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Fine particulate matter, also known as PM2.5, has many adverse impacts on human
health. However, there are few ground monitoring stations measuring PM2.5.
Satellite data help fill the gaps in ground measurements, but most studies focus
on estimating daily PM2.5 levels. Studies examining the effects of environmental
exposome need accurate PM2.5 estimates at fine temporal intervals. This work
developed a Convolutional Neural Network (CNN) to estimate the
PM2.5 concentration at an hourly average using high-resolution Aerosol Optical
Depth (AOD) from the MODIS MAIAC algorithm and meteorological data. Satellite-
acquired AOD data are instantaneous measurements, whereas stations on the
ground provide an hourly average of PM2.5 concentration. The current work
aimed to refine PM2.5 estimates at temporal intervals from 24-h to 1-h averages.
Our premise posited the enabling effects of spatial convolution on temporal
refinements in PM2.5 estimates. We trained a CNN to estimate
PM2.5 corresponding to the hour of AOD acquisition in the Dallas-Fort Worth
and surrounding area using 10 years of data from 2006–2015. The CNN accepts
images as input. For each PM2.5 station, we strategically subset temporal MODIS
images centering at the PM2.5 station. Hence, the resulting image-patch size
represented the size of the area around the PM2.5 station. It thus was analogous
to spatial lag in spatial statistics. We systematically increased the image-patch size
from 3 × 3, 5 × 5, . . . , to 19 × 19 km2 and observed how increasing the spatial lag
impacted PM2.5 estimation. Model performance improved with a larger spatial lag;
the model with a 19 × 19 km2 image-patch as input performed best, with a
correlation coefficient of 0.87 and a RMSE of 2.57 g/m3 to estimate PM2.5 at in
situ stations corresponding to the hour of satellite acquisition time. To overcome the
problem of a reduced number of image-patches available for training due to missing
AOD, the study employed a data augmentation technique to increase the number of
samples available to train the model. In addition to avoiding overfitting, data
augmentation also improved model performance.
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1 Introduction

The Global Burden Disease study reported that air pollution
caused 4.2 million deaths in 2015 due to particulate matter (Cohen
et al., 2017). In addition, recent studies found a link between
PM2.5 and several neurological disorders like dementia,
Alzheimer’s, and Parkinson’s diseases (Kioumourtzoglou et al.,
2016; Chen et al., 2017). Despite the harmful effects of PM2.5 on
health, ground monitoring stations providing information about
PM2.5 concentration are considerably sparse and unsuitable for
spatial interpolation at a local scale. As a result, interpolations of
PM2.5 from the nearest available monitoring stations to estimate the
exposure in epidemiological studies are likely unreliable due to the
underestimation of spatial variability in PM2.5 (Özkaynak et al.,
2013). In an effort to overcome sparse measurements from ground
stations, satellite-derived PM2.5 is widely used. These efforts focus on
estimating daily PM2.5 levels. However, PM2.5 data over finer
temporal intervals are necessary for accurate environmental
exposure estimation. This study explores the use of satellite data to
estimate PM2.5 over a temporal interval of 1 h in contrast to daily
PM2.5 levels.

A common approach to characterize the spatial distribution of
PM2.5 utilizes satellite-based Aerosol Optical Depth (AOD) as one of
the predictor variables (Chudnovsky et al., 2014; Lary et al., 2014; Xie
et al., 2015; Guo et al., 2017). AOD measures the amount of aerosols
present in the atmosphere according to the optical properties of
aerosols in an atmospheric column. However, the relationship
between PM2.5 and AOD is complicated. AOD is affected by the
size of the particles, the type of the particles, and meteorological
factors. Depending on the source, the composition of the particles may
vary in space and time (Bell et al., 2007). Meteorological factors (such
as cloud fraction, relative humidity, temperature, boundary layer
height, wind speed, and others) also affect this relationship (Lary
et al., 2014; Guo et al., 2017). Several studies report PM2.5-AOD
relationship varies with geography (Engel-Cox et al., 2004), time (Guo
et al., 2017), the scale of regional or local studies (Chudnovsky et al.,
2014), and AOD data resolution (Chudnovsky et al., 2014; Xie et al.,
2015; Guo et al., 2017). Therefore, empirical models using AOD to
estimate PM2.5 developed for one geographical area cannot be used
for others.

The limited number of air quality stations in a geographical
area may not meet the sample size requirements of parametric
statistical frameworks, such as multiple linear regression. As a
general rule of thumb, a multiple linear regression requires a
minimum of 30 observations. Thus, these approaches are
unsuitable in areas with sparse monitoring stations. Low-cost
sensors such as PurpleAir (https://www2.purpleair.com/) have
been deployed in large numbers across the United States. While
these low-cost sensors help reduce the gap in spatial coverage of
PM2.5 measurements, the accuracy of these sensors remains a cause
of concern. A field evaluation of three PurpleAir sensors carried out
at Rubidoux Air Monitoring Station in California for 2 months
indicates that, in general, PurpleAir sensors can show an overall
trend of PM2.5 within a day and across days but tend to overestimate
PM2.5 concentration most of the times (Gupta et al., 2018).
Specifically, the California study highlights that the bias of
PurpleAir sensors increases with rising PM2.5 concentration.
Moreover, PurpleAir sensors’ observations deviate from 0% to
90% of their hourly mean values.

A specification error due to the incorrect functional form between
dependent and independent variables leads to biases in estimation
(Ramsey, 1969), and proper relationship specifications are challenging
for PM2.5 models using AOD (Lary et al., 2014). In-situ stations
measure PM2.5 as the ground-level concentration of particles with an
aerodynamic diameter less than 2.5 micrometers. In contrast, AOD
measures the extinction of light due to aerosols in the atmospheric
column (Nam et al., 2018). AOD and PM2.5 are independently
affected by meteorological parameters (Guo et al., 2017), further
complicating their relationship. Furthermore, AOD is an
instantaneous measurement from space, and PM2.5 is an hourly
average measured in situ at respective ground monitoring stations.
Researchers proposed diverse modeling approaches to overcome the
complicated relationship but lacked sufficient attention to the
differences in temporal representations of AOD and PM2.5.

Literature reported several approaches to model the PM2.5-AOD
relationship, like land-use regression (Lee, 2019), geographically
weighted regression (Hu et al., 2013; van Donkelaar et al., 2015),
back propagation artificial neural network (Gupta and Christopher,
2009a), mixed effect models (Xie et al., 2015), linear regression models
(Gupta and Christopher, 2009b), and chemical transport models
(Geng et al., 2015). The mixed effect modeling approach appeared
popular among these approaches to 24-h average PM2.5 estimation.
Some studies used AOD as the only predictor (Chudnovsky et al.,
2014; Xie et al., 2015); others included additional parameters to
improve model performance (Hu et al., 2014; Stafoggia et al.,
2017). Xie et al. (2015) used a mixed effect model to account for
spatiotemporal variations in PM2.5-AOD relationship with day-
specific and site-specific parameters for AOD. Moreover, several
other studies implemented similar mixed effect models by
including AOD and additional spatiotemporal parameters (Hu
et al., 2014; Stafoggia et al., 2017). In addition to day-specific
random parameters, Stafoggia et al. (2017) introduced region-
specific random parameters to account for variation in PM10-AOD
relations across different regions in Italy. In the Southeastern
United States, Hu et al. (2014) used a mixed effect model to
capture temporal variability in the PM2.5-AOD relationship and
followed with Geographically Weighted Regression on the residuals
to account for spatial variability. Spatial and temporal parameters
considered in these studies include population density, emission data,
elevation, land cover, road density, Normalized Difference Vegetation
Index (NDVI), meteorological data, etc. Zheng et al. (2013) applied a
deep learning framework to predict the hourly Air Quality Index
(AQI) for Beijing at 1 km resolution with region-specific parameters
representative of traffic features (e.g., mean, standard deviation, and
distribution of speeds on the road) and human mobility features (e.g.,
number of people arriving and departing a location). Such region-
specific parameters may not be available or appropriate for areas
outside Beijing.

Machine learning recently gained traction in modeling PM2.5
(Lary et al., 2014; Di et al., 2016; Hu et al., 2017; Li et al., 2017; Park
et al., 2020). Several of these studies incorporated spatial dependence
in the machine learning methods. Di et al. (2016) used an artificial
neural network (ANN) for the northeastern United States to calibrate
PM2.5 obtained from a chemical transport model, and Li et al. (2017)
used the deep belief network approach to estimate PM2.5 in China.
They considered spatial and temporal autocorrelation using lagged
spatial and temporal terms. Spatial lag was incorporated by using
PM2.5 measurements from nearby stations weighted by the inverse of
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their distance from the monitor under consideration, hence,
essentially the classic spatial interpolation based on inverse distance
weighting. An alternative way of applying weights in PM2.5 estimation
was the boosting technique in machine learning. Boosting gave more
weight to observations with high errors to improve model
performance. Zhan et al. (2017) used geographically weighted
gradient boosting to account for spatial non-stationarity in
PM2.5 and AOD as well as meteorological factors. These methods
refine the spatial resolution of PM2.5 estimation but retain temporal
resolution at daily averages.

Advances in deep learning opened opportunities to convolute in
situ and satellite observations for PM2.5 estimation. Park et al. (2020)
used a convolutional neural network (CNN) to estimate the 24-h
averaged PM2.5 across the conterminous United States using the 1-
year data from 2011. Hu et al. (2017) incorporated inverse distance
weighted PM2.5 from nearby stations as input to the random forest
model. Clouds or high surface brightness might obscure AOD data
from MODIS. Due to the high missing rate of AOD, both studies
applied the GEOS-Chem model to simulate AOD data; Hu et al.
(2017) used GEOS-Chem AOD when MODIS AOD was missing,
whereas Park et al. (2020) used both MODIS AOD and GEOS-Chem
AOD. Along with the AOD data, both studies used meteorological
data, land-use variables, and National Emission Inventory (NEI) data
as predictors. Several data issues were prominent in both studies. NEI
database provided information about pollutant-wise emissions at
annual scales. However, methods used to estimate these emissions
might vary from year to year (U.S. Environmental Protection Agency,
2020). Therefore, the data from these emission inventories were
unsuitable for multi-year studies. Land-use data were static and
could contribute very little in explaining hourly PM2.5 variation. Li
et al. (2017) reported that the inclusion of road networks as one of the
predictors showed a minimal impact on model performance, whereas
population worsened the model performance. Furthermore, in areas
with sparsely distributed monitoring stations, a model developed with
land-use and population density around very few monitoring stations
might not be representative enough to allow model generalizability for
the entire study area. Xu et al. (2014) observed an increase in AOD
values in areas with increased human activities and decreased AOD in
areas with increasing forested land. They concluded that changes in
land-use led to changes in AOD patterns. Therefore, our study
assumes that AOD data embed the spatial effects of land-use and
surrounding activities on PM2.5 in a given hour.

Several studies assessed model performance in estimating
PM2.5 through cross-validation in three different approaches for
setting cross-validation data: spatially separated cross-validation
(SS-CV), temporally separated cross-validation (TS-CV), and
overall cross-validation (O-CV) approach (Di et al., 2016; Hu et al.,
2017; Park et al., 2020). As the names suggest, SS-CV shares no
common locations between the training dataset and the cross-
validation dataset; TS-CV uses observations for the training dataset
from different days than the observations in the cross-validation
dataset. In contrast, the O-CV approach imposed no restrictions in
days or locations on training and cross-validation datasets. Results
from studies by Di et al. (2016), Hu et al. (2017), and Park et al. (2020)
showed that models using O-CV and TS-CV outperformed the ones
using the SS-CV approach. It suggested that models developed for a set
of locations did not perform well at unseen locations; the models were
spatially untransferable. The performance of models using either the
O-CV or T-CV approach for cross-validation was comparable.

Therefore, this our study took the O-CV approach for cross-
validation.

Incorporating geographical correlations can improve model
performance in PM2.5 estimation (Li et al., 2017), but four main
challenges remain. First, many studies incorporate spatial dependence
and include spatially lagged predictors and spatially lagged PM2.5 in
the model (Hu et al., 2017; Li et al., 2017; Zhan et al., 2017; Park et al.,
2020). For the models developed by Hu et al. (2017) and Park et al.
(2020), spatially lagged PM2.5 measurements rise to the most
important variable in estimating PM2.5. However, obtaining
spatially lagged PM2.5 for areas with sparse distribution of
monitoring stations is challenging. Covariates from nearby stations
depend on the spacings between stations and the spatial distribution of
the target phenomenon PM2.5. Therefore, the density of the
PM2.5 stations can affect the accuracy of the PM2.5 estimates. A
covariate-based estimator would perform poorly in areas with sparse
monitoring networks. In contrast, an objective of this study is to
develop a model suitable even in areas with very few monitoring
stations. Moreover, the use of spatially lagged PM2.5 conceals the role
of explanatory variables in the spatial variation of PM2.5. The second
challenge relates to the hindrance of real-time PM2.5 estimation
without data from nearby monitoring stations. The third challenge
speaks for the mismatch between PM2.5 estimates and satellite
observations. For example, AOD data are instantaneous
observations around 10:30 a.m. and 1:30 p.m. by Terra and Aqua
satellites, respectively. Although few studies, such as Tian and Chen
(2010) and Xie et al. (2015), used PM2.5 obtained near MODIS AOD
acquisition time, most studies in the literature estimated the
PM2.5 concentration averaged over 24 h using instantaneous
AODs. Finally, the fourth challenge relates to previous studies
incorporating spatial dependence. These studies used predictors
from a fixed spatial extent around the PM2.5 station. Therefore,
how the model might perform over different spatial extents is not
known.

Our study fills the research gaps considering these challenges by
developing a model to estimate PM2.5 in the hour corresponding to
satellite data acquisition time. The model considers only spatially
lagged predictors from MODIS and meteorological data but does not
include PM2.5 from nearby stations. Finally, the study investigates the
model performance using CNN, where the input image-patch size
varies from 3 × 3, 5 × 5,. . to 19 × 19, with a PM2.5 station located in the
central pixel or cell of the image. Thus, the input image-patch size
represents the size of the spatial lag. Varying the input image-patch
size allows for examining the effect of spatial lag size on
PM2.5 estimation. While the research focused on PM2.5, the
proposed approach is applicable to other spatially continuous
variables, such as temperature or greenness indices, with
observations at in situ stations, remote sensing acquisitions, and
relevant auxiliary data. In particular, data from in situ observations
are commonly available as averaged values over time, such as
PM2.5 hourly, daily, or monthly averages at a specific site. In
contrast, remote sensing acquisitions are instant measures across
multiple locations. The proposed approach explores the spatial
measures captured in consecutive remote sensing images that can
aid down-scaled temporal estimates at sites. Specifically in our study,
consecutive MODIS images were taken ~3 or ~21 h apart. If we can
accurately estimate time-averaged PM2.5 values in-between MODIS
acquisitions at sites, we will be able to derive a space-time cube of
PM2.5 (or other spatial variables). Our proposed approach used
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hourly observations from in situ stations to train a model and validate
the model that estimates the PM2.5 hourly values corresponding to
two MODIS images using both AOD data and meteorological data.
Our findings showed the spatial-lag effects on the downscaled
temporal estimates. Effective spatial lags shall vary with spatial
variables. In our study, the effective spatial lag for PM2.5 expands
to 10 km.

2 Data and methods

2.1 Study area

The study area is the Dallas-Fort Worth (DFW) metroplex with
more than 7.5 million people. The DFW metroplex and its
surrounding area have only eight air-quality monitoring stations
measuring hourly PM2.5 from 2006–2015, leaving most of the
metroplex unmonitored (Figure 1). Out of the eight monitoring
stations, three are located in urban areas, whereas five are at the
periphery of the urban areas. Information on the spatiotemporal
distribution of PM2.5 at the appropriate level of detail is important
because of the harmful effects of PM2.5 on health, especially for those
already suffering from respiratory and cardiovascular diseases.
Informed of the spatiotemporal distribution of PM2.5 at a fine
interval, people can avoid areas with high concentration and
reduce the geographic context uncertainty for epidemiological
studies of PM2.5 exposure. Nevertheless, a step towards estimating
the spatiotemporal distribution of PM2.5 is to test how well an O-CV
approach can use AOD to estimate PM2.5 at these stations
corresponding to the hour of satellite overpass time. If the
estimation is acceptable at these sites, the proposed model can

provide the foundation for building a spatial interpolation method
with AOD to estimate PM2.5 at unmonitored locations with
AOD data.

2.2 Data

The study used two sets of input data: 1) aerosol optical depth
(AOD) and AOD-related variables from MODIS 2) meteorological
data to estimate PM2.5 corresponding to the hour of MODIS
overpass time.

2.2.1 PM2.5
Terra and Aqua satellites, with an equatorial crossing time of ~10:

30 a.m. and 1:30 p.m. (local time) respectively, overpass the study area
twice a day. Nevertheless, due to the broader swath of 2,330 km,
MODIS AOD is sometimes available at times other than overpass
times. PM2.5 data from ground monitoring stations are available at an
hourly interval. The study used PM2.5 for the hourMODIS overpasses
the study area. For example, if MODIS overpasses at 10:30 a.m., the
PM2.5 measured between 10 a.m. and 11 a.m. was used. The data was
downloaded from the Environmental Protection Agency’s website
(https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw) with
the parameter code of the PM2.5 data 88502. A total of 10-year
PM2.5 observations from 2006–2015 were downloaded for the
study area.

2.2.2 AOD data
MODIS AOD data have been available only at 10 km resolution. A

recently developed algorithm, Multi-Angle Implementation of
Atmospheric Correction (MAIAC) downscales AOD to 1 km

FIGURE 1
Locations of PM2.5 stations in the study area.
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resolution (Lyapustin and Wang, 2018). At 10-km resolution, two
separate algorithms, Dark Target (DT) and Deep Blue (DB) retrieve
aerosols fromMODIS data. DT retrieves AOD data for dark/vegetated
land surfaces, whereas DB works wells for bright land surfaces. In
contrast, MAIAC retrieves aerosols over both dark and bright land
surfaces. Besides providing AOD data at a finer spatial resolution,
AOD data from MAIAC has better spatial coverage, higher retrieval
frequency, low bias, and high correlation with AOD from the Aerosol
Robotic Network (AERONET) stations (Superczynski et al., 2017;
Jethva et al., 2019; Mhawish et al., 2019).

Because of the superiority of AOD data from MAIAC over other
AOD algorithms and its availability at a higher resolution, this study
selected the MCD19A2 version-6 data product for AOD estimated
with MAIAC algorithm (hereafter, MAIAC AOD data). AOD is
available at two wavelengths: 470 nm and 550 nm. This study used
AOD at 470 nm because AOD provided at 550 nm is derived from
AOD at 470 nm, and AOD at 550 nm is marginally inferior in quality
compared to AOD at 470 nm (Lyapustin and Wang, 2018). MAIAC
AOD data was transformed to WGS 1984 coordinate system using
MODIS Reprojection Tool (MRT), and then space and time references
of the MAIAC AOD were used to extract matching
PM2.5 observations from the air quality monitoring stations.
MAIAC AOD data also provided quality flags for AOD and data
on satellite retrieved water vapor content and viewing zenith angle.
This study used these variables along with MAIAC AOD. Data about

the zenith angle were available at 5 km resolution. Zenith angle data
were resampled using nearest neighbor resampling to match the
resolution of AOD data.

2.2.3 Meteorological data
Meteorological data came from European Centre for Medium-

range Weather Forecast (ECMWF). ECMWF provides reanalysis data
worldwide, at 3, 6, 9, and 12 h from 0:00 and 12:00 UTC (Berrisford
et al., 2011). Thus, the ECMWF reanalysis data were available for the
Dallas-Fort Worth metroplex four times a day, at 9 a.m., 12 p.m.,
3 p.m., and 6 p.m. local standard time, and at a spatial resolution of
0.125° (~13 km). The reanalysis data combine weather observations
with the most up-to-date weather models and provide information on
different weather variables as a continuous grid at each of the 4 hours
(Parker, 2016). The various weather parameters obtained from
ECMWF included horizontal and vertical components of the wind,
wind gust, temperature, dew point temperature, clear sky surface
photosynthetically active radiations, total precipitation, boundary
layer height, boundary layer dissipation, total cloud cover, medium
cloud cover, high cloud cover, convective precipitation, convective
available potential energy, and evaporation. The study retrieved
meteorological data closer (in time) to satellite acquisition time.

In total, the study used 21 predictor variables (see Table 1) to
model PM2.5 from 8 air quality monitoring stations around the
Dallas-Fort Worth area. The first four predictors came from

TABLE 1 List of predictors.

Sr No. Predictor Measurement unit Spatial resolution

1 AOD — 1 km

2 AOD QA Flag — 1 km

3 Column Water Vapor cm 1 km

4 Cosine of Solar Zenith Angle — 5 km

5 2-m Temperature K ~13 km

6 2-m Dew Point Temperature K ~13 km

7 Clear Sky Surface Photosynthetically Active Radiations J m-2 ~13 km

8 Photosynthetically Active Radiations at the Surface J m-2 ~13 km

9 Total Column Water Vapor kg m-2 ~13 km

10 Boundary Layer Dissipation J m-2 ~13 km

11 Boundary Layer Height m ~13 km

12 Total Cloud Cover Expressed as a fraction between 0–1 ~13 km

13 Medium Cloud Cover Expressed as a fraction between 0–1 ~13 km

14 High Cloud Cover Expressed as a fraction between 0–1 ~13 km

15 Convective Precipitation m ~13 km

16 Convective Available Potential Energy J kg-2 ~13 km

17 10-m U Wind Component (Eastward) m s-1 ~13 km

18 10-m V Wind Component (Northward) m s-1 ~13 km

19 10-m Wind Gust m s-1 ~13 km

20 Evaporation m of water equivalent ~13 km

21 Total Precipitation m ~13 km

Frontiers in Remote Sensing frontiersin.org05

Karale and Yuan 10.3389/frsen.2023.1041466

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1041466


MODIS MAIAC AOD products, and the remaining variables were
from ECMWF reanalysis data. Predictors obtained from MODIS data
presented instantaneous observations at the time of satellite passing,
whereas ECMWF reanalysis data provided four estimates per day.

2.3 Methodology

Figure 2 shows the flowchart of the data and method used in the
study. The study resampled meteorological data to match the
resolution of the MAIAC AOD data using the nearest neighbor
resampling method. This section discusses data processing, model
architecture, and evaluation.

Through convolution operations, the Convolutional Neural
Network (CNN) algorithm takes into account the very spatial
nature of the images. It applies two-dimensional filters, also known
as kernels, on the input. The filter moves over the input image and
extracts features. Two-dimensional filters applied to compute
convolutional layers use values of spatially adjacent pixels for
feature extractions. This process, also known as convolution,
exploits the spatial patterns and relationships (Dumoulin and
Visin, 2016). An optimization algorithm with backward
propagation minimizing a loss function determines weights in
these filters (Indolia et al., 2018). These weights define the nature
of the spatial relationship among spatially adjacent grid-cells yielding
the output (LeCun et al., 1998). For the phenomenon affected by
explanatory variables in the surrounding areas, it is essential to
account for the influence of spatially adjacent locations. As

discussed in the introduction, many studies have improved the
performance of models estimating PM2.5 after considering a
correlation among variables in space. Specifically, many studies
incorporated a weighted average of PM2.5 from nearby stations.
Their approach captured existing spatial autocorrelation in the
PM2.5 values across in situ stations for PM2.5 estimation even
though these stations might be too sparse to acquire PM2.5 spatial
variances among them. On the contrary, our study intended to develop
a model that relies on variables other than spatially lagged PM2.5 and
thus may help explore the effects of other explanatory variables on
PM2.5. Therefore, we did not use measurements from nearby
PM2.5 monitoring stations but aimed to develop a model that uses
AOD and meteorological data to estimate PM2.5 corresponding to an
hour of AOD acquisition at specific sites.

Park et al. (2020) investigated spatially lagged variables over a fixed
distance using an image size of 5 × 5 but due to the coarser resolution
of the AOD data (10 km) they used, it corresponded to an area of
50 km × 50 km. Instead, this study examined the influence of spatial
lag size to evaluate the spatial scale effects of meteorological variables
with AOD on PM2.5 estimates. The underlying grid resolution of
AOD data was 1 km × 1 km. CNN accepts images as input. We located
the grid cell in which the particular PM2.5 station is located and
expanded upon that grid cell to extract a 3 km × 3 km image. We
followed a similar process for all predictor variables- AOD quality flag
data, column water vapor, resampled zenith angle, and meteorological
data. Since there are 21 predictors, the input image-patch size for one
PM2.5 observation from a particular PM2.5 station is 3 × 3 × 21. The
process was repeated for all PM2.5 observations from eight

FIGURE 2
Flowchart of data and methodology.
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monitoring stations in the study area during 2006–2015 to form an
input dataset to build a model in an O-CV approach. Similarly, we
extracted image-patches of sizes 5 × 5, 7 × 7, 9 × 9, . . . 19 × 19 to form a
total of nine different input datasets (Figure 3). We stopped at 19 ×
19 because of the gaps in AOD data due to cloud cover (more
discussion in Section 2.3.2). With a PM2.5 station in a central cell,
the input image-patch size represented the size of the area around the
PM2.5 station. Thus, it was analogous to the concept of spatial lag in
spatial statistics. A total of nine CNN models, one for each image-
patch size, were developed and compared to evaluate the effect of input
image-patch size on PM2.5 estimation.

2.3.1 CNN models of PM2.5 predictions
A larger image contains more information. With larger sizes, spatial

relations become more intricate. A neural network learns to recognize
more complex features withmore convolution layers (Lopez Pinaya et al.,
2020). Therefore, depending on the size, the study used variable
convolutional layers to account for varying complexity in spatial
relations. This led to nine separate CNN models, one for each image-
patch size. The larger the image-patch, the more convolutional layers are.
Predictors were convoluted using filters of size 3 × 3 until the input
image-patch reduces to 1 × 1. The first and the second convolutions
consisted of 24 and 16 filters, respectively, whereas each of the remaining

FIGURE 3
Different sized image-patches centered on a cell with a PM2.5 station.

FIGURE 4
The study’s CNN architecture.
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convolutions consisted of eight. Each of the dense or fully connected
layers had eight neurons. Input image-patches of sizes 3 × 3 and 5 ×
5 required only one and two convolutions, respectively, whereas the
remaining input image-patch sizes requiredmore than two convolutions.
A 7 × 7 image-patch required three convolutions, whereas a 19 ×
19 image-patch required seven convolutions. Figure 4 shows the
architecture of the CNN used in the study for a 7 × 7 image-patch.
A blue square represents 3 × 3 filters used in all convolutions. The study
used a sigmoid activation function for all layers except for the last year,
which outputs the model predictions with a linear activation function,
since the sigmoid limits the output range from 0 to 1 and the linear
activation regressed the predictions. The study used the Adam
optimization algorithm, an extension to the stochastic gradient decent
and appropriate for non-stationary objectives, problems with noisy or
sparse gradients, and computationally efficient, and typically low demand
on tuning parameters (Kingma and Ba, 2014). The study set a learning
rate of 0.01 and 200 epochs for training. The learning rate of 0.01 was
found to balance learning time and accuracy. To minimize parameters
for training, the study used stride one and no padding across all
convolutions. Also, batch normalization followed each convolution
and dense layer prior to the ensuing activation function.

2.3.2 Data augmentation
AOD data can be missing due to clouds, snow or brighter surface

conditions. The problem of missing data in AOD was well documented
in the literature (Goldberg et al., 2019; Hu et al., 2017; Park et al., 2020).
The study included only those data points for which AOD data was
available for cells in an image-patch of considered size. This problem of
missing AOD led to decreasing number of samples for larger image-
patch sizes in our study (Table 2). A larger image-patch comprised of
more cells than a smaller image-patch, and the chances of having at least
1 cell with missing AOD were greater for larger image-patch sizes. Due
to the limited number of samples available for larger image-patch sizes,
we restricted our largest input image-patch size to 19 × 19.

Machine learning approaches, such as CNN, require a large number of
samples or data points. The relatively small study area and only 10 years of
the study period resulted in small samples in the context of machine
learning. Data augmentation, a common practice used inmachine learning
to increase the sample size, provided a way to generate additional samples.
We used the geometric transformations method to augment available data
because it was computationally simple and did not introduce new

information to original data. Geometric transformation generates
additional samples by flipping, scaling, rotating, and cropping original
images (Taylor and Nitschke, 2019). The study flipped and rotated an
original image-patch (Figure 5) to generate additional image-patches
(Figure 6). Flipping generated mirror copies along an axis, whereas
rotation arranged original image-patches in different orientations
(Figure 6). Image-patches of all the input variables in a particular
sample or data point were flipped or rotated in the same way to form
a new sample or data point. As a result, the process of data augmentation
only repositioned the original sample or data point without making any
change to original data values or their inter-relation in spatial configuration.
As the study used six different ways to augment the data (Figure 6), each
sample was reconfigured in six different ways, resulting in a 6-fold increase
in the number of samples available for training and cross-validation.

2.3.3 Cross-validation
As previously noted in the introduction, out of three commonly used

cross-validation approaches for AOD-based PM2.5 models, the overall
(O-CV) and temporally separated (TS-CV) approaches outperformed
the spatially separated approach (SS-CV). The TS-CV approach can
result in the training of a model for a specified period. Therefore, this
study used the O-CV approach to evaluate model performance.
Specifically, the study adopted the five-fold O-CV approach. The data
was split into five groups; each group was iteratively used to test the
model performance, and the remaining four trained the model. The
average correlation coefficient R) and root mean squared error (RMSE)
across all five groups were used to compare model performance.

2.3.4 Reliability assessment
The data augmentation technique helped increase the size of the

data available for training by generating additional artificial samples
from the existing data. However, it raised concerns about the model’s
ability to accurately estimate the PM2.5 concentration level of a
specific data point regardless of whether it was augmented or not
in the training process. In other words, though the same data point was
present in the dataset multiple times in different forms, the model’s
PM2.5 estimates across these multiple forms may vary. To evaluate the
model’s reliability, it was necessary to consider the precision of these
estimates or how closely they match each other. We trained a model
using an entire dataset (consisting of original data points and
augmented data points) and repeated the process for each image-
patch size to evaluate the model’s ability to provide precise estimates.
The use of the entire dataset for model development enabled the
assessment of the variability in PM2.5 estimates of each data point,

TABLE 2 AOD data availability.

Image-patch size Number of samples

3x3 14570

5x5 12674

7x7 10686

9x9 8407

11x11 7488

13x13 6660

15x15 5703

17x17 5165

19x19 4205

FIGURE 5
Sample image-patch of size 5 × 5.
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which we repeated six more times in the augmented dataset. We then
calculated the difference between the maximum and minimum
estimates (also referred as the range of the PM2.5 estimates) for
each data point and calculated the statistics of these values for nine
models, each using an input image-patch of a different size.

3 Results

3.1 Description of PM2.5 data

Figure 1 showed the locations of eight monitoring stations in the
Dallas-Fort Worth metroplex and its surrounding area. During
2006–2015, the average hourly PM2.5 was 9.29 μg/m3 and

77216 valid hourly PM2.5 measurements were available at satellite
image acquisition times across these eight stations (Table 3). The
median values at all stations are less than the respective means
indicating the positively skewed distribution of PM2.5 concentration
at each station. On an average 50% of the values are below 8.29 μg/m3.
The average interquartile range of PM2.5 values across all stations is
6.88 μg/m3 with middle 50% values ranging between 5.27 μg/m3 to
12.15 μg/m3. There were several zero and negative values in the data,
which were removed based on the assumption that those were the result
of potential measurement errors. The table also presents the average
hourly PM2.5 level at each station at all available satellite acquisition
times during the study period. MODIS acquired data around 10:30 a.m.
and 1:30 p.m. The mean PM2.5 value during the satellite acquisition
times is lower than the average PM2.5 value at each station because of

FIGURE 6
Augmented image-patch derived from a sample image-patch in Figure 5.
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the improved circulation around noon. PM2.5 values were generally
higher in the early morning and late evening.

AOD data are often susceptible to data gaps due to cloud cover or
bright surfaces. The study incurred a high missing rate in AOD data
for the same reasons. Image-patches of 3 × 3 km2 with complete AOD
data constituted only 18.87% of the total AOD data; those of 19 ×
19 km2, merely 5.44%. Table 4 presents the mean and standard
deviation of hourly PM2.5 for the different-sized input patches
considered in the study. The number of samples (e.g., complete
patches) decreased as the patch size increased; the reduced sample
size (e.g., number of patches) reduced the mean and standard
deviation of PM2.5 available for training the model.
PM2.5 decreased from 7.07 μg/m3 to 5.90 μg/m3, and the standard
deviation from 5.54 to 4.96 from the smallest to the largest patch size.

3.2 Model evaluation

Machine learning methods require a large amount of data to train
the model. To overcome the challenge of a limited number of samples
to train the model, we used a data augmentation technique to

artificially increase the number of samples by introducing relational
variance of input data patches to PM2.5 data at the same site and time
of MODIS observations. Below are the results of CNN models with
augmented data.

Figure 7 shows the results for CNN across different-sized image-
patches. Out of all sizes, the model with patch size 19 × 19 km2

performed best with the correlation coefficient R) of 0.87 (or R2 of
0.76) and root mean squared error (RMSE) of 2.57 μg/m3 for
PM2.5 estimation at station locations. Unlike other studies in the
literature, this study achieved comparably good performance without
including PM2.5 covariates from nearby stations. For example,
modeling PM2.5 over the contiguous United States, Di et al. (2016)
achieved R2 of 0.84, whereas Park et al. (2020) reported R2 of 0.84 and
RMSE of 2.55 μg/m3 for 24-h averages of PM2.5. Similarly, a study
performed in China for daily PM2.5 estimation reported R2 and RMSE
of 0.76 and 13 μg/m3 respectively (Zhan et al., 2017). Because of the
differences in the geographic locations and regional extents and levels of
air pollution, results from the studies in the literature cannot be directly
compared to our results. Noteworthily, our study estimated
PM2.5 corresponding to the hour of MODIS data acquisition time
in contrast to a 24-h average of PM2.5 in the above-mentioned studies.

TABLE 3 PM2.5 concentration and data availability during 2006–2015.

Station name Hourly PM2.5 during 2006–2015 (µg/m3) Hourly PM2.5 during satellite acquisition times

Mean Median Min Q1 Q3 Max Mean Number of PM2.5 measurements available

Arlington Municipal Airport 9.30 8.3 0.1 5.2 12.2 266.3 7.94 10354

Corsicana Airport 9.07 8.1 0.1 5.2 11.8 106.6 7.47 7790

Dallas Hinton 9.50 8.6 0.1 5.3 12.6 172.7 9.67 10711

Denton Airport South 9.05 8.0 0.1 4.9 12.1 137.7 7.76 9942

Haws Athletic Center 10.19 9.1 0.1 5.9 13.3 362.2 7.97 10404

Italy 8.97 8.0 0.1 5.3 11.5 222.6 7.59 8240

Kaufman 9.17 8.2 0.1 5.3 11.9 153.3 7.72 10358

Midlothian OFW 9.11 8.0 0.1 5.1 11.8 176.0 7.68 9417

Average 9.29 8.29 0.1 5.27 12.15 199.65 7.97 Total 77216

TABLE 4 Descriptive statistics of PM2.5 values across all image sizes.

Image-patch size Number of samples Hourly PM2.5

Mean Standard deviation

3x3 14570 7.07 5.54

5x5 12674 6.79 5.34

7x7 10686 6.56 5.24

9x9 8407 6.46 5.18

11x11 7488 6.38 5.18

13x13 6660 6.27 5.12

15x15 5703 6.30 5.17

17x17 5165 6.17 5.14

19x19 4205 5.90 4.96
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3.3 Comparison with models not using data
augmentation

Without data augmentation, a correlation between estimated
PM2.5 from MAIAC AOD and observed PM2.5 at monitoring
stations for the training dataset increased with the input image-patch
size. However, the correlation degraded for the test dataset (Figure 8).
Similarly, the models did not perform as well on the test dataset as the
training dataset in terms of RMSE. This suggested that the models

performed well on the training dataset with a smaller number of data
points but failed to perform equally well over unseen data, a case of
overfitting. Finally, we compared the performance of models with and
without data augmentation on the test dataset. Data augmentation
improved R and decreased RMSE for all image-patch sizes (Figure 9).
Moreover, models with larger image-patch sizes, despite relatively small
sample size even with data augmentation, outperformed models with
smaller-sized image-patches. It suggested that a wider area around the
PM2.5 station improved PM2.5 estimation.

FIGURE 7
Correlation coefficient and RMSE for CNN with varying image-patch sizes with data augmentation.

FIGURE 8
Correlation coefficient and RMSE for CNN with varying image-patch size without data augmentation.
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The implemented data augmentation process retained spatial
variance among cells in an input data image-patch (MAIAC AOD
and weather data) and the patch’s spatial pattern across all
augmented data items but altered the orientation and facing of
the patch. No augmentation was applied to in situ observations.
Therefore, the data augmentation changed only spatial orientation
of the input data associated with a particular observation and, as
such, introduced variance to how the interaction between MAIAC-
AOD and weather data may relate to in situ PM2.5 observations.
The increased relational variance in training data made the model
more difficult to converge during the training process (i.e., reaching
the set of parameters that minimize the model’s loss function).
Meanwhile, the increased variance also lowered the risk of model
overfitting. In machine learning, a model is considered overfitting if
it performs well on training data but poorly on test data. Figures 7,
8 show the results of CNN models over augmented and non-
augmented data, respectively. The R and RMSE values over
augmented training and test data are comparable (Figure 7),
whereas their apparent discrepancies with non-augmented
training and test data suggest poor model performance
(Figure 8). As such, the data augmentation helps overcome the
data sparsity due to missing AOD without overfitting for
PM2.5 estimation in this study.

3.4 Precision evaluation on PM2.5 estimates

The data augmentation technique proved helpful to increase the
training data size and improved the model performance. However,
due to the repeated data points used in this technique, it was essential
to assess the robustness of PM2.5 estimates across these repeated

data points. For each image-patch size, a model was developed using
the entire dataset to assess the variability in the PM2.5 estimates
across the repeated measurements. Table 5 provides descriptive
statistics of the difference between maximum and minimum
estimates obtained for the same observation across
different image-patch sizes. Overall, quartile 1 (Q1), median,
and quartile 3 (Q3) values increased as image-patch size increased,
while minimum values remained consistently low. However, the
magnitude of this increase was relatively small, with the variability
only rising from 0.05 for a 3 × 3 image-patch size, 0.58 for 17 × 17,
and 0.39 for a 19 × 19 image-patch size. The results suggested that while
the precision of the PM2.5 estimates varied across the image-patch sizes,
with a smaller patch size producing more precise estimates. Yet, the
difference in precision was relatively small. Although the maximum
estimated PM2.5 range varied quite a lot across different image-patch
sizes, % of values with the range of PM2.5 estimates greater than 2.5 were
less than 6.5% across all image-patch sizes, with the lowest percentage of
0.01 for 3 × 3 and the highest percentage of 6.44 for 15 × 15 image-
patch size.

4 Discussion

In this study, PM2.5 concentration corresponding to the hour of
satellite data acquisition time was estimated using the Convolutional
Neural Network (CNN) approach for Dallas-Fort Worth metroplex
and its surrounding area. A simple CNNmodel achieved a correlation
coefficient of 0.87 and RMSE of 2.57 μg/m3 without using PM2.5 data
from nearby monitoring stations (also called spatially lagged PM2.5).
In spatial statistics, the spatially lagged dependent variables are used in
the model structure to account for the existing spatial dependence in

FIGURE 9
Percent change in R and RMSE in models without data augmentation across image-patch sizes.
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the dependent variable (Anselin, 2003). While these models aim to
derive unbiased estimators by accounting for existing spatial
autocorrelation in the dependent variable (Anselin and Bera, 1998),
for PM2.5 studies, obtaining spatially lagged PM2.5 is challenging
because the sparse distribution of air quality monitoring stations may
be distant beyond the spatial dependence. Furthermore, PM2.5 come
from point (e.g., industry and burns) and non-point (e.g., traffic,
diffusion from nearby regions) sources. As such, co-variates from
nearby stations may not be useful since a constant spatial gradient
between two stations is unlikely. Yet, the convolutional process in our
CNNmodels embedded spatial covariates among MAIAC-AOD cells,
which were closer than the distance between nearby stations. In
addition, the CNN models also considered spatially lagged
independent variables. Without covariates from nearby stations,
our best model estimated PM2.5 corresponding to the hour of
MODIS data acquisition time, at a finer temporal interval than the
24-h averaged PM2.5 concentration estimated by previous studies.

The MODIS satellite overpasses any area twice a day; however,
the recent launch of the geostationary satellite GOES-R has made it
possible to acquire AOD data with an increasing frequency of every
5 and 15 min (Schmit et al., 2017). Extending the CNN architecture
from this study to these frequently available AOD data will help
explore the diurnal trend in PM2.5 and increase the data available for
studies investigating the effects of the environmental exposome. In
addition, the independent variables used in our model are also
readily available everywhere. Therefore, this model can be easily
trained for other regions.

This study systematically investigated the effects of the input
image-patch size on model performance. The missing AOD problem
resulted in a smaller sample size for the larger spatial extents or
image-patch sizes considered in the study. The mean and variance of
the PM2.5 decreased slightly as the image-patch size increased
(Table 4). While it may appear that the improved model
performance with larger patch sizes is due to the reduced
variance, it is important to note that with a larger spatial extent
or patch-size, the model complexity also increased. With larger
spatial extents, the model must account for spatial dependence
over a larger area around a PM2.5 station. Even with the added
complexity and smaller sample size, models with larger image patch-
size demonstrated consistently better performance with data

augmentation that introduced relational variance in training data.
The improved model performance with increased input image-patch
size suggests that including spatially lagged independent variables
from a wider area around the PM2.5 station improves model
performance. Among considered image-patch sizes, image-patch
of size 19 km by 19 km performed best with R2 of 0.76 and RMSE
of 2.57 μg/m3. With a PM2.5 station at the center, image-patch of size
19 km × 19 km, considers spatially lagged explanatory variables
within 10 km of the PM2.5 station. It suggests that adjacent
locations as far as 10 km also affect the PM2.5 concentration in
addition to local factors, indicating the broader scale at which spatial
processes driving PM2.5 are operating. Harrison et al. (2015)
collected street-level PM2.5 data in our study region’s 10 km by
10 km area. Their study found that depending on weather
conditions, the spatial scale of PM2.5 variation in the area varied
between 0.8 and 5.2 km. Thus, depending on the synoptic weather
conditions, a smaller image-patch may be sufficient to estimate
PM2.5. However, further investigation is required to confirm the
same. One way to investigate this is to classify the training dataset
into several groups, each group representing homogeneous weather
conditions, and investigate if better performance is achieved with a
smaller image-patch size in certain conditions.

Although CNN incorporated information from adjacent areas to
model PM2.5, this study did not investigate how spatially adjacent
locations influence PM2.5 at the estimation location. An explainable
AI technique may help uncover this information. Park et al. (2020)
used Layerwise Relevance Propagation (LRP) to identify important
variables in the model. Their analysis also visualized the spatial
pattern of the importance of each predictor. These patterns help
investigate how adjacent areas are contributing to
PM2.5 concentration. Future studies can use a similar approach
to examine the role of adjacent locations, especially in scenarios
leading to elevated PM2.5 concentrations. Park et al. (2020) found
the weighted average of spatially lagged PM2.5 to be the most
important variable. Unlike their study, this study did not use
spatially lagged PM2.5. Further analysis of the model using
explainable AI techniques may help gain insights into how
variables other than spatially lagged PM2.5 contribute to
PM2.5 concentration and what information about the factors
contributing to PM2.5 this model provides compared to models

TABLE 5 Descriptive statistics of the range of PM2.5 estimates across image-patch sizes.

Image-patch size Min Q1 Median Q3 Max % Below 2.5 μg/m3

3x3 0.00 0.02 0.05 0.14 2.63 0.01

5x5 0.00 0.07 0.16 0.41 8.52 0.87

7x7 0.00 0.12 0.28 0.61 8.78 1.88

9x9 0.00 0.22 0.48 0.97 10.89 4.63

11x11 0.00 0.16 0.32 0.63 10.46 1.86

13x13 0.00 0.25 0.51 1.02 11.98 5.42

15x15 0.01 0.29 0.60 1.20 12.70 6.44

17x17 0.01 0.29 0.58 1.11 13.40 5.58

19x19 0.00 0.19 0.39 0.80 7.66 3.88
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using nearby PM2.5 measurements. Moreover, the use of spatially
lagged PM2.5 assumes that the spatial gradient of PM2.5 between
two stations is smooth. However, this cannot always hold true as the
different point and non-point sources of PM2.5 between stations
may vary. In our study area, the average distance between two
PM2.5 stations was 36.26 km with a range from 20.17 km to
58.19 km. The convolution process in the CNN allows embedding
MAIAC AOD values from grid cells that are closer than the nearby
PM2.5 stations. Additionally, our study aimed to develop a MAIAC
AOD-based model to estimate hourly PM2.5 corresponding to the
satellite data acquisition times.

The study demonstrated that the data augmentation technique,
commonly used in computer vision tasks to increase the sample size,
can be used to overcome the problem of limited samples due to
missing AOD data. Several studies addressed this problem through a
data-filling approach (Hu et al., 2014; Goldberg et al., 2019; Meng
et al., 2021). However, depending on the factors responsible for
incomplete AOD, missing AOD data can be systematic or non-
random. As a result, this introduces bias in the model due to
reliance on selective data. The data augmentation technique used
in the study does not help address this limitation. In contrast, gap-
filling methods can help alleviate this problem to some extent by
increasing the AOD availability. Nevertheless, the data augmentation
method by increasing sample size helps the model learn complex
patterns and relationships. Therefore, even when sufficient data is
available for model training, it would be interesting to compare models
using augmented data with those that do not and how it affects model
performance.

Our study is subject to the following limitations, which also
present opportunities for future research. Li and Tartarini (2020)
showed the impact of human activities on PM2.5 pollution. Our
study assumed that AOD embedded the effect of human activities
on PM2.5. However, the AOD is available at 1 km resolution, and
human activities can vary widely in 1 km2. Additionally, grid-cells
of 1 km spatial resolution are used to obtain point-level
PM2.5 measurements from ground monitoring stations. This
spatial mismatch can be remedied to some extent by including
fine-grained information on human activities associated with
PM2.5 pollution such as traffic and other emission sources,
especially when human-activity patterns are highly variable over
short distances. Another spatial mismatch issue arises because of
the position of a PM2.5 station in the assigned grid cell of the input
data. Because of the coarser resolution of the input datasets (1 km,
5 km and 13 km), some PM2.5 stations may fall near the center of
the cell while others may fall near the edge. One solution to this
problem is to resample the data to ensure the PM2.5 station is
centrally located in a grid cell. However, resampling is subjected to
additional errors and uncertainty in the data. Weather-related
variables used in the study had the coarsest resolution of 13 km
among all the input variables. However, as weather variables vary at
a mesoscale, values between adjacent cells do not vary much. That
the model at 19 km × 19 km performed the best also supports that
the position of the PM2.5 station with respect to the cell center will

not affect the results. Due to insufficient MAIAC-AOD data, the
study could not test spatial extents around PM2.5 stations or
sensitivity tests beyond 19 × 19 km2. MODIS acquisitions are
vulnerable to cloudy conditions that result in data gaps. While
statistical methods can interpolate the missing data gaps (Yang and
Hu, 2018), our study used only available AOD data to avoid
additional uncertainty from interpolated errors. Moreover,
PM2.5 estimates showed variability when repeated data points
were taken after data augmentation. While this variability was
relatively small across different input image-patch sizes, future
studies may explore its causes.
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