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Introduction: The dynamics of terrestrial vegetation are shifting globally due to
environmental changes, with potential repercussions for the proper functioning of
the Earth system. However, the response of global vegetation, and the variability of
the responses to their changing environment, is highly variable. In addition, the study
of such changes and themethods used tomonitor them, have in of themselves, been
found to significantly impact the findings.

Methods: This research builds on a recently developed vegetation persistence
metric, which is simple to use, is user-controlled to assess levels of statistical
significance, and is readily reproducible, all designed to avoid these potential
pitfalls. This study uses this vegetation persistence metric to present a global
exploration of vegetation responses to climatic, latitudinal, and land-use changes
at a biomes level across three decades (1982–2010) of seasonal vegetation activity
via the Normalized Difference Vegetation Index (NDVI).

Results: Results demonstrated that positive vegetation persistence was found to be
greater in June, July, August (JJA), and September, October, November (SON), with
an increasing vegetation persistence found in the Northern Hemisphere (NH) over
the Southern Hemisphere (SH). While vegetation showed positive persistence
overall, this was not constant across all studied biomes. Overall forested biomes
along with mangroves showed positive responses towards enhanced vegetation
persistence in both the northern hemisphere and southern hemisphere.
Contrastingly, desert, xeric shrubs, and savannas exhibited no significant
persistence patterns, but the grassland biomes showed more negative
persistence patterns and much higher variability over seasons, compared to the
other biomes. The main drivers of changes appear to relate to climate, with tropical
biomes linking to the availability of seasonal moisture, whereas the northern
hemisphere forested biomes are driven more by temperature. Grasslands respond
to moisture also, with high precipitation seasonality driving the persistence patterns.
Land-use change also affected biomes and their responses, with many biomes
having been significantly impacted by humans such that the vegetation response
matched land use and not biome type.

Discussion: The use here of a novel statistical time series analysis of NDVI at a pixel
level, and looking historically back in time, highlights the utility and power of such
techniques within global change studies. Overall, the findings match greening trends
of other research but within a finer scale both temporally and spatially which is a
critical new development in understanding global vegetation shifts.
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Introduction

The dynamics of terrestrial vegetation are shifting globally due to
environmental changes, with potential repercussions for the proper
functioning of the Earth system and provision of ecosystem services.
These changes are most apparent in the vegetation composition and/
or structure, with shifts in species dominance and/or abundance, and
changes in phenology. In some cases, there may be a complete loss of
vegetation cover. Such changes can alter the local climate, hydrology,
and soil properties, affecting a range of other ecosystem processes. The
consequences of these vegetation changes can be far-reaching,
impacting human societies through alterations in the provision of
food, water, fuel, and timber resources, as well as affecting carbon
storage and greenhouse gas emissions. Therefore, it is essential to
monitor and quantify landscape level vegetation change to anticipate
and adapt to the consequences of environmental change (Winkler
et al., 2021; Potapov et al., 2022).

The vegetation of the Earth is constantly changing in response to a
variety of biotic and abiotic factors. The study of vegetation change,
and the methods used to monitor it, have in themselves been found to
significantly impact the findings. Vegetation variability is a function of
many factors, including climate, land use, and disturbance regime.
Climate variability, for example, can cause changes in vegetation type,
composition, and distribution. Land use can also impact vegetation,
through activities such as deforestation, agriculture, and urbanization
(Winkler et al., 2021; Friedl et al., 2022; Potapov et al., 2022).
Disturbance regimes (such as fire or grazing) can also affect
vegetation changes. Monitoring vegetation change is essential to
understanding the health of our ecosystems. Vegetation provides
critical ecosystem services such as carbon sequestration, water and
soil conservation, and habitat for wildlife. Changes in vegetation can
therefore have profound impacts on the environment and human
wellbeing (Winkler et al., 2021).

There is large variability in the way vegetation responds to changes
in the environment. This variability is due to a range of factors,
including the species composition of vegetation, the growth form of
plants (e.g., trees vs. shrubs), the level of disturbance, climatic
conditions, and the soil type. For example, forests are more likely
to respond slowly to environmental change than grasslands or
savannas, due to the longer life span of trees. In addition,
deciduous species are generally more responsive than evergreen
species, as annual leaf drop means a quicker response to short-
term changes in conditions. The magnitude and direction of
vegetation change also varies regionally. In general, vegetation
changes are more pronounced in the northern hemisphere than in
the southern hemisphere, due to the greater land area and more
diverse range of vegetation types. Finally, vegetation changes are
typically more rapid in the tropics than in other regions, due to
the higher levels of radiation and precipitation.

The study of vegetation change is essential to understanding the
health of our ecosystems and the potential impacts of environmental
change on human wellbeing. A variety of monitoring techniques are
available to researchers, each with its own advantages and
disadvantages. The selection of the most appropriate method(s)
depends on the vegetation type of interest, the scale of analysis,
and the desired level of detail. There are a variety of methods used

to monitor vegetation change. Remote sensing techniques, such as
satellite imagery, are commonly used to detect changes in vegetation
cover. Ground-based monitoring, such as vegetation surveys, can
provide detailed information on vegetation type and composition.
Finally, model-based approaches can be used to simulate vegetation
change under different scenarios. It is important to monitor vegetation
change in order to anticipate and adapt to the consequences of
environmental change.

Remote sensing is a powerful tool for monitoring vegetation
change, as it allows for repeated measurements over large areas.
Satellite-based remote sensing provides global coverage and can be
used to track changes in vegetation cover and structure. By measuring
the reflectance of vegetation in different spectral bands, we can
produce an index known as the Normalized Difference Vegetation
Index (NDVI). This index can be used to track changes in vegetation
health and density over time. The Advanced Very High Resolution
Radiometer (AVHRR) is a satellite sensor that is often used for this
purpose. AVHRR data has been used to monitor trends in global
vegetation cover since the early 1980s (de Jong et al., 2012; Cortes et al.,
2021). More recently, satellite based NDVI products have become
available from other sensors, such as theModerate Resolution Imaging
Spectroradiometer (MODIS). These products provide higher spatial
resolution and more frequent coverage, making them ideal for
tracking short-term changes in vegetation cover. Vegetation
monitoring is important for a variety of reasons. Changes in
vegetation cover can be used to track the progress of land
degradation and deforestation. Additionally, NDVI data can be
used to monitor the effects of drought and other environmental
stresses on vegetation health. Ultimately, satellite remote sensing
provides a cost-effective means of monitoring large areas of
vegetation over time, which is essential for understanding and
managing the world’s natural resources (Southworth and Muir, 2021).

Vegetation is viewed as one of the more significant elements in the
land-atmosphere system (Liu et al., 2020), involved in maintaining the
water cycle, GPP (Gross Primary Productivity), and the fluxes of
carbon between the atmosphere and land (Yao et al., 2019). In
addition, vegetative biomass (above-ground) is also one of the chief
sources of carbon sink, hence modulating ecosystem services via
carbon sequestration (Tian et al., 2021). With the increase in the
concentration of carbon dioxide (CO2) in the atmosphere owing to
anthropogenic stresses, the global vegetation cover and amount, often
referred to as “greenness,” is also increasing, and this greening is most
often attributed to CO2 fertilization (it speeds up photosynthesis and
limits leaf transpiration of plants) and afforestation (Lenka and Lal,
2012). Studies have suggested an increase in greenness is expected to
continue until 2,100, which will alter the dynamics of vegetation
globally (Zhu et al., 2016; Liu et al., 2022). Thus, monitoring such
change is indispensable given their susceptibility to anthropogenic
pressures (land-use change and release of CO2), including those
associated with climatic variability (atmospheric temperature,
humidity, and precipitation) and the importance of monitoring
change and understanding the drivers is of critical importance (de
Jong et al., 2012; 2013).

Global greening is a phenomenon that has been studied over the
last few decades, and most evidence details such global greening
signals from the beginning of the satellite record in the early 1980s
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(Nemani and Running 1997; Nemani et al., 2003; de Jong et al., 2012;
2013; Zhu et al., 2016; Piao et al., 2020; Jiang et al., 2022). It was only
the development of satellite technologies that led us to be able to
monitor such changes globally and then link these greening signals to
potential drivers of change. Globally, the dominant driver of greening
which has been identified relates to CO2 fertilization (Zhu et al., 2016;
Piao et al., 2020) with additional drivers becoming important only at
more regional scales. Most global greening studies have focused on
satellite data as the variable under study, and most often have utilized
vegetation metrics, such as NDVI, a measure which links to the
amount and health of green vegetation biomass, often used as a
proxy for net primary production (NPP) globally (Piao et al.,
2020). Such greenness measures are thus used to identify trends of
NDVI as measured over space and time, which may relate to
vegetation type; fertilization of plant growth (in the form of more
leaves, bigger leaves or even different species); the start, length and
duration of the growing season; and thus the signal of greening
measured, and also potential changes in crop production and
multiple crop cycles. As such, the observed signal is an index
representing a wide range of possible ground level changes, and
while some studies do integrate limited ground-based data, given
that many such studies are globally focused, real ground truthing is not
always feasible. Modelling is frequently utilized to link the greening
measures to possible drivers of change. Such modelling exercises
clearly highlight the role of increased CO2 concentration as the
main driver of the observed greening, with matches over seasons
and years.

Regional scale drivers have been identified as land cover change
and changing management, such as reforestation, afforestation and
improved agricultural practices (irrigation, improved crop types,
intensification, etc.), nitrogen deposition and changing climate
(especially changes in temperature and precipitation patterns and
ranges) (Nemani and Running 1997; Xiao and Moody 2005; Zhu et al.,
2016; Piao et al., 2020). Climatic drivers have also been identified, with
different regions globally responding to different drivers. More climate
focused drivers were identified by Xiao and Moody (2005), whereas
Chen et al. (2019) focused on human land-use management,
specifically related to agricultural lands and system improvements
in China and India as the leading cause of greening. Across many
drylands regions precipitation change is linked most directly to the
greening signal (Herrmann et al., 2005) and concomitantly, linked to
decreases in NPP related to large-scale droughts and a drying trend
seen in the Southern Hemisphere (Zhao and Running, 2010).

One limitation of most of these studies of greening, as highlighted
by de Jong et al. (2012) is related to the type of data used within such
studies. Specifically, all of the greening studies have utilized remotely
sensed time-series of vegetation indices, most of which have
seasonality and serial auto-correlation, and while the studies
attempted to correct for these trends using such techniques as
harmonic regression, linear models with non-parametric
components for seasonality, time series development from calendar
days, and similar techniques, de Jong et al. (2012) found the results in
terms of greening or browning, varied significantly, depending on the
methods used. In addition, no single ideal method was identified and
the difficulty of comparisons across different methods and outcomes
was highlighted. In response to such difficulties, as identified by
multiple researchers, the creation of a simple, statistically valid, and
repeatable method has become increasingly warranted. NDVI time
series can be used to study global vegetation change in several ways.

For example, NDVI data can be used to map the areal extent of
vegetation changes, as well as to quantify the magnitude and direction
of those changes. NDVI data can also be used to assess the temporal
patterns of vegetation change, allowing scientists to identify possible
drivers of those changes. Finally, NDVI data can be used to estimate
net primary productivity, which is an important measure of ecosystem
health. NDVI time series also provides a way to assess the statistical
significance of changes in vegetation greenness at a pixel level
(Southworth and Muir, 2021). This is important for understanding
whether the observed changes are due to natural variability or to
anthropogenic activity.

Waylen et al. (2014) developed an NDVI-derived time-series of
remotely sensed data products within which the user could define the
appropriate statistical significance for their given research question.
The directional persistence (D) metric allowed for the analysis of
change in NDVI relative to a fixed benchmark value—which could be
defined as a period, e.g., the beginning of a time series such as in
analysis of greening, or an event, e.g., a drought, thereby facilitating a
much more detailed and nuanced understanding of a given landscape.
The D statistic borrows heavily from the theory associated with
random walk processes (Wilson and Kirkby, 1980), in which each
positive departure from the previous value in the time series cumulates
the statistic by +1, and each negative departure by −1. The null
hypothesis against which the statistic can be tested is that the
statistics for a time series is not significantly different from zero.
Critical values of the test statistic at various significance levels and for
varying length of time series are derived from Monte Carlo
simulations. The statistic has the benefits of being easy to calculate,
readily interpreted in terms of the natural processes, comparable
spatially, and the capability of being tested for significance by a
method based in statistical theory. This metric has been tested at a
smaller scale to understand vegetation persistence across Florida (Tsai
et al., 2014) and within specific ecosystems types more broadly
(Southworth et al., 2016; Bunting et al., 2018). Results have been
very promising in terms of their innovation and in making the
continuous vegetation metrics approach both more useful and
more rigorous for use in global change studies.

Utilizing the length of the satellite data record and such measures
as the D metric, such systematic quantification of vegetation change
globally can be derived, and then interpreted with a view to better
understand the spatial patterns and trends and how these relate to
different global biomes and their land use diversity. Given the recent
focus on greening papers to attempt to better determine the more
regional-scale drivers of change, often completed at a more regional
focus, e.g., China, India (Chen et al., 2019) or review papers which
highlight the need for this regional level view at this time (Piao et al.,
2020), our research will utilize this new metric, D, to evaluate global
trends in vegetation persistence since the more reliable records of
remotely sensed data began in the early 1980s. Specifically though, we
will focus on the differences in patterns of vegetation persistence as a
function of their biomes, and also the actual land use diversity at the
pixel level, as determined by FAO data (FAO 2010 data available at
FAO.org). Biomes are selected as the broad unit of analysis, as these
represent similar ecosystems which, by definition, share comparable
processes and major vegetation types wherever they are found.
Studying at the level of biomes is important because they may
display substantial variation in the extent of change, face different
drivers of change, and there may be differences in the options for
mitigating or managing these drivers. Biomes are important, but so is
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land cover and related land use diversity. As such, even within our
biomes, we will also account for the land use diversity, as stated by
FAO in their 2010 global product (FAO.org), which will reflect the
final use or end point of the time series in terms of land use with a
reputable data source such as FAO which is readily available and
downloadable for analysis. In addition, FAO products are considered
comparable globally. As such, this research will cover over 30 years of
vegetation persistence analysis at the biomes level, accounting for land
use diversity and evaluating at a seasonal scale. Seasons are something
that show different patterns and as such, it is important to both explain
and account for these possible phenological signals.

This research addresses the following questions: 1) Globally, does
the pattern of Vegetation Persistence, or D, match the findings
demonstrated in previous global greening papers, and do the
observable patterns and trends match up spatially? 2) Do these
trends, most of which were analyzed at an annual time step, hold
constant across seasons or do trends vary within the growing season?
3) How do the trends and patterns vary across the different biomes
and are there obvious winners or losers to the greening trend? Lastly,
4) how does land use diversity impact these biomes-based trends and
findings? Given the focus on the metric D as opposed to continuous
indices measures of NDVI, this research bypasses many of the
concerns of methods utilized potentially influencing the trend of
the findings (de Jong et al., 2012), while also providing a very
simple and easily understandable and replicable final product.

Materials and methods

Remote sensing of vegetation cover

The NDVI 3rd generation time-series product from the Global
Inventory Monitoring and Modeling System (GIMMS) was used to
study vegetation dynamics globally in this research. The NDVI
product is constructed based on AVHRR observations and has a
temporal resolution of 15 days. Spatial resolution of the NDVI product
is five arc minutes which translates to about 8 km at the equator. In
this research, data from 1982 to 2010 was used.While MODIS or other
products could be used to extend the time series into more current
time periods the importance of consistency of data source and the
known variability between MODIS and AVHRR data make this
problematic. As such, the goal of determining global environmental
change signals with NDVI persistence metrics from 1982 to 2010 was
considered ideal and a better data source to provide accuracy to this
approach and to test the validity and robustness of this new persistence
metric. The use of a benchmark value is required in this analysis as all
pixel values are compared to this initial value. The AVHRR data series,
beginning in 1982 and running through 2010 was used for this
analysis, resulted in the first 5 years being utilized to create this
benchmark. A five-year series removes the likelihood of selecting
an anomalous year climatically and in creating a five-year average
benchmark value from 1982 to 1986 data, a more reliable and robust
measure of change can be obtained. It is worth noting that the
selection of an anomalous or otherwise unrepresentative
benchmark could invalidate the results and so care must be taken
in this selection process.

First, the NDVI product’s quality band was used to mask poor
quality pixels. Then, any pixel with more than 20% masked
observations of the whole time-series was excluded from the

analysis. The missing values of the included pixels, due to quality
masking, were gap-filled using a temporal interpolation. The biweekly
NDVI values were aggregated to monthly composites based on per-
pixel maximum NDVI value. To account for seasonality, the monthly
NDVI composites were aggregated into four boreal seasons and the
analysis was conducted independently for each season. The seasons
included 1) December, January, February = DJF (boreal winter); 2)
March, April, May =MAM (boreal spring); 3) June, July, August = JJA
(boreal summer); and 4) September, October, November = SON
(boreal autumn). Finally, seasonal NDVI composites were
calculated based on maximum monthly values from the
corresponding months.

Vegetation change analysis was conducted based on the time-
series analyses of NDVI seasonal composites, as a proxy of vegetation
abundance and health. Previous research has utilized the actual NDVI
time-series information in studies of global vegetation change
(Nemani and Running 1997; Xiao and Moody 2005; Zhu et al.,
2016; Piao et al., 2020). One limitation of most of these studies of
greening, as highlighted by de Jong et al. (2012) is related to the type of
data used within such studies. Specifically, all of the greening studies
have utilized remotely sensed time-series of vegetation indices, most of
which have seasonality and serial auto-correlation (Herrmann et al.,
2005; Zhao and Running, 2010). While the studies attempted to
correct for these trends using such techniques as harmonic
regression, linear models with non-parametric components for
seasonality, time series development from calendar days, and
similar techniques, de Jong et al. (2012) found the results in terms
of greening or browning, varied significantly, depending on the
methods used and so consistency in results and a global trend was
impossible to ascertain from these studies. In addition, no single ideal
method was identified and the difficulty of comparisons across
different methods and outcomes was highlighted. In response to
such difficulties, as identified by multiple researchers, the creation
of a simple, statistically valid, and repeatable method has become
increasingly warranted. As such, our research group has developed
such a metric (see Waylen et al., 2014 for in depth discussion of metric
development), which is central to this analysis, and which is known as
directional persistence “D” (Tsai et al., 2014; Waylen et al., 2014;
Southworth et al., 2016; Bunting et al., 2018). This metric is used to
detect vegetation gain, loss, or no change at the pixel level using its
time-series NDVI observations. To calculate directional persistence
for a pixel, first, its initial or benchmark NDVI value was established
based on its average NDVI value for 1982 to 1986. The five-year
averaging was used to obtain robust benchmark values. Then, the
pixel’s NDVI values for the subsequent 23 years were compared to the
benchmark value to identify the numbers of years with observed
NDVI larger and smaller than the benchmark value. The persistence
metric value, D, simply counts the difference between the number of
years with NDVI observations larger and smaller than the benchmark.
Thus, the persistence value of a pixel was calculated using the
following equation:

D � ∑n
i�1
ti; where ti � −1 ifNDVIBM > NDVIi

+1 ifNDVIBM < NDVIi
{

where n was equal to 23, i.e., the number of years after the benchmark
period,NDVIBM andNDVIi were the benchmark and ith year NDVI
values, respectively, and ti indicates if NDVI of the ith year was larger
or smaller than the benchmark NDVI. The persistence values were
calculated independently per-pixel/per-season. This resulted in four
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global persistence products, corresponding to the four boreal seasons.
Given the focus on the metric D as opposed to continuous indices
measures of NDVI, this research bypasses many of the concerns of
methods utilized potentially influencing the trend of the findings (de
Jong et al., 2012), while also providing a very simple and easily
understandable and replicable final product.

Statistical tests were conducted to investigate if the observed
persistence value of a given pixel was statistically significant. Under
the null hypothesis of no change, i.e., no vegetation gain or loss over
the period of 1987–2010 with respect to the benchmark period of
1982–1986, ti is expected to have a Bernoulli distribution with
success and failure outcomes corresponding toNDVIi being larger
or smaller thanNDVIBM, respectively. The ti sequence represents a
Bernoulli process with p = 0.5 and the total number of successes or
failures would follow a binomial distribution (with n = 23 and p =
0.5). Therefore, the persistence value, D, would follow a random
walk process with the distribution of values represented by Pascal’s
triangle, which can be used to identify the critical values of
statistical tests (Waylen et al., 2014). Based on Pascal’s triangle,
for n = 23, D values larger than 10 or smaller than −10 are
statistically significant at a significance level of 0.05.
Accordingly, the D values in the persistence product outputs
were categorized to positive significance (n = ≥ 10), negative
significance (n = ≤ −10), and not significant (n = −9 to +9).
This resulted in four global persistence significance products,

corresponding to the four boreal seasons. This analysis uses a
high threshold to indicate significance of the D statistic for the
Persistence metric. Utilizing a rigorous threshold enables detection
of pixels in which there has been significant change in vegetation
dynamics over the study period, as compared to the baseline. This
approach emphasizes identification of long-term shifts in
vegetation greenness and is less concerned with small-scale
individual events that impact local areas. To better capture
pixels with significant change in NDVI for individual events, it
is possible to adjust the baseline values and temporal scale, though
given the global extent of this study it is not possible to account for
all local level change in NDVI.

Biomes

This study used the World Wildlife Fund (WWF) terrestrial
ecoregions (biomes) data (Olson et al., 2001). This data is archived
as a part of the Millennium Ecosystem Assessment (MEA) project,
which seeks to assess the consequences of ecosystem change in the
context of human wellbeing (“Millennium Ecosystem Assessment,”
2005). The MEA project details conditions and trends of the
world’s various ecosystems and their resultant ecosystem
services. It also supports a scientific basis for conservation and
sustainable use of ecosystems. The ecoregions data comes from a

TABLE 1 Global biomes used for analysis and their descriptions, from the WWF (2020).

Biome Description

Deserts and xeric shrublands Less than 10 inches precipitation annually, evaporation exceeds rainfall. Extreme temperature variability due to lack of
plants and global distribution. Woody plants characterize these regions to minimize water loss. Unusually adapted
plants, like the giant cacti in North America.

Tropical and subtropical moist broadleaf forests Large discontinuous patches around the equatorial belt. High rainfall and low temperature variability. Dominated by
semi-evergreen and evergreen deciduous trees. Highest species diversity of any terrestrial biome. 5 layers: overstory with
emergent crowns, medium layer of canopy, lower canopy, shrub level, and understory.

Tropical and subtropical dry broadleaf forests Warm year-round with several hundred centimeters of rain. Long dry season. Deciduous trees dominate.

Tropical and subtropical coniferous forests Low precipitation and moderate temperature variability. Diverse species of conifers. Thick, closed canopy with little
underbrush. Fungi and ferns thrive instead.

Temperate Broadleaf and Mixed Forests Temperate forests experience a wide variability in temperature and precipitation, which is why they are mixed species
and types. 4 layers: canopy, lower layer of mature trees, shrub, understory of herbaceous plants.

Temperate Coniferous Forest Evergreen forests in areas with warm summers and cool winters. Common in coastal areas with mild winters with heavy
rainfall or inland with drier climate and montane areas. Understory (herbaceous and shrub) and overstory (trees).
Highest biomass of the terrestrial biomes.

Boreal forests/Taiga Low annual temperatures, high northern latitudes, most precipitation falls as snow. Nutrient poor soils and permafrost
favor coniferous trees. Low species richness.

Tropical and subtropical grasslands, savannas and
shrublands

Large expanses where rainfall limits extensive tree cover. Grassland dominated with scattered trees. Large mammal
fauna.

Temperate grasslands, savannas and shrublands Prairies and steppes. Differ from tropical grassland by being mostly devoid of trees except riparian forests. Large
vertebrates.

Flooded grasslands and savannas Large expanses of flood grasslands. Large congregation of waterbirds. Sensitive to hydrologic uses in these areas.

Montane grasslands and shrublands High elevation grasses and shrubs. Can be tropical, subtropical, and temperate. High endemism.

Tundra Treeless polar desert found at high latitudes. Sedges, health, and dwarf shrubs are supported, though vegetation is
patchy. Most precipitation falls as snow in winter.

Mediterranean Forests, woodlands, and scrubs Fire dependent plants. Occur in regions with hot, dry summers and cool, moist winters.

Mangroves Short trees with prop-like roots that thrive in saline waterlogged areas along coasts.
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shapefile of WWF designated biomes globally (Olson et al., 2001).
There are fourteen defined global biomes (Table 1), and their global
distribution is highlighted in Figure 1. Biomes were selected as the
unit of analysis given that these ecosystems share dominant
vegetation types wherever they are found, most often based on
similar biophysical processes and climatic regimes. In addition,
studying at the level of biomes is important because they display
substantial variation in the extent of change, they face different
drivers of change, and there may be differences in the options for
mitigating or managing such changes.

Utilizing the length of the satellite data record and the D metric,
systematic quantification of vegetation change globally can be
derived, and then interpreted with a view to better understand
the spatial patterns and trends and how these relate to different
global biomes as defined here from the WWF product. Specifically,
we will focus on the differences in patterns of vegetation persistence
as a function of biome type. Biomes are selected as the broad unit of
analysis, as these represent similar ecosystems which, by definition,
share comparable processes and major vegetation types wherever
they are found. Studying at the level of biomes is important because
they may display substantial variation in the extent of change, face
different drivers of change, and there may be differences in the
options for mitigating or managing these drivers. As such, this
research will cover over 30 years of vegetation persistence analysis
at the biomes level which is calculated from the global persistence
product we created, extracted for each of the 14 biome types. In
addition, these biomes are each evaluated at a seasonal scale (DJF,
MAM, JJA, and SON) as seasons are something that show different
patterns and as such, it is important to both explain and account for

these possible phenological signals. Therefore, the created products
for analysis and statistical comparison are the persistence patterns
for each of the 14 WWF biomes (Table 1; Figure 1) for each of our
four seasons, with statistical significance further summarized at a
pixel scale and presented for both negative and positive vegetation
persistence.

FAO land use diversity data

Information on global land use is of paramount importance within
this analysis. Determining biome type does not mean that the land use
or land cover matches this type as in many locations land cover change
because of changes in land use has already occurred (Winkler et al.,
2021; Friedl et al., 2022; Potapov et al., 2022). Therefore, in order to
account for the differences as predicted by biomes based on climate
and biophysical factors, versus the actual land use, an additional data
set was needed. Global data on land use is collected by the Food and
Agriculture Organization (FAO) of the United Nations and provides a
standardized methodology for land use classification and mapping
globally. Given this study was undertaken at a global scale a reputable
and readily available global land use data set was needed. The data
used for this study was the global land use data product for 2010 which
was selected as it related to the end point of the time series used (fao.
org website for data download, last accessed September 2022) and so
could be used to indicate the actual land use diversity within each
biome type. The land use classes available were at a very broad scale
and were agriculture, grazing, wetlands, urban, forest, natural non-
forest, and open water. The use of the FAO data, allowed us to

FIGURE 1
Map of the global distribution of the fourteen WWF designated biomes WWF (2020).
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understand land use diversity within each biome class, where land area
within the biome was previously converted, for example, to
agricultural or development-based uses, by providing a land use
diversity product for 2010. While this data is not ideal, and the
time period used was only 2010 it was still useful in interpreting
the persistence metrics by biome and by latitude, through a land use

diversity analysis, to link to the vegetation dynamics highlighted by the
persistence analysis. This allowed us to identify and highlight regions
of significant land use diversity, which resulted in the changes in
persistence. The data on land use was obtained for the entire globe and
then subdivided by biomes, and within each biome was broken down
into latitudinal bands, in 10-degree blocks. This was also useful to

FIGURE 2
Global persistence by season for 1987–2010, compared to the baseline of 1982–1986 for (A) December, January, February (DJF); (B) March, April, May
(MAM); (C) June, July, August (JJA); and (D) September, October, November (SON). Positive versus negative trends are shown in green versus purple
respectively.
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highlight land use diversity across the northern and southern
hemispheres when interpreting the results.

Utilizing the length of the satellite data record and the D metric,
systematic quantification of vegetation change globally can be derived, and
then interpreted with a view to better understand the spatial patterns and
trends and how these relate to land use diversity as calculated here from the
FAO product. Specifically, we will focus on the differences in patterns of
vegetation persistence as a function of the actual land use diversity at the
pixel level, as determined by FAO data (FAO 2010 data available at FAO.
org). Biomes are important, but so is land cover and related land use
diversity. Therefore, we will calculate the diversity of land uses occurring
within each Biomes, and in order to assist interpretation we will calculate
this land use diversity for every 10° north and south. This will allow us to
add land use diversity into the already complex analysis incorporating
biome and season. While this is an added level of complexity, it is essential
to highlight the land use diversity within the global biomes data, and how
variable this is over the different hemispheres of analysis.

Results

Global patterns of vegetation persistence

We calculated vegetation persistence at a pixel level for each
season, for each year, and compared every season/year from
1987 to 2010 to the baseline period of 1982–1986. Initial
analysis found AVHRR and MODIS to differ enough that they
were not compatible for use within this type of analysis and may
impact the findings due to different products and so bias results.
Due to these differences across satellite products we chose to utilize
the dataset with the longest timeframe and hence selected the
AVHRR data product. The results can be evaluated spatially
(Figure 2) and an initial review would highlight the
overwhelmingly positive pattern of vegetation persistence
globally. Despite these overall patterns it is also evident that
some regions differ, and negative patterns of vegetation

FIGURE 3
Proportion of each biome type globally representing either significant positive vegetation persistence (green) or significant negative vegetation
persistence (purple) as a function of total pixels in that biome, and shown for all four seasons for (A) December, January, February (DJF); (B)March, April, May
(MAM); (C) June, July, August (JJA); and (D) September, October, November (SON). Where acronyms are: TSMB, Tropical Subtropical Moist Broadleaf Forest;
TSDB, Tropical Subtropical Dry Broadleaf Forest; TSCF, Tropical Subtropical Coniferous Forest; TBMF, Temperate Broadleaf and Mixed Forest; TCF,
Temperate Coniferous Forest; BFT, Boreal Forests-Taiga; TSGS, Tropical Subtropical Grasslands, Savannas, and Shrublands; TGSS, Temperate Grasslands,
Savanna, Shrubland; FGS, Flooded Grassland and Savanna; MGS, Montane Grassland and Shrubland; TUN, Tundra; MFWS, Mediterranean Forest, Woodlands,
and Scrub; DXS, Deserts and Xeric Shrublands; and MANG, Mangroves.
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persistence do exist, especially in Africa, and over time, the DFJ or
boreal winter experiences more negative persistence patterns.
MAM, boreal spring has the most positive patterns of
persistence. Such global analysis, while useful, simply provides
an overview within which we can start to breakdown findings by
biomes and seasons and begin to evaluate potential drivers of these
changes.

Vegetation persistence patterns by season
and biome

Evaluating changes in vegetation persistence by season and biomes
provides much more useful data and starts to highlight differences
over time and place (Figure 3). For the months DJF there were higher
positive trends overall, especially for Tropical Subtropical Moist
Broadleaf Forests, Temperate Broadleaf and Mixed Forests, and
Tropical Subtropical Grasslands, Savannas and Shrubs (Figure 3A).
Two biomes had higher negative persistence patterns over positive
patterns, and these were Boreal Forests-Taiga and Temperate
Grasslands, Savanna, and Shrublands. The behaviour of these
biomes were significantly different for the DJF period, and given
their locations may relate in part to data issues related to snow cover at
the more northern latitudes recording as low NDVI. As the recorded
value is the maximum NDVI in the period this variability with snow
cover and snowmelt could result in some erroneous results in terms of
vegetation. This also links to the higher areas of negative persistence in
the map for DJF (Figure 2A) which helps support this theory.

For MAM, the results were overwhelmingly positive, with the
lowest number of negative pixels for any period. The biomes with the
highest numbers of positive persistence values were Boreal Forests/-
Taiga, the Temperate Broadleaf and Mixed Forest, and the Tropical
Subtropical Moist Broadleaf Forests. The Tundra had equal
proportions in negative and positive persistence, all other classes
the persistence was dominated by the positive patterns (Figures 2B,
3B). Such an overwhelmingly positive pattern of vegetation persistence
in the boreal spring most likely relates to the dominance of the NH in
terms of land mass, and the spring season equating to plant growth.
Over the time period of study, this indicates that at a pixel level the
dominant patterns one of higher NDVI values every year compared to
the baseline period, for all biomes except Tundra. This is a real
dominance of positive vegetation persistence globally.

During the JJA periods there were overwhelmingly higher positive
persistence patterns in every single biome. Again, this likely relates to
the growing cycle and the dominance of the NH land mass in the
signal. The result of no biomes experiencing more negative persistence
versus positive persistence trends though is clearly a major finding.
The most significant positive persistence proportions were found in
Boreal Forests (with the highest recorded proportion of pixels in the
positive persistence class at almost 80%), and then Tundra, Temperate
Broadleaf and Mixed Forests, Tundra, Tropical Subtropical Moist
Broadleaf Forests, (Figures 2C, 3C).

Finally, for SON there were higher positive persistence patterns
again for most classes, although with lower proportions of pixels than
for the MAM and JJA periods. The largest proportion of positive
persistence was in Temperate Broadleaf and Mixed Forests, followed
by Tropical Subtropical Moist Broadleaf Forests and Boreal
Forests—Taiga (Figures 2D, 3D). The Deserts and Xeric
Shrublands class only record negative persistence patterns and

Tropical Subtropical Dry Broadleaf Forests has equal amounts of
negative and positive persistence values. As the boreal autumn season
occurs then, some of the water-limited or drier environments do
appear to have more negative persistence patterns, and the overall
greening or vegetative persistence patterns are lower than in the boreal
spring and summer periods.

Looking overall at these results, we can view across seasons, and
state that positive vegetation persistence is greater in the MAM and
JJA seasons (Figures 2, 3) and this likely relates to growing season and
more positive vegetation persistence is found in the NH over the SH
(Figure 2). Biomes which always have a strong pattern of positive
vegetation persistence are the Tropical Subtropical Moist Broadleaf
Forests, Temperate Broadleaf andMixed Forests, and to a lesser degree
Tropical Subtropical Grasslands, Savannas and Shrublands. Boreal
Forests-Taiga, has very strong patterns of positive vegetation
persistence, except for the DJF period, which we believe relates
more to snow cover variations than actual land cover. Reviewing
these biomes (Figure 1), except for the Argentina pampas grasslands
and the tropical subtropical grasslands, savannas and shrublands,
these are dominated by the northern hemisphere locations. Overall,
it can be seen from the analysis by biomes that forests tend to exhibit
more positive patterns of vegetation persistence. Savannas, grasslands
and desert regions seem to exhibit much more mixed trends, with
more variability intra-annually, or across seasons and hemispheres.
From these overview results more information is available and can be
extracted to discern any possible drivers of change. As such, the biome
data is further broken down, to better understand and explain these
trends.

Vegetation persistence patterns accounting
for land use diversity within biomes and
variation with latitude

Persistence patterns for each biome by latitudinal bands and land
use diversity to aid in the analysis and interpretation of the
persistence patterns, are illustrated in Figures 4–7. Only those
latitudes that represent greater than 5% of the global land surface
area of that biome are now included and a vertical grid has been
inserted at 33.3% and 66.7% on the significant change bars to provide
a rough quantitative estimate of percentages of pixels showing
significant positive or negative changes. In addition, each graph
also has a right-hand bar chart extended horizontally to
accommodate and display the breakdown of land use diversity
data in the biome, within each latitudinal band. As such we can
interpret the changes in persistence by latitude and discuss each in
terms of the actual land use diversity observed within each biome
type. This is to account for the land cover changes which have
occurred globally, such that a biome has often been converted from
its natural vegetation type to more human-dominated uses. This is
important to clarify. The biome data represents the vegetation type
which would result naturally, but in many cases human driven
changes have occurred and the resulting land use is different
from the original biome. Therefore, it is essential to highlight that
within the biome type the land use diversity is highly variable,
emphasizing the alteration that has already occurred within each
biome. Clustering of biome types with similar patterns and outcomes
can thus be determined and possible reasons for these patterns of
change discussed. The patterns of biome responses can be grouped
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into some similar types where the resulting patterns do appear to
follow some similar trends and patterns. To highlight these similar
trends in persistence patterns, across seasons, for these biome
clusters we have plotted them together (Figures 4D, 5D, 6E, 7E).
These graphs show the proportion of pixels in each persistence
category (so each biome and season = 100%, similar to soil type
triangular charts or “textural triangles”) and plotting by biome
across seasons allows us to highlight shifts by season and so link
to climatic drivers more effectively.

Tropical Subtropical Moist Broadleaf Forest reveals a significant
amount of forest cover is remaining in this biome (Figure 4A) and that
the dominant trend is that of positive vegetation persistence. In
addition, this trend is clearly stronger in the NH than in the SH.
Tropical Subtropical Dry Broadleaf Forest (Figure 4B) has been
significantly converted to agriculture and pasture land-uses. The
NH shows more positive persistence patterns and for the seasons

SON and DJF there is a strong negative trend in the SH. Also, of note,
there is more forest cover left in the SH, thus representing more of this
original biome cover. Tropical Subtropical Coniferous Forest
(Figure 4C) is dominated more by grazing lands, than forest cover
along with some agriculture classes.

Positive persistence dominates and this trend is stronger in the NH
than the SH, although there is very little SH area in this biome.
Figure 4D shows the Tropical and Subtropical Forest types and we can
see that Moist Broadleaf and Coniferous Forest types basically run
horizontally with very low percentages (5%–10%) of pixels reporting
significant negative persistence. By contrast the Tropical and
Subtropical Dry Broadleaf Forests show higher percentages of
negative persistence in JJA and SON than the other two tropical
forest biomes. Given the limiting factors on growth for these biomes, it
looks like seasonal availability of moisture may be causing the
differences in these three forest types.

FIGURE 4
Composition of significant persistence values (Negative, None, Positive) in each biome, broken down by latitudinal band, with land use diversity of each
bank also shown, for (A) Tropical Subtropical Moist Broadleaf Forest, (B) Tropical Subtropical Dry Broadleaf Forest, (C) Tropical Subtropical Coniferous Forest,
and (D) Ternary plot of the seasonal changes in percentages of global areas returning significant percentages of positive and negative persistence, and those
reporting to significant persistence, for three tropical forest biomes.
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Temperate Broadleaf and Mixed Forest (Figure 5A) is now mainly
agriculture and grazing lands, with only some limited areas of forest
cover left. As with other forest biomes, we find that positive persistence
dominates, and this trend is stronger in the NH than the SH.
Temperate Coniferous Forest (Figure 5B) has lots of forest cover
left, and some limited grazing areas. Again, positive persistence
dominates. This biome is only found in the NH and so there is no
NH versus SH variability. Boreal Forest-Taiga (Figure 5C) is still
predominantly forest cover with much lower rates of conversion and is
also found only in the NH. Once again, as with all the forested biome
types, positive persistence dominates, especially in the growing season.
All non-tropical forest biomes are almost exclusively limited to the NH
and display roughly similar shapes, with three triads showing little
change in percentages of negative persistence (3%–8%) and DJF
(winter) showing the greatest propensity towards negative
persistence (Figure 5D). Boreal Forests-Taiga indicate lower

percentages (5%–35%) of positive changes, and Temperate
Broadleaf and Mixed Forests higher ones (40%–60%). Given
limiting factors on growth in these biomes, temperatures seem to
have a big role here. In general, cooler temps lead to, a) fewer positive
values, b) slightly more negatives (especially DJF), c) more “no
significant” and d) a greater amplitude in these observations
between the various seasons.

Tropical Subtropical Grasslands, Savannas, Shrublands
(Figure 6A) have experienced significant conversion, and are
now mainly areas of grazing, with some agriculture. Positive
persistence dominates in the NH but the SH is much more
variable, with more negative persistence in their winter and
spring seasons (JJA and SON respectively). Temperate
Grasslands, Savannas, and Shrublands (Figure 6B) have again
been mainly transformed to areas of agriculture and grazing.
Positive persistence dominates in the NH with the SH again

FIGURE 5
Composition of significant persistence values (Negative, None, Positive) in each biome, broken down by latitudinal band, with land use diversity of each
bank also shown, for (A) Temperate Broadleaf Mixed Forest, (B) Temperate Coniferous Forest, (C) Boreal Forest -Taiga, and (D) Ternary plot of the seasonal
changes in percentages of global areas returning significant percentages of positive and negative persistence, and those reporting to significant persistence,
for three non-tropical forest biomes.
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reflecting a more mixed response, with more negative persistence
in their winter and spring. Also of note is that these areas are very
spatially limited in the SH. Flooded Grassland, and Savanna
(Figure 6C) has very mixed actual land uses but despite this,
positive persistence dominates in the NH although in the SH
results are much more mixed, with more negative persistence in
their spring (SON). Montane Grassland and Shrubland
(Figure 6D) is composed of mainly grazing and natural
vegetation and follows the same trend of positive persistence
dominating in the NH, with the SH being a little more mixed,
but generally positive overall. Seasonal patterns of persistence for
grasslands are very distinct from those of the forest biomes
(Figure 6E). The dominant orientation of forest biomes (except
tropical dry forest) is horizontal, whereas diagonal (temperate and

montane grasslands) and box-like (subtropical and flooded
grasslands) shapes dominate here. Flooded grasslands evince
greater variability in the vertical position on the graph than
tropical grasslands which tend towards a more equilateral
shape. From these patterns it seems most likely that they are
responding to high seasonality in their rainfall regimes within
these grassland biomes.

Tundra (Figure 7A) has mainly natural vegetation cover. Positive
persistence dominates in the NH during their growing season. The SH is
again much more mixed across seasons although also of note, the SH has
very limited area spatially. Mediterranean Forest, Woodlands, and Scrub
(Figure 7B) have been heavily converted and so are nowmainly agriculture
and grazing lands. Positive persistence dominates and this trend is much
stronger in the NH than for the SH. Deserts and Xeric Shrublands

FIGURE 6
Composition of significant persistence values (Negative, None, Positive) in each biome, broken down by latitudinal band, with land use diversity of each
bank also shown, for (A) Tropical and Subtropical grasslands, savannas and shrublands, (B) Temperate grasslands, savannas and shrublands, (C) Flooded
grasslands and savanna, (D)Montane grassland and shrubland and (E) Ternary plot of the seasonal changes in percentages of global areas returning significant
percentages of positive and negative persistence, and those reporting to significant persistence, for four grassland biomes.
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(Figure 7C) are made up of mainly grazing and natural vegetation. Positive
persistence dominates in the NH and following the patterns of many of the
grassland and shrub regions, the patterns in the SH aremuchmore variable.
Finally, Mangroves (Figure 7D) are greatly transformed and so actually
represent very mixed land covers and very small areas. Positive persistence
dominates in theNHwith the SHmoremixed, butwith positive persistence
overall. Tundra exists almost exclusively in the northern hemisphere,
during JJA a high percentage (35%) now exhibit positive persistence,
and with very few (<5%) examples of negative persistence (Figure 7D).
Between 30% and 40% of the three remaining biomes lie within the
southern hemisphere, so what little seasonal variability they exhibit should
be interpreted with caution. Regardless of season, just under 80% of the
pixels in the desert and xeric shrub biome report no significant persistence
and so a discussion of possible drivers of change is not possible.

One important issue here, and a cautionary note on the
interpretation of these graphs is related to the fact that any
expression and physical interpretation of these changes is partially
dependent upon the hemispheric distribution of each biome. As such,
it is important to review this percentage of biomes by latitude and
hemisphere (Figures 4–8) when reviewing and assigning importance
to these results, as we have attempted here.

Discussion

This study utilizes a novel approach to analysing NDVI timeseries
to better understand global distributions of changes in vegetation
greenness. The importance of seasons, biomes, and land use in shaping

FIGURE 7
Composition of significant persistence values (Negative, None, Positive) in each biome, broken down by latitudinal band, with land use diversity of each
bank also shown, for (A) Tundra, (B)Mediterranean Forest, Woodlands and Scrub, (C) Deserts and Xeric Shrublands, (D)Mangroves and (E) Ternary plot of the
seasonal changes in percentages of global areas returning significant percentages of positive and negative persistence, and those reporting to significant
persistence, for four other biomes.
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greenness trajectories was also investigated. This highlighted several
advantages and strengths of the directional persistence metric, which
utilizes a time series analysis of vegetation persistence, with initial
benchmark conditions (1982–1986), and implementing statistical
significance at a pixel level for the globe. NDVI time series was
shown to be a powerful tool for understanding vegetation change
at the global scale. This approach emphasizes identification of long-
term shifts in vegetation greenness and is less concerned with small-
scale individual events that impact local areas, even though these may
be of interest at these more local and regional scales, e.g., forest
mortality, disaster related clearing activities, etc. To better capture
pixels with significant change in NDVI for individual events, it is
possible to adjust the baseline values and temporal scale, though given
the global extent of this study it is not possible to account for all local
level change in NDVI in the analysis presented here. Future research
could look more closely at some areas of interesting change, that do
not hit the required significance levels for this research (±9). By using
NDVI data to assess the areal extent, magnitude, direction, and
temporal patterns of vegetation change, scientists can gain
important insights into how vegetation is responding to changes in
climate and other environmental conditions, as well as understand the
health of ecosystems globally (Southworth et al., 2016; Southworth and
Muir 2021).

We calculated vegetation persistence at a pixel level for each
season, for each year, and compared every season/year from
1987 to 2010 to the baseline period of 1982–1986. The results
highlight the overwhelmingly positive pattern of vegetation
persistence globally, although there were also clear regional
patterns and variations with season (Figure 2). Looking overall at
these results, positive vegetation persistence is greater in theMAM and
JJA seasons (Figures 2, 3) and this likely relates to growing season and
more positive vegetation persistence as found in the NH over the SH
(Figure 2). Overall, forests tend to exhibit more positive patterns of
vegetation persistence. Savannas, Grasslands and Desert regions seem
to exhibit much more mixed trends, with more variability intra-
annually, or across seasons and hemispheres. When broken down
further to include land use diversity and latitudinal variation, clearer
patterns emerge related to biome types. Tropical Subtropical Moist
Broadleaf Forest, Tropical Subtropical Dry Broadleaf and Tropical

Subtropical Coniferous Forest have all been heavily converted to
agricultural land uses, and the seasonal availability of moisture may
be causing the differences in these three forest types (Figure 4).
Temperate Broadleaf and Mixed Forest has also been heavily
converted to agricultural uses, unlike the Temperate Coniferous
Forest Boreal Forest, or Taiga, which are still predominantly intact
forest cover. As with all the forested biome types, positive persistence
again dominates, especially in the growing season. Given limiting
factors on growth in these biomes, temperatures seem to have a big
role here in terms of increased patterns of positive vegetation
persistence with warmer temperatures (Figure 5). Tropical
Subtropical Grasslands, Savannas, Shrublands and Temperate
Grasslands, Savannas, and Shrublands have again been largely
transformed to areas of agriculture and grazing, whereas Flooded
Grassland, and Savanna has very mixed actual land uses. Montane
Grassland and Shrubland is composed of mainly grazing and natural
vegetation. All follow the same trend of positive persistence
dominating in the NH, with the SH being a little more mixed, but
generally positive overall. Seasonal patterns of persistence for
grasslands are very distinct from those of the forest biomes. From
the seasonal patterns and amplitudes (Figure 6) it seems most likely
that these grassland biomes are responding to high seasonality in their
rainfall regimes. Tundra has mainly natural vegetation cover.
Mediterranean Forest, Woodlands, and Scrub and Mangroves have
both been heavily converted and so are now mainly agriculture/
grazing and mixed covers, and Deserts and Xeric Shrublands are
made up of mainly grazing and natural vegetation. Positive persistence
dominates in the NH with the SH more mixed, but with positive
persistence overall. Variability across these final biome types is high
and areal extent often quite small, and no clear patterns or drivers were
discernable from the results.

Vegetation persistence (D) is a metric that can be used to
understand dynamics and highlight areas of vulnerability based on
the patterns of positive and negative vegetation persistence over time.
NDVI is a key measure of vegetation health, and by tracking changes
in NDVI over time, D can be used to identify areas where vegetation is
greening or browning. Positive persistence indicates greening, while
negative persistence indicates browning. Areas with high levels of
positive persistence are more likely to be resilient to disturbance, while
areas with high levels of negative persistence are more vulnerable. By
understanding the patterns of vegetation persistence, we can better
understand the dynamics of ecosystems and identify areas of possible
current or future vulnerability. Over and above that, traditional
approaches only highlight the conversion of systems, but
“directional persistence,” D, can be used to understand dynamics
and highlight areas of vulnerability based on the patterns of positive
and negative vegetation persistence over time, as presented here.

This research finds that vegetation persistence exhibited a positive
trend overall which matches many of the reports of global greening
over the same period (de Jong et al., 2012; 2013; Cortés et al., 2021).
Notably, in seasons, positive vegetation persistence is greater in the
growing season in the NH. More positive vegetation persistence was
found in the NH over the SH, which also corroborates the seasonal and
the NH trends exhibited here, and similarly found by other researchers
(de Jong et al., 2012; 2013; Cortés et al., 2021). Cortez emphasizes the
need for reliable statistically valid tests to detect vegetation change,
specifically significant trends related to vegetation greening and
browning globally. The research presented here helps validate
research finding global greening with much more significant

FIGURE 8
Percentage of global biomes by their hemispheric and latitudinal
distribution for the 14 biomes under study.
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statistical patterns in the NH regions and during the NH growing
season, as well as trends of browning, which are much more limited,
but found most in the SH. In addition, the importance of land use
change and land cover conversions are highlighted and the importance
of such land use changes, which are documented as impacting
approximately one-third of the global land area since 1960, is
critical to incorporate within such studies of global greening or
browning (Winkler et al., 2021). The research presented here
combines all of these requirements utilizing a well-regarded NDVI
vegetation index within a novel and innovative statistical approach,
which incorporates mathematical theory to apply statistical
significance in a rigorous and repeatable manner, while
incorporating season, latitude, and land use diversity. One
limitation of this research lies with the use of a single date to
develop the land use diversity variable, rather than using multiple
dates to determine land use changes. However, the purpose of this
research was to focus on the vegetation dynamics represented by the
NDVI time-series analysis creating the vegetation persistence metric.
Therefore, the use of the single date land use product to create the land
use diversity analysis for 2010, to highlight that within each biome type
the land use diversity is highly variable, emphasizing the alteration that
has already occurred within each biome, is an ideal compromise,
within this global focus.

This analysis builds on these previous greening studies of Lu
et al. (2016), Piao et al. (2020), Cortés et al. (2021), and Zhu et al.
(2016), with the important additions of changes by season, biome,
and land use diversity. More regionally and spatially variable,
changes in temperature and precipitation, CO2 fertilization,
changes in land cover, and the important role of seasons are
all highlighted in these former research studies, as crucial drivers
of global greening (vegetation persistence), as can also be
observed in the present research. Drivers of global greening
from earlier studies, with the key driver being CO2 fertilization
(Lu et al., 2016; Zhu et al., 2016). In the boreal region, temperature
change was regarded as the major driver behind vegetation
greening as summer facilitated the growth of plants (Lucht
et al., 2002), which is in line with findings presented here. But
Piao et al. (2005) and Nemani et al. (2002) discovered
precipitation as a cause behind enhanced vegetation
productivity overall, which again showed congruity with this
research, and also highlights the importance of looking within
biomes and latitudinal zones, and not just at global trends.

The higher greenness trend in the NH over the SH, is explained
by Kaufmann et al. (2002), as rising temperature in the NH as the
key factor behind improved vegetation growth. Zhou et al. (2001)
and Nemani et al. (2003) also documented enhanced terrestrial
greenness in high and middle latitudes of the NH from 1980 to
2000. Box (2002) suggested that because of increased rates of
temperate increase in the NH greenness rates are increasing at a
higher rate there as compared to the SH. Complimentarily, Piao
et al. (2020) suggested that the SH has experienced a wide-ranging
trend of greening since 1980, but this rate is lower than compared
to higher latitude NH locations. Chen et al. (2019) also regarded the
NH as a vegetation greening hotspot because of its faster rates of
greening. Winkler et al. (2021) studied sub-Saharan grasslands and
savanna systems and showed that the greening pattern is consistent
with an increase in rainfall. Zhu et al. (2016) further gave
justifications that like climate change, land-use change
(deforestation, afforestation, and agricultural intensification)

also put forth a highly spatially variable influence on vegetation
changes. Deforestation in tropical forests reduced vegetative
persistence, described by Brandt et al. (2017), while afforestation
increased greenness in the temperate region (Curtis et al., 2018).
Additionally, agricultural intensification in terms of irrigation,
fertilizer and pesticide use, multiple cropping, etc. contribute
significantly (25%–50%) in leaf area enhancement in
Mediterranean forest, temperate broadleaf forest, mangroves,
and temperate grasslands, as depicted by Feng et al. (2016);
Chen et al. (2019), and Winkler et al. (2021). Our research not
only supports these same findings but also helps to highlight the
latitudinal, seasonal and land use related variations causing these
trends.

Conclusion

Vegetation greening is one of the most distinguished
characteristics of biosphere change, since 1980, as indicated from
long-term satellite records (Lu et al., 2016; Zhu et al., 2016; Piao et al.,
2020; Cortés et al., 2021). This study presented an approach to
analyzing vegetation persistence for three decades (1982–2010),
thus highlighting significant spatial and temporal variations at
biome, season and land use diversity levels. By setting
1982–1986 as a benchmark period, the subsequent 23 years of data
revealed that forests overall have positive vegetation persistence, but
this trend is not consistent across all biomes. Savannas, desert, and
grasslands seem to be the most vulnerable although results are highly
variable. In contrast, tundra, moist broadleaf forests, boreal forests,
and coniferous forests exhibited the highest positive vegetation
persistence proportions.

This method in time series remote sensing analysis is pivotal in
importance to assist in the user designed, easily replicated, analysis of
patterns of vegetation change, which—once identified—can lead to
more in-depth and regional scale studies of drivers (Southworth et al.,
2016; Southworth and Muir 2021). Vegetation persistence methods,
such as the approach in this study, using the vegetation persistence or
“D” metric, are much more reproducible and innovative than
traditional approaches to vegetation analysis. They take into
account patterns of longer-term vegetation persistence, at a pixel
level, over extended time periods, rather than just an absolute
value. This enables identification of patterns of vegetation change
over time, which can then be used to study the drivers of those
changes.

This study found similar results to other global studies (de Jong
et al., 2012; 2013; Cortés et al., 2021; Jiang et al., 2022), which found
an increase in global vegetation persistence since the early 1980s,
frequently referred to as the “global greening” trend. However, this
study also highlights the importance of exploring these trends
across seasons, biomes, and land use diversity, revealing that this
trend is not consistent across all locations. Savannas, desert and
grasslands seem to be the most vulnerable and highly variable, and
forest biomes have the highest patterns of positive vegetation
persistence, especially within the growing season. There is a lot
of interest in the global greening trend, as it has potential
implications for food security, the water cycle and carbon
sequestration. However, there is still much work to be done to
fully understand the drivers of these trends and their implications.
This study provides a valuable contribution to this debate by
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highlighting the importance of using time series approaches, such as
the one presented here, to understand vegetation dynamics and
identify areas of vulnerability.

The pixel-level perspective of the vegetation persistence method is
useful for understanding dynamics of change and identifying areas of
vulnerability. The ability to assign statistical significance to pixel level
trajectories helps to further understand the patterns of change. This time
series based remote sensing approach has many potential applications for
monitoring environmental change. Vegetation persistence, D, can be used
to understand dynamics and highlight areas of vulnerability based on the
patterns of positive and negative vegetation persistence over time. This
can help identify which areas are most likely to experience change and
where management action may be necessary to protect against further
change. As such, this is a simple and valuable tool for resource managers
and policymakers as it provides insight into the long-term impacts of
human activities on landscapes.
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