in lidar data
resolution without levying greater demands on the instrument power-
aperture product. Subsequent work will focus on the next step of
classifying the detected layer (i.e., as ice cloud, water cloud, smoke, dust,
etc). Developing a true real time layer classification product will prove
highly impactful to aerosol forecast models and real-time applications.
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