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The Abrolhos Bank harbors the richest coral reef ecosystem in the South

Atlantic Ocean. It exhibits unique geomorphologic structures, is localized in

shallow depths, and is divided into two reef regionswith an inner arc close to the

coast (3–20m depth) and an outer deeper arc (5–30m depth). This study aims

to describe some bio-optical properties of the Abrolhos Bank waters and to

evaluate the performance of the inversion Hyperspectral Optimization

Processing Exemplar (HOPE) model, developed to retrieve optical properties

in shallowwaters, in the region. To this end, measurements at 75 stations during

two field campaigns conducted during the 2013 and 2016 wet seasons were

analyzed, and the HOPE model was applied to both in situ remote sensing

reflectance (Rrs) spectra and PRecursore IperSpettrale della Missione Applicativa

(PRISMA) imagery. Significant differences in optical and biological properties

were found between the two arcs. The empirical relationships between

chlorophyll-a concentration (Chl-a) and absorption coefficient of

phytoplankton at 440 nm (aphy(440)) diverged from Bricaud’s models,

suggesting differences in phytoplankton diversity and cell size. In both arcs,

total non-water absorption coefficient at 440 nm (aT-w(440)) was dominated by

colored dissolved organic matter (CDOM) by ~60%. Absorption coefficient by

CDOM (acdom) presented a higher variability within the outer arc, with the lowest

contribution from non-algal particles (NAPs), and the spectral slopes of aCDOM

resembled those of the inner arc. The spectral slopes of the NAP absorption

coefficient suggested a dominance by organic rather thanmineral particles that

probably originated from biological production. The HOPE model applied to in

situ Rrs performed satisfactorily for depth in the Abrolhos Bank waters, although

retrievals of aphy(440), CDOM plus NAP (adg(440)) and aT-w(440) were

underestimated with a relative bias of −27.9%, −32.1% and −45.8%,

respectively. The HOPE model retrievals from the PRISMA image exhibited

low aphy(440) values over thewhole scene and the highest adg(440) values in the

Caravelas river plume. Very shallow depths (≤3 m), bottom substrate reflectance

used as input in the HOPE model, model parametrization associated with the

water complexity in the study site, and uncertainties associated to Rrs

measurements used as input might be responsible for differences found

when comparing HOPE retrievals with in situ measurements.
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1 Introduction

The Abrolhos Bank region (ABR) located at the Eastern

Brazilian Shelf encompasses the largest (>8,000 km2) and richest

coral reef system in the Southwestern Atlantic Ocean (Laborel,

1969), and it is considered as a biodiversity hotspot (Francini-

Filho et al., 2013; Moura et al., 2013; Simon et al., 2016; Ribeiro

et al., 2018; Freitas et al., 2019). The ABR also houses the largest

continuous rhodolith bed in the world, and its shelf includes

diverse and complex habitats that support high biodiversity

providing essential ecosystem services (Amado-Filho et al.,

2012; Ferreira et al., 2020). Even with recent bleaching events,

the coral reefs in the ABR have shown resilience to

environmental and anthropogenic stressors during the last

decade (Moura et al., 2013; Mazzei et al., 2017; Rudorff et al.,

2018; Magris et al., 2019; Teixeira et al., 2019; Evangelista et al.,

2021), keeping a stable coral cover at regional scale (Teixeira

et al., 2021). Environmental water conditions are responsible for

such functional capacity and it has been suggested that ABR and

other Brazilian reefs might act as climate change refugia for a

variety of species (Mies et al., 2020). The ABR is under the

influence of the warm, salty, and nutrient-poor Brazil Current

(BC), which flows southward from lower to higher latitudes along

the upper continental slope and, together with the wind-driven

and tidal currents, induces oligotrophic conditions to the system

(Knoppers et al., 1999b; Lopes and Castro, 2013). The rivers

responsible for the land runoff inputs to the ocean in this

region are Caravelas, Peruíbe, Jequitinhonha, and Doce, but

except the Doce River, they are characterized by low flows

(average for the last 10 years <100 m3 s−1) (Moura et al.,

2011; Coni et al., 2017). Thus, terrestrial inputs have

some, yet limited influence on the inner arc (Knoppers

et al., 1999b).

Like in other coral reef ecosystems, the water column in the

ABR is optically considered as Case-2, i.e., the optical properties

of the water column (absorption and backscattering coefficients)

are not only controlled by biogenic content but also by the

presence of non-algal particles (NAPs) and colored dissolved

organic matter (CDOM) (Morel and Prieur, 1977). The sources

of CDOM and suspended sediments are local, i.e., offshore

advection and input from the terrestrial system (Knoppers

et al., 1999b; Dutra et al., 2006). Even more, the shallow

depths of the ABR introduce additional complexity to remote

sensing studies in the region due to the contribution of bottom

reflectance to the signal captured by satellite (Hedley et al., 2016),

which demands additional steps in data processing (see e.g.,

IOCCG, 2000). Such bottom contribution usually results in

overestimation of chlorophyll-a concentration (Schaeffer et al.,

2012), diffuse attenuation (Zhao et al., 2013), and particulate

backscattering coefficients (Carder et al., 2005) by remote

sensing. Retrieving accurate water quality parameters in

shallow coastal areas has remained one of the main challenges

in ocean color remote sensing (e.g., Barnes et al., 2018; Garcia

et al., 2020).

Two main types of inversion models have been proposed to

derive water column optical properties: empirical and semi-

analytical (SA). The empirical approach relates directly the

remote sensing reflectance (Rrs) to optical properties through

statistical relationships (IOCCG, 2006). However, due to the

variability of optical properties and benthic substrates in shallow

areas, empirical approaches face hurdles towards global

application (Wei et al., 2020). Their performance is often

dependent on the similarity between data used for the

development of the model and those used in the applications

and are usually applicable only at regional scales (Dekker et al.,

2011). In contrast, SAmodels are based on approximations of the

radiative transfer equation (Lee et al., 1999; Garcia et al., 2018).

While SA models might have a wider temporal and spatial

applicability when compared to empirical models, the

radiative transfer equation is more complex to be solved in

shallow than in optically deep waters (Wei et al., 2020). In the

past 2 decades, several SA models have been developed, focused

on complex and/or shallow waters (Maritorena et al., 1994; Lee

et al., 1998; Albert and Mobley, 2003; Smyth et al., 2006). SA

shallow water inversion models usually utilize optimization

techniques to simultaneously retrieve bottom reflectance,

depth, and optical properties from Rrs(λ) at the water surface.
The Hyperspectral Optimization Processing Exemplar

(HOPE) model proposed by Lee et al. (1999) served as the

basis for other adaptations proposed later such as the Bottom

Reflectance Un-mixing Computation of the Environment

model (BRUCE) (Klonowski et al., 2007), Semi-Analytical

Model for Bathymetry Un-mixing and Concentration

Assessment (SAMBUCA) (Brando et al., 2009), Bio-Optical

Model Based tool for Estimating water quality and bottom

properties from Remote sensing images (BOMBER)

(Giardino et al., 2012), Shallow Water Inversion Model

(SWIM) (McKinna et al., 2015), Shallow Water

Optimization with Resolved Depth (SWORD) (Barnes

et al., 2018) and those described in Jay et al. (2017) and

Petit et al. (2017). These semi-analytical inversion models

have been used in shallow waters of different areas worldwide

(Cannizzaro and Carder, 2006; Dekker et al., 2011; Jay and

Guillaume, 2016; Barnes et al., 2018; Dierssen et al., 2019; Wei

et al., 2020). To better parameterize these models, it is

important to have knowledge of the regional

oceanographic conditions and optically-active substances

in the water (Dorji et al., 2016).
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In the present study, we compiled a dataset of bio-optical

properties collected in March 2013 and February 2016 in the

Abrolhos Bank region, Brazil, aiming to: 1) characterize the

spatial bio-optical variability in the study region during the

wet season; 2) examine the relationships between bio-optical

properties; and 3) evaluate the applicability of the HOPE model

to retrieve absorption coefficients from hyperspectral in situ data

and satellite imagery in the Abrolhos shallow waters. Despite the

ecological relevance of the ABR and the necessity of frequent

environmental monitoring of its water column, the number of

studies making use of remote sensing remains very scarce in the

region. Previous studies mapped the coral reefs (Ilha, 2006;

Moreira and Reuss-Strenzel, 2009), analyzed the performance

of water column correction on a very high spatial resolution

WordView-2 image (WV02) (Zoffoli, 2014), described the spatial

and seasonal distributions of chlorophyll-a concentration

(Ghisolfi et al., 2015), derived Kd(490) through MODIS data

(Freitas et al., 2019) and mapped coral reef spatial patterns with

WV02 (Zoffoli et al., 2022). However, the variability of the

inherent optical properties of the water column has not yet

been reported.

2 Materials and methods

2.1 Study area

The Abrolhos Bank region (16°40′S-19°40′S and 37°20′W-

39°10′W) is a 46,000 km2 enlargement of the Eastern Brazilian

shelf. The Abrolhos reefs are unique for the occurrence of

isolated biogenic columnar structures called “Chapeirões” (a

mushroom-like structure) built by coralline algae, bryozoans,

and corals under a low storm disturbance regime (Laborel, 1969;

Bastos et al., 2018; Freitas et al., 2019). Additionally, shaped

pinnacles characterize the reef structure with diameters between

1 and 50 m with expanded and relatively flat, shallow tops

(<10 m depth), and steep walls that reach up to 25 m depth

(Bastos et al., 2018). Other unique features observed in ABR are

the “Buracas,” similar to blueholes/sink and constituted by cup-

shaped depressions in consolidated carbonate substrates (Land

et al., 1995; Bastos et al., 2013). They are located at least 40 km

offshore and occur over rhodoliths beds (Bastos et al., 2013).

Furthermore, in the Abrolhos mid-shelf reefs there is a complex

system of structuring organisms, dominated by bryozoans,

representing up to 44% of the reef structure (Bastos et al., 2018).

This area is under the influence of the warm and salty

Tropical Water (Emílsson, 1961) which is transported on the

surface by the Brazil Current (BC), arising near the Brazilian

coast between 13°S–17°S (Rodrigues et al., 2007) with a

predominant NE-SW direction (Peterson and Stramma, 1991)

until reaching the Subtropical Convergence at 33°S–38°S (Silveira

et al., 2000). In its flow, the BCmixes with waters of coastal origin

and low-salinity and colder water, resulting in salinities above

36 PSU and temperatures typically above 20°C (Silveira et al.,

2000). The BC is characterized by low nutrients in ABR. The

presence of shallow banks and seamounts influences the BC flow

pattern creating vortices, meanders, and upwelling in the shelf

break and seamount flanks (Knoppers et al., 1999a; Ekau, 1999).

The occurrence of vortices on the edge of the Abrolhos Bank, as

well as the northward alongshore drift driven by winds and the

tides transporting Coastal Water, can lead to enhanced mixing of

these waters and contribute to local nutrient enrichment,

influencing the plankton community structure and dynamics

(Ekau, 1999; Eça et al., 2014).

The ABR is separated from the coast by the Sueste Channel and

is distributed in two reef arcs, the outer and the inner arcs, separated

by the Abrolhos Channel, of about 15 km wide (Knoppers et al.,

1999a) (Figure 1). The currents in these channels run southwards

almost parallel to the shore. Along-channel current dominates on

cross-channel current in the Sueste Channel (Knoppers et al.,

1999b). The outer arc is located in the surroundings of the

Abrolhos Archipelago, being ~60 km offshore and with depths

ranging from 20–35 m (Coutinho et al., 1993; Kikuchi et al.,

2010). It is mainly composed of “Chapeirões” (Leão and

Kikuchi, 2001), which remain submerged at low tide, with

the presence of fringing reefs (at Abrolhos Archipelago Island)

between the surface and ~5 m depth. The outer arc also

harbors rhodolith beds, widespread coralline algae, and

transverse deep channels (Knoppers et al., 1999b; Moura

et al., 2013). The inner arc is located between 10–20 km

away from the coast, extending from north to south over

100 km, with depths ≤20 m (Coutinho et al., 1993; Freitas

et al., 2019). It is formed by a series of bank reefs originated by

the coalescence of coral pinnacles and rhodolith beds

intermingle with unconsolidated sediments (Moura et al.,

2013). The inner arc presents a higher light attenuation

than the outer arc and the fringing reefs of the island,

impacting on coral species distribution (Freitas et al., 2019).

Reefs at the inner arc are impacted by terrigenous sediments

transported by river discharge (Dutra et al., 2006). In addition,

the geomorphological configuration of the inner arc, in

association with strong permanent and alongshore tidal

currents, acts as a barrier to offshore transport of land-derived

material (Knoppers et al., 1999a). Thus, the outer arc is more

protected from land-based stressors, and biogenic carbonate

sediments from local sources predominate (Segal and Castro,

2011; Evangelista et al., 2021). As a result, the sedimentation rates

in the inner arc can be twice higher than those in the outer arc

(Dutra et al., 2006). The main rivers influencing this oceanic

region are located at its northern (Rio Jequitinhonha) and

southern extremes (Rio Doce) (Francini-Filho et al., 2013),

with a yearly mean flow of 99 and 616 m3 s−1, respectively

(ANA, 2022). Additionally, this area is under the influence of

the Caravelas estuary, with ~66 km2 that is connected to the

mouth of the Peruípe River through small meandering channels

located approximately 27 km to the south and under the
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influence of the Caravelas River (Pereira et al., 2010). These rivers

are characterized by a low discharge with a monthly average of

~5.5 and 40 m3 s−1, respectively, during austral summer

(Andutta, 2014). Sedimentation regimes vary during the year

with lower rates in summer than in winter due to the passage of

cold fronts that increase the occurrence of stronger winds,

intensifying wave action, and promoting the resuspension of

sediments and therefore spawning more turbid waters (Segal

et al., 2008; Segal and Castro, 2011; Castro et al., 2012).

2.2 Field work

Field sampling was performed along the ABR during two

campaigns in March 2013 and February 2016, during austral

summer (wet season, December to March). The bio-optical

properties were sampled at 75 stations distributed in both the

inner and outer arcs (Figure 1). Approximately 47% of the

stations were in areas shallower than 5 m depth; 29% in areas

between 5 and 10 m; and 23% in areas deeper than 10 m. At each

FIGURE 1
Location of the sampling stations in the Abrolhos Bank. (A) General geographical location of the study area, highlighting the Sueste and
Abrolhos channels and the inner and outer arcs. Source: adapted from Brazilian Directory of Hydrography and Navigation (DHN), Navigation Chart:
1,310. (B) CBERS-4 image (true color composition) showing the location of the sampling sites in the inner (red dots) and outer (yellow dots) arcs. (C)
WorldView-2 image (true color composition) showing the outer arc area and respective sampling points (yellow dots).

Frontiers in Remote Sensing frontiersin.org04

Medeiros et al. 10.3389/frsen.2022.986013

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.986013


station, water samples were collected to quantify chlorophyll-a

concentration (Chl-a, in mg·m−3), and absorption coefficients by

phytoplankton (aphy, in m−1), colored dissolved organic matter

(aCDOM, inm
−1), and non-algae particles (aNAP, in m

−1) (Table 1).

In addition, radiometric measurements were collected at

34 stations (63% in areas shallower than 5 m, 23% in areas

5–10 m deep, and 14% in areas deeper than 10 m).

2.2.1 In situ chlorophyll-a concentration,
absorption coefficients, and particle size

At each sampling site, seawater was collected at the surface

and filtered on board within 3 h following the protocol described

in Mitchell et al. (2000). For particles absorption (ap, in m−1),

water samples were filtered using Whatman Glass Fiber Filters

(GF/F) with a porosity of 0.7 µm, and the filters with retained

material were stored in liquid nitrogen until further analysis in

the laboratory. The ap(λ) spectra were calculated using the

transmittance-reflectance (T-R) method (Tassan and Ferrari,

1995). The data were measured between 200 and 800 nm with

1 nm increments using a dual-beam Shimadzu UV-2450

spectrophotometer equipped with an integration sphere. After

these measurements, the sample filters were soaked with Sodium

Hypochlorite for 10 min and washed with distilled-deionized

water. The absorption spectra were measured once again to

obtain aNAP (Babin et al., 2003). Finally, aphy was estimated as

the difference between ap and aNAP.

For aCDOM, water samples were filtered through membrane

filters with 0.2 μm pore size and preserved in pre-combusted

glass bottles (450°C, 6 h) wrapped in aluminum foil and kept

under refrigeration (4°C) until further analysis in the laboratory.

CDOM water samples were exposed to room temperature before

the spectrophotometer readings to avoid bias due to the thermal

differences between the samples and the reference water. The

absorbance of the filtered water was measured in a 10 cm quartz

cuvette between 220 and 800 nm with 1 nm increments using a

dual beam Shimadzu UV-2450 spectrophotometer. The

aCDOM(λ) was estimated from the absorbance measurements

as: aCDOM(λ) = 2.303·A(λ)/L, where A(λ) is the absorbance of

the sample water at the specific wavelength λ and L is the optical

pathlength of the quartz cell in meters (0.1 m). A baseline

correction was applied to each aCDOM spectrum by subtracting

the average absorbance between 590–600 nm from the whole

spectrum. Spectral slopes (SNAP and SCDOM) of aNAP and aCDOM
were computed by fitting an exponential function between

350 and 750 nm. The SCDOM for the intervals of 350–500 nm

(S350-500), 275–295 nm (S275–295) and 350–400 nm (S350–400) were

also calculated. The (S275–295) and S350–400 were used to compute

the spectral slope ratios (Sr, ratio of S275–295/S350–400), since Sr

provides a fast and reproducible way for characterizing the

CDOM quality according to the molecular weight (Helms

et al., 2008; Valerio et al., 2018). For Chl-a, water samples

(500–750 ml) were filtered using Whatman GF/F filters with

0.7 µm of porosity. Pigments were extracted from the filters after

immersion in 10 ml of 90% acetone/dimethyl sulfoxide (DMSO)

solution (60/40 by volume) (Shoaf and Lium, 1976) for 24h, in

the dark at -10°C. The Chl-a analyses were performed using a

Tuner AU-10 spectrofluorometer (Welschmeyer, 1994). The

aphy(440) was normalized by Chl-a to estimate its absorption

specific coefficient (a*phy).

The phytoplankton cell size (Sf) was estimated according to

Ciotti et al. (2002). The aphy(λ) was normalized by the average of

all values between 400 and 700 nm; the shape of normalized

aphy(λ) was thus reconstructed with a linear combination of two

spectra representing complementary contributions of the pico-

phytoplankton (<2 μm) and micro-phytoplankton (>20 μm)

fractions. A least-squares Levenberg-Marquardt algorithm was

used to fit the observed normalized aphy(λ) spectrum to a linear

model by adjusting the derived cell size parameter values. The Sf
values varied from 0 to 1, with Sf closer to 0 when large

phytoplankton cells (>20 µm) dominated, and Sf closer to

1 when small cells (<2 µm) were dominant.

A time series of MODIS-Aqua monthly 4 km aphy(443) and

diffuse attenuation coefficient Kd(490) between January 2003 and

February 2022 were analyzed to characterize the seasonal

variability patterns in the outer and inner arcs. A monthly

climatology (2003–2022) and the standard deviation were

calculated for two boxes, one in each arc (Supplementary

Figure S1).

2.2.2 In situ radiometry
Upwelling radiance, Lu (λ, in W·m−2·sr−1), sky radiance, Lsky

(λ, inW·m−2·sr−1), and the radiance reflected by a white reference,
Lplaque (λ, in W·m−2·sr−1), were measured by an ASD handheld

Fieldspec spectroradiometer (Malvern Panalytical Ltd.), which

collects radiance between 350 and 1,100 nm (bandwidth 1 nm) in

a 25° field-of-view. The acquisition geometry followed Mobley

(1999) recommendations to avoid shadows and sunglint

contamination in the measurements. The Lu measurements

were performed between 9:00 a.m. to 15:00 p.m. local time.

Downwelling irradiance, Ed (λ, in W·m−2), was estimated from

Lplaque as: Ed(λ) = π·Lplaque/ρplaque where ρplaque is the reflectance
of the plaque (assumed Lambertian). The remote sensing

reflectance spectrum, Rrs (λ, in sr−1), was then obtained as:

Rrs(λ) � Lw(λ) − ρLsky

Ed(λ) (1)

The ρ factor was adjusted for the wind speed, Sun at zenith,

and sensor-viewing geometry (Mobley, 1999). At each station,

~10 repetitions of the sequence Lu, Lsky, and Lplaque were acquired

and Rrs(λ) at each station was calculated as the average of all

individual estimates using Eq. 1 with a coefficient of variation

(standard deviation/mean * 100) lower than 10%. An additional

correction was performed for each spectrum following Rudorff

et al. (2014) and Zoffoli et al. (2022) for turbid waters, which uses

the average Rrs(λ) between 790 and 810 nm as a baseline to

correct for the positive white offset. This residual adjustment
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corrects the spectra from biases and noises due to contaminations

from the viewing geometry and environmental factors (Jiang

et al., 2020; Zoffoli et al., 2022).

2.3 PRecursore IperSpettrale della
Missione Applicativa (PRISMA) image

PRISMA is a hyperspectral Earth Observation sensor that

acquires data at 30 m pixel size in 234 spectral bands from 400 to

2,500 nm, with 10 nm spectral resolution and a repetitive orbit

each 29 days. A PRISMA (L1 and L2C) image acquired on

13 January 2022 over the ABR was downloaded from the

PRISMA portal (https://prisma.asi.it). The PRISMA image was

atmospherically corrected using ACOLITE package (released in

21 April 2021), designed specifically for coastal and inland waters

applications, even with non-negligible turbidity (Vanhellemont,

2019), and with higher performance from coastal waters than

standard L2D PRISMA products (Braga et al., 2022). The

processor uses the dark spectrum fitting (DSF) algorithm to

compensate for atmospheric and surface effects (Vanhellemont

and Ruddick, 2018). Land areas were masked as having ρw values

in the shortwave-infrared (SWIR) band at 1,606 nm greater than

0.0215. The specular reflection of solar radiation on non-flat

water surfaces can be a severe confounding factor for shallow

water remote sensing. Thus, a Sun glint correction was applied

following Hedley et al. (2005) and Kay et al. (2009). Optically

deep areas in the image showing Sun glint were selected. Using all

the pixels from the selected regions, linear regressions were

performed between each band in the visible region and the

band in the near-infrared at 834 nm (NIR). Then, the

reflectance of each pixel in the visible band i was deglinted

according to the following equation:

R′
i � Ri − bi(RNIR −Min NIR) (2)

where R′
i is Sun glint corrected pixel brightness in band i, Ri is the

reflectance of each pixel in the visible band i, bi is the slope of the

regression line for band i, RNIR is the reflectance of the NIR

channel and MinNIR corresponds to the minimum reflectance

value in the NIR.

2.4 Semi-analytical model

The semi-analytical HOPE model developed for shallow

waters (Lee et al., 1998, 1999, 2001) was applied to each in

situ Rrs(λ) spectra to retrieve water optical inherent properties

(IOPs), bottom depth, and bottom reflectance (RB). In this

model, absorption coefficients are described according to Lee

(1994) and Lee et al. (1999):

aT(λ) � aw(λ) + aphy(λ) + adg(λ) (3)

aphy(λ) � [a0(λ) + a1(λ) ln (P)]P (4)
adg � Ge[−S(λ−440)] (5)

where aT is the absorption coefficient (m−1), aw is the pure water

absorption coefficient (m−1) obtained from (Pope and Fry 1997),

a0 and a1 are coefficients empirically defined to describe the

spectral shape of phytoplankton absorption (Lee, 1994), P is aphy
at 440 nm, G is adg at 440 nm, and S represents Sadg (set here to

0.017 nm−1, according to in situ measurements). Additionally,

backscattering coefficients are defined according to Carder et al.

(1999) and Lee et al. (1999):

bb(λ) � bbw(λ) + bbp(λ) (6)

bbp(λ) � X(532
λ
)Y

(7)

where, bb is the total backscattering coefficient (m−1), bbw is the

backscattering coefficient for water molecules, bbp is the

backscattering coefficient for particles, X is bbp at 532 nm, and

Y represents a spectral shape parameter of particle backscattering

(set to 0.5). The values for bbw(λ) are kept constant (Zhang and

Hu, 2009). In the optimization, X is resolved as a scaling factor

which defines the contributions of bbp to the modeled Rrs(λ).
The optical properties are used in a SA model for sub-surface

remote sensing reflectance in shallow optical waters, rrs (Lee et al.,

1999):

rrs≈r
dp
rs [1 − exp( − ( 1

cos(θw) +
DC

u

cos(θv))kH)]
+ 1
π
RB exp( − ( 1

cos(θw) +
DB

u

cos (θv))kH) (8)

rdprs ≈ (0.084 + 0.170u)u (9)

Here, rrs is the ratio of upwelling radiance to downwelling

irradiance evaluated just below the surface, and rdprs is the remote

sensing reflectance for optically deep waters. K is described in Eq.

14. In Eq. 8, the first term expresses the portion of the path

radiance expected in optically deep waters, while the second term

expresses the bottom contribution propagated to the surface after

attenuation by the two-way path through the water column. To

derive Rrs, rrs was propagated through the water-surface interface

according to Lee et al. (1999):

Rrs ≈
0.5rrs

1 − 1.5rrs
(10)

Within this model, there are two optical path-elongation

factors: one for photons from the water column (DC
u ), and

the other for photons from the bottom (DB
u) (Eqs 11–14).

These factors are approximated according to Lee et al. (1999),

where u and k describe relationships between the optical

properties:

DC
u ≈ 1.03(1 + 2.4u)0.5 (11)

DB
u ≈ 1.04(1 + 5.4u)0.5 (12)
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u(λ) � bb(λ)
k(λ) (13)

k(λ) � aT(λ) + bb(λ), (14)

RB was quantified by a normalized bottom albedo spectrum

at 550 nm, RBn(λ), and a scaling factor modulating contributions

of the benthic albedo to modeled reflectance, Bn.

RB(λ) � Bρ(λ) + (1 − Bρ(λ)) (15)

The bottom cover classes, i.e., sand, green algae, brown algae,

coralline algae, and brown coral, were selected according to the

substrates present in the Abrolhos Bank region (Villaça and

Pitombo, 1997). The spectral reflectance of such pure substrates

was taken from Medeiros et al. (2018) and Roelfsema and Phinn

(2012) (Figure 2). The use of a linear mixture approach as the

substrate for the SA model has already been tested in previous

studies using the HOPE model (Klonowski et al., 2007; Brando

et al., 2009; Garcia et al., 2018; Dierssen et al., 2019). Here, we run

HOPE 10 times for each Rrs spectra and for the PRISMA image,

and in each run, a different RB(λ) was used as input, which

corresponded to a different combination of two pure bottom

cover classes (e.g., sand and green algae, sand and coralline algae,

coralline algae and brown coral, etc.). The bottom combination

that presented the lowest relative error between modeled Rrs

(Rmod
rs (λ)) and measured Rrs (Rmea

rs (λ)) for each station/pixel was

chosen in the final process.

The constant values combined with the above described

Rrs(λ) spectra can be modeled using the parameters: P, G, X,

B, and H as:

Rmod
rs (λ) � f(P, G, X, B,H) (16)

The HOPE inversion model was run in MATLAB®. For the
in situ dataset, Rrs(λ) from 400 to 750 nmwas considered, and the

constraints and initial values are given in Table 2. HOPE

performance was evaluated by contrasting algorithm retrievals

with IOPs and depth measured in situ concomitant to Rrs

measurements. For the PRISMA image, only the bands 1 to

42 (402–749 nm) were considered to run the HOPE algorithm. In

this case, two spatial subsets were selected for algorithm

validation where the in situ depth data from 2013 were

available (Figure 3). Constraints and initial values used for the

PRISMA processing were slightly different from those used for in

situ measurements (Table 2). The optimization process was

designed to search for a minimum error solution through a

cost function that quantifies the lowest relative error between

Rmod
rs (λ) and Rmea

rs (λ) (Garcia et al., 2018).

2.5 Statistical metrics

The Shapiro-Wilk test was applied to test the normality of the

bio-optical samples. Then, a non-parametric test, Kruskal-Wallis

one-way analysis of variance was performed to test whether

samples originated from the same distribution. Once a

significant difference among the tested parameters was found,

a Tukey honestly significant difference (HSD) was performed to

verify if there were significant differences between the arcs

(p-value < 0.05). Finally, the strength of regression between

bio-optical and biogeochemical parameters was evaluated

through the coefficient of determination (R2). The

performance of the HOPE model was evaluated through mean

absolute error (MAE), relative and log bias, according to Seegers

et al. (2018), R2, and absolute and relative root mean square error

(RMSE and RRMSE). The MAE and log bias present

multiplicative metrics (a MAE of 1.5 indicates that estimates

observations are 1.5 × (50% greater) on average than the in situ

observations). A log bias value lower than unity indicates a

negative bias (O’Reilly and Werdell, 2019). In addition, the

Pearson correlation (r) between the depth and bottom

substrate reflectance versus the residuals (model - measured)

for aphy(440), adg(440) and aT-w(440) were calculated to assess

the major factor responsible for the retrieval error using the in

situ Rrs(λ) data.

R2 � SSres
SStot

(17)

log bias � 10^⎡⎣∑N
i�1log10 (yi) − log10 (xi)

N
⎤⎥⎥⎥⎦ (18)

Rbias � ⎡⎣ 1
N

∑N

i�1
yi − xi

xi

⎤⎦100 (19)

FIGURE 2
Benthic reflectance spectra (ρ, adimensional) of the five pure
bottom cover classes: sand and mixture classifier which are: sand,
green algae, red algae, coralline algae, and brown coral. Source:
Adapted fromMedeiros et al. (2018) and Roelfsema and Phinn
(2012).
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MAE � 10̂ ⎛⎝∑N
i�1
∣∣∣∣log10 (yi) − log10(xi)|

N
⎞⎠ (20)

RMSE � [∑N
i�1(yi − xi)2

N
] (21)

RRMSE � [ RMSE

(maxxi) − (minxi)]100 (22)

where SSres is the sum of squares of residuals, SStot is the total

sum of squares, xi is the in situ data for a given parameter, yi is

the estimated value for a given parameter and N is the

sample size.

TABLE 1 Acronyms, units, and definitions of the parameters referred to in this study.

Acronyms Description Units

Chl-a Chlorophyll-a concentration mg·m−3

CDOM Colored dissolved organic matter m−1

NAP Non-algal particulate matter m−1

aw Pure water absorption coefficient m−1

aphy(λ) Absorption coefficient of phytoplankton m−1

aCDOM(λ) Absorption coefficient of CDOM m−1

aNAP(λ) Absorption coefficient of non-algal particulate matter m−1

adg(λ) Absorption coefficient of NAP and CDOM (aNAP + aCDOM) m−1

aT-w(λ) Total non-water absorption coefficient (aphy + aNAP + aCDOM) m−1

ap (λ) Absorption coefficient of phytoplankton and non-algal particulate matter (aphy + aNAP) m−1

aT(λ) Total absorption coefficient (aw + aphy+adg) m−1

ρ Benthic reflectance spectra dimensionless

SCDOM, SNAP Spectral slope coefficient of CDOM or NAP nm−1

aphy*(λ) Specific absorption coefficient of phytoplankton m2(mg Chl-a)−1

Sr Spectral slope ratios dimensionless

Sf Phytoplankton cell size dimensionless

Rrs Remote sensing reflectance sr−1

rrs Irradiance reflectance just below the surface sr−1

RB The spectral reflectance of the such pure substrates dimensionless

S Modeled spectral slope of the absorption of adg(λ) nm−1

Y Modeled spectral slope of the backscattering coefficient of suspended particles dimensionless

P Absorption coefficient of phytoplankton at 440 nm; aphy(440) m−1

G Absorption coefficient of CDOM + NAP at 440 nm; adg(440) m−1

X Backscattering coefficient of suspended particles at 560 nm m−1

B Bottom albedo at 532 nm of benthic class dimensionless

H Geometric depth of the water column m

λ Wavelength nm

TABLE 2 Optimization constraints and initial estimates for the optimization process of the HOPE model on Rrs(λ) in situ and PRISMA data.

Parameter Minimum constraint Initial estimate Maximum constraint in situ data Maximum constraint PRISMA

P (m−1) 0.007 0.072 [Rrs(440)/Rrs(550)]
−1.62 0.5 1

G (m−1) 0.005 0.072 [Rrs(440)/Rrs(550)]
−1.62 0.5 0.8

X (m−1) 0.005 30aw (640) Rrs(640) 0.5 0.5

B (sr−1) 0.0001 0.2 0.8 1

H (m) 0.1 10 30 100

The parameters P represent aphy at 440 nm; G represents adg at 440 nm; X represents the backscattering coefficient of particles at 532 nm; B is the contribution of the benthic albedo andH

represents the water depth.
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3 Results

3.1 Bio-optical properties characterization

Both arcs presented relatively low Chl-a and aphy(440)

values, and similar mean values for SNAP, Sr, and Sf
(Table 3). However, in the inner arc, a region with more

terrestrial influence, the values of aNAP(440), and ratio of

absorption due to NAP and total particulate matter at

440 nm (aNAP(440)/ap(440)), and a*phy(440) were

significantly higher (p-value < 0.05) than those in the

outer arc, while Chl-a and Sf were lower in the inner arc

(p-value < 0.05). Additionally, a positive co-variation was

observed between Chl-a and aphy(440) and Chl-a and

ap(440), (Figures 4A,D; Table 4). At the same time, an

exponential decrease was found between the slopes and

absorption coefficients, and between Chl-a and a*phy(440)

(Figure 5; Table 4).

A significant difference (p-value < 0.001) was also found in

the relationship between Chl-a and aphy(440) derived from our

dataset and that reported in Bricaud et al. (2010) (aphy(440) =

0.0617 (Chl-a)0.93) and Bricaud et al. (2004) (aphy(440) = 0.0654

(Chl-a)0.73). The aphy(440) values in this study were higher than

the ones reported in these publications and the differences

between a*phy(440) values of ABR and those from the Bricaud

et al. (1995) parameterization are probably related to the

biological composition of the phytoplankton communities

(Figure 5D). More details will be discussed in Section 4. The

partial contribution of aCDOM, aNAP, and aphy to the total non-

water absorption at 440 nm (ap(440)), i.e., the sum of aphy, aNAP
and aCDOM, for each area is shown in Figure 4E. Overall, non-

water absorption in the Abrolhos Bank region was

predominantly dominated by CDOM (59% of stations), which

exhibited the highest variability in the outer arc, with the lowest

NAP contribution. The outer arc presented ap dominated either

by CDOM (57% of stations) or phytoplankton (36% of stations).

FIGURE 3
Abrolhos Bank Region (ABR). (A)CBERS-4 image (true color composition), red rectangle indicates the boundaries of the PRISMA image. (B) Sub-
area of the PRISMA image (red box) showing the sampling stations visited during the 2013 field campaign within the inner arc and used for model
validation. (C)Detail of the area of interest with the sampling stations at Pedra do Leste reef. (D)Detail of the area of interest with the sampling stations
at Sebastião Gomes reef.
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The CDOM and phytoplankton contributions presented

significant variability, and an inverse relationship was

observed between them. In the inner arc, two patterns were

present, one mainly dominated by CDOM (60% of the stations)

and the other with a mixture of CDOM, NAP, and

phytoplankton (32% of stations). The relative contribution of

NAP to the ap increased from 10% in the outer arc to 50% in the

inner arc, probably caused by the influence of river discharge.

The phytoplankton contributions had higher variability in the

outer arc, but their contributions achieved 50% of the ap in the

inner arc (Figure 4E).

The time-series analyses of aphy(443) (Supplementary

Figures S2, S3) and Kd(490) (Supplementary Figures S4, S5)

showed a similar seasonal variation at both arcs, with overall

lower values in the austral spring-summer (October-April)

coincident with the wet season, and higher values in autumn-

winter (May-September). The inner arc also showed higher

values in both parameters compared to the outer arc, and a

noisier pattern with some extraordinary decreases and increases

out of the seasonal pattern. During the field work and PRISMA

image acquisition periods, the mean values of aphy(443) and

Kd(490) were relatively lower in both arcs than compared to

other seasons.

3.2 Optical properties and depth retrieval
from in situ Rrs(λ) data and PRISMA image

The in situ Rrs(λ) spectra revealed large variability in

both magnitude and spectral shape (Figure 6). The Rrs(λ)

variability was higher in the green bands, reflecting the

stronger influence of the changing sea bottom

composition. Stations comprised of corals and/or

macroalgae had Rrs(λ) as low as 0.005 sr−1, while over

stations dominated by sand, Rrs(λ) was as high as

0.053 sr−1. In the bands beyond 600 nm, values were close

to zero due to the strong absorption by water molecules. The

maxima of Rrs(λ) spectra varied between 475 and 575 nm

depending on bottom type, water clarity, and depth.

The semi-analytical inversion was able to accurately

retrieve the depth (Table 5). However, the model

substantially underestimated absorption coefficient of NAP

and CDOM (mean adg(440) = 0.05 ± 0.04 m−1 (HOPE); 0.13 ±

0.08 m−1 (in situ), log bias = 0.38), absorption coefficient of

phytoplankton (mean aphy(440) = 0.04 ± 0.02 m−1 (HOPE);

0.05 ± 0.02 m−1 (in situ), log bias = 0.33) and total non-water

absorption coefficient (mean aT-w(440) = 0.08 ± 0.06

(HOPE), mean aT-w(440) = 0.17 ± 0.08 m−1 (in situ), log

bias = 0.48) (Figure 7). Since the sample Rrs(λ) size was

relatively small (N = 34), all Rrs(λ) measurements were

used, even for stations deeper than 15 m and shallower

than 1.4 m. After the removal of the three deepest stations,

only the depth retrieval was improved (R2 = 0.7, 0.45, 0.56,

and 0.87 for aphy(440), adg(440), aT-w(440), and depth,

respectively). The opposite was observed with the

shallowest stations. After the three shallowest stations were

removed, only the optical properties retrieval was improved

(R2 = 0.75, 0.52, 0.58, and 0.79 for aphy(440), adg(440),

aT-w(440), and depth, respectively). Residual analysis

indicated significant partial correlation between residual

TABLE 3 Range (Mean and Standard Deviation) of the measured optical properties in the outer and the inner arcs for the Abrolhos Bank region during
the 2013 and 2016 field campaigns. See Table 1 for acronyms.

Variable Outer arc (N = 28) Inner arc (N = 47)

Min–Max Mean ± SD Min-Max Mean ± SD

Chl-a 0.32–1.27 0.66 ± 0.28** 0.18–1.25 0.44 ± 0.22**

aphy(440) 0.02–0.13 0.06 ± 0.03 0.01–0.13 0.05 ± 0.02

aCDOM(440) 0.005–0.23 0.095 ± 0.07 0.012–0.35 0.12 ± 0.08

aNAP(440) 0.003–0.03 0.008 ± 0.005** 0.01–0.15 0.04 ± 0.03**

aNAP/ap(440) 0.07–0.28 0.13 ± 0.05** 0.18–0.79 0.39 ± 0.15**

ap(440) 0.02–0.14 0.07 ± 0.03 0.03–0.27 0.09 ± 0.04

adg(440) 0.02–0.24 0.11 ± 0.07 0.03–0.37 0.15 ± 0.09

SCDOM 0.007–0.032 0.017 ± 0.005 0.012–0.025 0.017 ± 0.003

SCDOM(275–295) 0.011–0.032 0.017 ± 0.005 0.028–0.013 0.017 ± 0.004

SCDOM(350–500) 0.006–0.032 0.016 ± 0.006 0.013–0.025 0.017 ± 0.003

Sr 1–1.79 1.1 ± 0.23 1–1.72 1 ± 0.16

SNAP 0.007–0.023 0.017 ± 0.003 0.013–0.021 0.017 ± 0.001

aphy*(440) 0.04–0.12 0.09 ± 0.03** 0.05–0.28 0.12 ± 0.04**

Sf 0.27–0.79 0.44 ± 0.01** 0.04–0.94 0.42 ± 0.12**

** indicates parameters that presented significant differences between both arcs (p-value < 0.05).
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aphy(440) and bottom substrate (r = 0.37, p-value < 0.05). No

significant correlation was obtained between residual

aphy(440) and depth (r = 0.21, p-value > 0.05), residual

adg(440) and depth (r = 0.12, p-value > 0.05), residual

adg(440) and bottom substrate (r = 0.29, p-value > 0.05),

residual aT-w(440) and depth (r = 0.08, p-value > 0.05), and

residual aT-w(440) and bottom substrate (r = 0.28,

p-value > 0.05).

Overall, the HOPE model retrievals from the PRISMA image

presented low values of aphy(440), adg(440), and bbp(532), except in

the Caravelas river plume, which exhibited higher values for

adg(440) and bbp(532) (Figure 8). Also, it was observed that some

areas over the coral reefs had higher adg(440) values than

surrounding deep waters. adg was the main contributor to aT-w
(40%–99%), and both of them presented the same spatial pattern.

HOPE aphy(440) retrievals were low in the whole scene

FIGURE 4
Relationship betweenmeasured bio-optical properties andChl-a in the Abrolhos Bank region. In all panels, red squares represent samples in the
inner arc, while blue squares in the outer arc. (A) aphy(440) as a function of Chl-a (n = 68) (log scale). The solid line (line 1) shows the linear regression
found in this study, while the dashed line (line 2), and dashed-pointed line (line 3) represent the empirical relationships in Bricaud et al. (2004), and in
Bricaud et al. (2010), respectively. (B) aCDOM(440) as a function of Chl-a (n = 71) (log scale). (C) aNAP(440)/ap(440) as a function of Chl-a (n = 71)
(log scale). (D) ap(440) (n = 69) as a function of Chl-a (log scale). (E) Ternary plot showing the fraction of total non-water absorption dominated by
colored dissolved organic matter (aCDOM), phytoplankton (aphy), non-algal particulate (aNAP) at 440 nm (n = 75).
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(0.007–0.15 m−1). And as expected, the shallower areas were located

on the coral reefs and close to the coast. The data used to validate the

depth results were composed of 13 stations, with 10 of them

shallower than 5 m depth. Although the validation dataset was

collected in 2013, the model achieved good results for depth

retrievals (R2 = 0.87, log bias = 0.76, Rbias = -12.31%, MAE =

2.46, RMSE = 1.66, and RRMSE = 2.29%).

4 Discussion

4.1 Optical properties in the ABR the inner
and outer arcs during summer

4.1.1 Regional influence on bio-optical variability
The Brazil Current is the main driving force in the region (Segal

et al., 2008), and together with wave pattern, tidal regime, and wind

patterns controls the bio-optical properties. The BC transports the

oligotrophic Tropical Water on surface and its low nutrient

concentration might limit phytoplankton growth (Knoppers et al.,

1999b; Lopes and Castro, 2013). The BC also washes off nutrients

from terrestrial runoff thus helping to mitigate its impact (Knoppers

et al., 1999b; Segal et al., 2008). During the austral summer, the

thermocline formation stratifies the water column, reducing even

more nutrient inputs to the euphotic zone (Lopes and Castro, 2013;

Teixeira et al., 2013; Ghisolfi et al., 2015). Runoff of rivers’ sediments

is modulated by precipitation that is more abundant during summer.

Also in summer, the wave energy coupled with north-northeast

winds are responsible for the resuspension and transport southwards,

by the coastal currents, of the nearshore material (Knoppers et al.,

1999a). However, a hydrodynamic barrier is established in this season

by strong southward-flowing nearshore currents. The inner arc

TABLE 4 Summary of selected optical properties relationships in the
Abrolhos Bank region with their respective statistical
performance.

x Y N Model R2

Chl-a aphy(440) 68 y = 0.09 ×0.81 0.74

Chl-a aCDOM(440) 71 y = 0.05 ×−0.63 0.09

Chl-a ap(440) 69 y = 0.11 ×0.56 0.51

Chl-a anap(440)/ap(440) 71 y = 0.13 ×−0.73 0.23

aCDOM(440) SCDOM 70 y = 0.01 ×−0.22 0.49

aNAP(440) SNAP 69 y = 0.01 ×−0.04 0.26

Chl-a aphy*(440) 68 y = 0.08 ×−0.38 0.31

The number of samples (N) varies due to quality control. See Table 1 for acronyms. Bold

values represent statistically significant results (p-value < 0.05).

FIGURE 5
Slopes of bio-optical properties and aphy*. Regressions of (A) SCDOM(350–750) versus aCDOM(440). (B) SCDOM(275–295) versus aCDOM(350). (C)
SNAP(350–750) versus aNAP(440) (n = 70). The plots A and C displayed in semi-log scale, with y axes are in slope units (nm−1). (D) Relationship between
phytoplankton-specific absorption coefficient at 440 nm as a function of Chl-a (n = 68) (log scale). The solid (line 1) and dashed (line 2) lines are the
regression models obtained in this study and from Bricaud et al. (1995) respectively.
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topography acts as a barrier to seawards sediment transport, limiting

the amount of terrestrial material reaching the outer arc (Segal et al.,

2008). Therefore, the outer arc is more influenced by the BC and

resuspended bioclastic sediments, while the inner arc also receives

some contribution from the rivers’ discharge (Segal et al., 2008; Segal

and Castro, 2011; Castro et al., 2012). These processes probably are

responsible for the spatial and seasonal variability observed in the in

situ dataset and in the aphy(443) and Kd(490) time-series analyses.

Some noise observed in the time-series of the inner arc might be

explained by the input of terrestrial discharges, which can incorporate

organic matter and sediments to the water column during different

periods (Zoffoli et al., 2013).

4.1.2 Phytoplankton
The Chl-a and aphy values observed in this study were

lower than expected for coastal waters (Costa et al., 2006;

Blondeau-Patissier et al., 2017; Russell et al., 2019), although

comparable with average values reported for Case-1 waters

(Bricaud et al., 2004, 2010). The distinctive oceanographic

conditions in the study region might be responsible for such

low phytoplankton biomass as the influence of the nutrient-

poor Brazil Current, which also promotes a nutrient wash with

its flow, and the water column stratification in summer. Our

dataset showed an unexpected distribution pattern, with the

outer arc presenting higher Chl-a values than the inner arc.

Likely, the higher Chl-a values found in the outer arc should

be promoted by the influence of sub-mixed-layer water

upwelling triggered by small eddies and meanders that

introduces nutrients and would not reach the surroundings

of reefs within the inner arc (Ghisolfi et al., 2015).

As observed for the in situ data, the HOPE retrievals from

satellite data also presented low aphy(440) values. Even

though in situ aphy(440) was low for coastal ecosystems, it

was still higher than those found by Bricaud et al. (2004,

2010) in open waters of the global ocean. Additionally, the

a*phy(440) (i.e., aphy(440)/Chl-a) from ABR differed

statistically from those parameterized by Bricaud et al.

(1995) from water samples collected in oligotrophic,

mesotrophic, and eutrophic waters of the global ocean.

These differences may be associated with variations in the

size of phytoplankton communities, in proportions of

accessory phytoplankton pigments, or the intracellular

concentrations of their various pigments. In the Abrolhos

region, there have been scarce studies conducted on

phytoplankton community, and it was reported a

dominance of nanoplankton during winter (Souza, 2010),

while Bricaud et al. (2004) observed a large variability in the

dominance of the size phytoplankton group. Additional

studies are required to characterize the phytoplankton

community in the ABR. For a*phy(440), the differences

might also be related to methodological aspects. Bricaud

et al. (2010, 2004, 1995) quantified Chl-a by High

Performance Liquid Chromatography (HPLC) but in this

study, Chl-a was estimated by fluorescence, which could

lead to Chl-a overestimation because it is not efficient to

totally avoid contamination by other pigments and

degradation products (Morel and Maritorena, 2001;

Rudorff et al., 2014). It is important to highlight that in

the ABR, Chl-a explained only 37% of the a*phy(440)

variability, and this relatively weak correlation might have

effects when attempting to derive Chl-a through ocean color

models based on a*phy(λ) (e.g., Dall’Olmo et al., 2005). An

increase in pigment packaging effect and/or a decrease in the

proportion of accessory pigments are related to a decreased

a*phy(440) (Bricaud et al., 1995, 2004, 2010). The Sf is

considered a proxy for combined changes in pigment

packaging effect due to increases in cell size and in the

concentration of accessory pigments (Ferreira et al., 2020).

Sf states that normalized absorption spectrum is a linear

combination of two spectra corresponding to pure

picophytoplankton (Sf = 1, phytoplankton cells <2 μm) and

pure microphytoplankton (Sf = 0, phytoplankton

cells <20 μm) (Ciotti et al., 2002; Bricaud et al., 2010;

Ferreira et al., 2020). In the outer arc, the lowest (0.04)

FIGURE 6
In situ hyperspectral remote sensing reflectance spectra (Rrs,
sr−1) collected in Abrolhos Bank in March 2013 and February 2016.

TABLE 5 Summary of statistical performance of the HOPE model for
the retrieval of water optical properties and depth in the Abrolhos
Bank region for all in situ stations (N = 34). See Table 1 for acronyms.

Variable R2 log bias (Rbias) MAE RMSE (RRMSE)

aphy(440) 0.70 0.66 (−27.9%) 1.63 0.02 (16.2%)

adg(440) 0.45 0.38 (−32.1%) 2.99 0.09 (27.2%)

aT-w(440) 0.56 0.48 (−45.8%) 2.26 0.11 (21.3%)

H 0.81 1.02 (11.05%) 1.33 2.33 (−88.3%)

Bold values represent statistically significant results (p-value < 0.05).
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and highest (0.94) Sf values were observed, which might

indicate the presence of phytoplankton with different

cell size.

4.1.3 Non-algal particles and dissolved organic
matter

The highest in situ values of aNAP(440) were found in the

inner arc, possibly related to terrigenous inputs of particles and

bottom resuspension in those shallower areas that are restricted

to this arc due to the presence of a hydrodynamic barrier. Note

that the aNAP(440) measured in ABR in this study might be

underestimated due to the extraction method used, since using

sodium hypochlorite to depigment the algae fraction could

modify the organic fraction from NAP (Cremella et al., 2022).

The adg(440) values retrieved from PRISMA data confirmed the

higher values of aNAP(440) in the inner arc. The result shows

higher values on the Caravelas river plume and in some areas

over the coral reefs, which was expected since this ecosystem

releases significant amounts of marine dissolved organic matter

(DOM), therefore CDOM, directly into the waters (Kelly et al.,

2022). The runoff of rivers’ sediments and the hydrodynamic and

geomorphological barrier that separates both arcs in the ABR

might explain the differences observed between both arcs, with a

higher concentration of CDOM and NAP confined to the reefs

closest to the coast. The continental influence is minimal in the

outer arc and, thus, the low CDOM and NAP components found

there might be originated from degradation of the benthic biota

(Boss and Zaneveld, 2003; Mobley et al., 2005). A previous study

on sediment type supports this explanation showing a

dominance of siliciclastic sand and mud in the inner arc while

pure carbonates dominate in the outer arc (Dutra et al., 2006). In

the Pacific coral reefs, higher values of aCDOM(440) and

aNAP(440) have been also reported in more coastal regions,

while lower values were observed in more offshore regions

(Russell et al., 2019).

4.1.4 Slopes of non-algal particles and dissolved
organic matter

The SNAP provides information on the relative contribution

of organic and mineral particles in the absorption of coastal

waters (Babin et al., 2003). The higher SNAP, the higher the

dominance of organic material over mineral particles (Babin

et al., 2003; Bricaud et al., 2010), which gives further support to

the influence of local production on this component. High SNAP
were expected in ABR since the coral reefs may be the principal

supply of the particles. While aCDOM magnitude indicates

CDOM concentration, its spectral slope provides information

about its characteristics (chemistry, source, diagenesis), and

FIGURE 7
Comparison between in situ measured aphy, adg, aT-w and depth versus HOPE model retrievals performed on the in situ Rrs(λ) spectra. (A)
aphy(440). (B) adg(440). (C) aT-w (440). (D) depth. Red squares represent the 18 samples of the inner arc, and blue squares represent the 16 samples of
the outer arc. The diagonal lines represent the linear regression fit.
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nature or composition (humic or fulvic acids) as well as its

photooxidation state (Carder et al., 1989; Helms et al., 2008). In

general, land-derived CDOM humic-dominated presents a lower

spectral slope than marine-derived CDOM fulvic-dominated

(Carder et al., 1989). For example, previous studies have

reported mean SCDOM values higher than 0.02 nm−1 in open

ocean areas and 0.013–0.018 nm−1 in coastal waters (Carder et al.,

1989; Cherukuru et al., 2016). In this study, the mean SCDOM

(350–500) was 0.017 nm
−1 and 0.016 nm−1 for inner and outer arcs

respectively, values typical of coastal environments. However,

some stations in the outer arc presented SCDOM(350–500) values

higher than 0.03 nm−1 comparable to open ocean areas.

According to Helms et al. (2008), the S275–295 and the slope

ratios (Sr = S275–295/S350–400) are potential indicators of

photobleaching in the marine environment since they

consistently increase with increasing solar irradiation. Also, Sr

are inversely related to the molecular weight of CDOM (Helms

et al., 2008). The results for the CDOM slopes, for both arcs,

indicated the presence of a degraded dissolved organic matter

(DOM) probably due to biological or photochemical processes

(Helms et al., 2008; Fichot and Benner, 2012; Nelson and Siegel,

2013), while the Sr results suggested the presence of DOM with

FIGURE 8
Optical properties and depth retrievals in ABR from PRISMA image using HOPEmodel with a linear mixture as substrate input. (A) PRISMA image
(quasi-true color). (B) aT-w(440) (m

−1). (C) aphy(440) (m
−1). (D) adg(440) (m

−1). (E) bbp (532) (m
−1). (F) Depth (m). The land, exposed reef and clouds are

masked in white color.
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low molecular weight similarly to what was previously observed

in coastal waters (Helms et al., 2008). Since all the stations

presented Sr values higher than 1 (i.e., S275–295 ≥ S350–400),

there is probably a dominance of low molecular weight

CDOM. Additionally, the exponential decrease found between

S275-295 and aCDOM(350) indicates possible effects of

photobleaching for ABR samples (Fichot and Benner, 2012;

Blondeau-Patissier et al., 2017). This study documented a

spatial variability of the bio-optical properties in the Abrolhos

Bank region but was limited by the relatively small number of in

situ stations. To better understand the temporal dynamics of

water bio-optical properties at the scale of the entire ABR, future

studies should extend the analysis spatially (e.g., using satellite

remote sensing and in situ data) and assess phenological changes.

Also, studies should be further developed to increase the

phytoplankton community knowledge in ABR and to confirm

the hypothesis about the relationship between the sediment type

and the organic matter based on a more robust set of in situ

samples.

4.1.5 Differences with other reefs and coastal
areas

Differences between the bio-optical properties were found

when comparing to other coral reef waters worldwide, some of

them with data collected in the same season as this study

(Table 6), differences between the bio-optical properties were

found. Overall, the ABR bio-optical properties exhibited higher

values than those observed in the Kimberley Marine Region

(KMR), and the Caribbean Sea. The relatively low volumes of

river freshwater associated with the influence of warm and low

salinity water from Holloway Current and Indo-Pacific through-

flow (Cherukuru et al., 2016) are probably responsible for the

lower Chl-a and aCDOM found in the KMR compared with the

ones in the ABR. In the Caribbean Sea, low Chl-a would result

from the water column stratification. And despite the terrestrial

contributions to the Caribbean Sea coastal waters by local rivers

discharges, the aCDOM(440) and aNAP(440) values are still lower

than those observed in ABR. The opposite pattern was observed

between the bio-optical data from ABR and Northern Australia

(NA). The Chl-a, aCDOM(440) and aNAP(440) values in NA were

higher than in ABR. The NA is influenced by a monsoonal

climate, with the tidal currents driving the water dynamics

(Blondeau-Patissier et al., 2017). During the wet season, the

monsoon rainfall (~1,700 mm yr−1) associated with six rivers

is responsible for an increase in river discharge, which delivers

a large amount of nutrients and land-sourced CDOM to the

Northern Australia coastal water, enhancing primary

productivity and increasing the number of particles in the

water. Similar conditions were observed in the Great Barrier

Reef World Heritage Area (GBRWHA), specifically Mossman

Daintree. In this area, during the wet season, rainfall can reach up

to 600 mm d−1 promoting a higher influence on the bio-optical

properties and being responsible for the higher Chl-a, aphy(440),

aCDOM(440) and aNAP(440) values. However, the ABR bio-

optical variables had higher values than in reef waters

from GBRWHA. According to Botha et al. (2020), the

GBRWHA and NA has a wide range of water types which

could explain the comparison results between ABR and these

two different areas. The physical and biogeochemical

oceanographic processes associated with inputs of land-

derived material are responsible for the variation in the bio-

optical properties of coral reef areas.

4.2 HOPE retrievals: Performance,
limitations, and recommendations for
future studies

The HOPE model satisfactory retrieved the optical

properties and depth in the coral reef areas in ABR,

achieving R2 of 0.45 (for adg(440)), 0.7 (for aphy(440)), 0.56

(for aT-w(440)) and 0.81 (for depth) when contrasting to in situ

data, and a value of 0.87 (for depth) using PRISMA image, even

though in the last case the validation set was acquired with a

temporal difference regarding satellite acquisition. Although

there were no available data for a rigorous validation of the

absorption and backscattering retrievals using PRISMA data,

the HOPE model presented a general similar pattern as

previously observed for bio-optical retrievals using semi-

analytical inversion models in coastal and coral reef areas:

low values for aT-w and bbp, except closer to the coast, values

of adg > aphy and bbp, higher bbp in nearshore waters, and a

decrease in all bio-optical data with increasing distance from

the coast (Dekker et al., 2011; McKinna et al., 2015; Barnes et al.,

2018; Garcia et al., 2020). However, there were some

inconsistencies in the spatial pattern of retrievals, such as

the low values of bbp and slightly higher values of aphy
observed in the river mouth and the depth closely following

the river plume. According to Lee et al. (2001), water turbidity

can limit the performance of the semi-analytical models. Once

the suspended particulate matter, the main contributor to

turbidity and plume, interferes with the ray-path geometry

of light, the plume can be confused with bottom reflectance

creating false shoals and reducing drastically the sensible depth

(Tripathi and Rao, 2002; Caballero et al., 2019). Also, in the

presence of high turbidity the inversion problem can be

simplified since the bottom depth signal may not be

captured by the sensor. Using the HOPE model, Casal et al.

(2020) showed that the effects of local turbidity caused

underestimation in the bathymetric retrieval. They also

recommended avoid retrieving bottom depth from remote

sensing over high turbidity waters since they strongly

influence the relationship between the depth and satellite

signal. In addition, McKinnan et al. (2015) revealed a lower

capacity of the SWIM to retrieve the IOPs during highly turbid

events such as river flood plumes. Therefore, selecting images
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with optimal conditions (e.g., high water transparency) is

important to achieve better optical properties and depth

retrieval through semi-analytical models.

The atmospheric correction also could influence the bio-

optical and depth retrieval. Most atmospheric correction

methods (AC) assume that the water-leaving radiance is

negligible in the near-infrared. However, in coastal waters,

they are often not negligible (IOCCG, 2010; Bulgarelli et al.,

2014; Sterckx et al., 2015). Alternatively, the short-wave infrared

bands have been used in AC to improve the Rrs retrievals in

turbid waters (Wang and Shi, 2007; Vanhellemont and Ruddick,

2014). In addition, the AC frequently uses maritime aerosols as

the dominant aerosol type in coastal waters (IOCCG, 2010).

However, in these areas, the marine- and terrestrial-source

aerosols can produce mixed conditions and spatially variable,

which may not be entirely represented in the aerosol models

(Ahmad et al., 2010; Pahlevan et al., 2017). Therefore, the

inaccurate aerosol model used in the atmospheric correction

procedure or the imprecise estimation of aerosol optical

thickness could introduce errors in the estimated atmospheric

reflectance (Braga et al., 2022). Hence, correcting atmospheric

effects is considered a critical step for these models and

significantly impacts the retrieval results (Goodman et al.,

2008; Hedley et al., 2012; Eugenio et al., 2017). According to

Casal et al. (2020), the atmospheric correction choice had a major

influence on the estimated depth. At the same time, Goodman

et al. (2008) concluded that the robust model performance was

impacted by differences in the atmospheric and sunglint

corrections method. The ACOLITE, primarily designed for

multispectral images for aquatic remote sensing, was recently

modified to process PRISMA data (Braga et al., 2022). However,

more studies are still required to evaluate ACOLITE performance

on PRISMA images over shallow waters covering a larger range

of water optical properties. The errors associated with the aphy
retrieval using in situ data could be partially explained by the

bottom substrate type since a significant partial correlation was

observed between the residual aphy and bottom substrate.

Nevertheless, due to the absence of a significant correlation

between the bottom substrate and depth and residuals of adg
and aT-w, it is difficult to affirm the reason for the errors in this

retrieval. The relatively small sampling dataset could influence

the level of significance observed in correlation. Besides turbidity,

atmospheric correction, bottom reflectance and depth, the model

parametrization and uncertainties associated with Rrs(λ) can also

limit the HOPE model performance.

Issues in the retrieval of optical inherent properties and

depth could be caused by assuming a wrong bottom

reflectance (Dierssen et al., 2019; Garcia et al., 2020; Wei

et al., 2020). Therefore, selecting the appropriate bottom

reflectance spectra might be crucial to improving HOPE

retrievals. Using different linear mixtures of five different

substrates intended to reduce uncertainties caused by

incorrect RB in the parameterization but still heterogeneity

of benthic substrates in the region may be yet not well

represented by the RB used in the model. Also, the

reflectance of coral as a 3-D structure is usually incorrectly

represented as a horizontal structure. The reflectance of a 3-D

coral is generally much lower than that measured from a

horizontal plane and can be related to an estimate of the true

surface area divided by the planar surface area (Hedley et al.,

TABLE 6 Comparison between the optical properties of different coastal areas in the world.

Region Abrolhos bank
(outer arc;
inner arc)a

Shelf water
of kimberley
marine regionb

Pacific corals
(fore reefs;
fringing reefs)a

Northern of
Australia (wet
season)a

Caribbean sea
(wet season)a

Great barrier
reef area
(reef waters;
mossman daintree
-wet season)a

Chl-a (mg m−3) 0.66 ± 0.28; 0.44 ± 0.22 0.28 (118.8) — 0.98 ± 0.57 0.22 ± 0.25 0.137 ± 0.062; 1.831 ±
2.432

aphy(440) m
−1 0.06 ± 0.03; 0.05 ± 0.02 0.023 (68.2) 0.022 ± 0.01;

0.044 ± 0.03
0.05 ± 0.01 0.017 ± 0.01 0.017 ± 0.007; 0.065 ±

0.052

aCDOM(440)
m−1

0.095 ± 0.07;
0.12 ± 0.08

0.072 (59.2) 0.038 ± 0.01;
0.076 ± 0.03

0.17 ± 0.06 0.057 ± 0.03 0.050 ± 0.028; 0.246 ±
0.254

aNAP(440) m
−1 0.008 ± 0.005;

0.04 ± 0.03
0.008 (87.8) 0.015 ± 0.01;

0.082 ± 0.06
0.14 ± 0.22 0.007 ± 0.001 0.004 ± 0.001; 0.466 ±

0.899

SCDOM 0.017 ± 0.005; 0.017 ±
0.003

0.008 (109.7) — 0.014 ± 0.002 — 0.012 ± 0.004; 0.016 ±
0.001

SNAP 0.017 ± 0.003; 0.017 ±
0.001

0.008 (9.7) — 0.01 ± 0.00 — 0.009 ± 0.012; 0.012 ±
0.001

References This study Cherukuru et al.
(2016)

Russell et al. (2019) Blondeau-Patissier et al.
(2017)

Lorenzoni et al.,
(2011)

Blondeau-Patissier et al.
(2017)

aMean ± standard deviation.
bMean (Coefficient of variation).
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2018). Dierssen et al. (2019) highlighted the possible effect of

the incorrect horizontal representation of seagrass to water

optical retrieval using the HOPE model in a shallow water

area. These authors suggested that the measurement and

representation of more realistic benthic reflectance

incorporating the canopy architecture and rugosity should

reduce the uncertainty in retrieving the water column

parameters. In this study, even when using a more

representative bottom reflectance of the reef environment,

the model still markedly underestimated absorption

coefficients from the in situ data, and overestimated the

depth derived from the PRISMA image. Note that there

was a difference of 9 years between the in situ sampling

and the PRISMA image acquisition, but the time period

was stable in terms of the benthic assemblages (Teixeira

et al., 2021). Although some local changes in bottom

substrate must have occurred during the 9 years, either by

physical drivers, bleaching processes, or biological succession

of species (Duarte et al., 2020; Teixeira et al., 2021, 2019),

depth retrieval from the PRISMA image still performs well

with a high R2 of 0.87.

Previous studies showed that the inherent optical properties

and depth retrieval were associated to higher uncertainties for

very shallow clear waters (<3 m). For example, Dekker et al.

(2011) compared different SA models (HOPE, Comprehensive

Reflectance Inversion based on Spectrum matching and Table

Lookup-CRISTAL, BRUCE, and SAMBUCA) in Moreton Bay,

Australia, using a hyperspectral image Compact Airborne

Spectrographic Imager (CASI) image. They observed a

limitation of the models in depths between 0 and 3 m. In

contrast, the inversion methods worked well to about 10 m

deep. McKinna et al. (2015), using a shallow water inversion

model based on the HOPE model, showed an uncertainty

increase for waters shallower than 5 m using MODIS imagery.

Therefore, they recommended excluding the retrievals in waters

shallower than 5 m. In addition, Barnes et al. (2018) observed

large positive errors in adg(440) for depths smaller than ~12 m

and slight underestimations for aphy(440) when the water

column varied from 2 to 15 m deep using MERIS images. In

our study, 88% of stations were in areas shallower than 12 m, 66%

in shallower than ~5 m, and from stations used for the image

results validation, 85% were in areas shallower than 5 m.

Nevertheless, the optical retrieval had uncertainty for ABR

waters only in depths shallower than 1.4 m and was not

capable of retrieving with good accuracy when water depth

was higher than 10 m in the PRISMA image and 15 m in the

in situ Rrs(λ) data. There is no consensus about the depth at

which the model uncertainties become significant. However, as

the water column becomes shallower, the influence of the

substrate becomes more important than the contribution of

the water column and vice versa. Thus, as the water column

becomes shallower, the benthic reflectance contribution makes

the retrieved water column absorption and backscattering

coefficients less trustworthy, thus highly depending on the

substrate type used as input (Dekker et al., 2011). Also, the

methodological aspects such as problems in GPS positioning and

inaccurate tide correction could influence the retrievals.

Another factor that limits the model performance is using

general assumptions within HOPE model parameterization

that may not be appropriate for the region. The HOPE

model uses fixed values for the slope of adg and spectral

shape parameter of particle backscattering (S and Y,

respectively), which can affect the derived optical properties

(Garcia et al., 2020; Wei et al., 2020; Werdell et al., 2013).

Barnes et al. (2018) highlighted that some retrieval errors might

be attributed to fixing Y to a generally incorrect value and

observed better results in stations where Y corresponded to in

situ measurements. Kostadinov et al. (2007) showed that the

assumption of constant spectral shapes could hamper an

optimum retrieval of bio-optical constituents, even with a

regionally tuned optical model. Blondeau-Patissier et al.

(2017) concluded that using constant mean values for Y and

the spectral slopes of CDOM and NAP, often the case in global

models, will limit their application in some tropical regions of

the world. Instead of using a fixed value of Y and optimizing the

depth, Barnes et al. (2018) used the real depth values and

optimized the Y, finding significant improvement in optical

properties errors relative to most depths. In addition, McKinna

et al. (2015) increased the number of valid pixels by up to 20%

varying S and Y values, and indicated based on previous reports

(Antoine et al., 2011; Blondeau-Patissier et al., 2017;

Twardowski et al., 2004) that smaller values of S and Y are

more suitable for modeling optically complex waters. In our

study, the slope of adg varied between 0.009 and 0.024 nm
−1, and

the mean value (0.017 nm−1) was used as a fixed value for S,

whereas for Y, the default value (0.5 m−1) was used due to the

lack of in situ data. Therefore, assuming a fixed value for Y and S

possibly influenced the optical properties retrieval once it is

known that these spectral slopes may vary spatially and

temporally (Garcia et al., 2020), and could not be correctly

represented by the mean. In some models, the spectral shapes of

internal optical properties can vary, as in the Generalized

Inherent Optical Property (GIOP) (Werdell et al., 2013) and

Quasi-Analytical Algorithm (QAA) (Lee et al., 2001). However,

those models use band ratios to adjust the internal optical

spectral shapes and then are not suitable for application in

shallow waters (McKinna et al., 2015). In addition, as the range

of optical properties values is provided as input data, it is

important to define ranges consistent with the known ranges

in the study area (Casal et al., 2020). Therefore, it is important

to obtain information about the optical properties’ potential

range in the study area to be used in the model.

Finally, uncertainties in Rrs(λ) used as input might be also

related to the HOPE model’s low performance. The accuracy of

the optimization scheme depends on uncertainties in measured

or satellite-derived Rrs (λ), which propagate (and may be
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amplified) to retrieved products (Werdell and Bailey, 2005).

The acquisition, processing methods, and environmental

conditions during the above-water in situ measurement of

Rrs (λ) can promote high uncertainties, i.e., >30% (Hooker

and Maritorena, 2000; Toole et al., 2000). Also, it is recognized

that the satellite Rrs(λ) data are subject to errors caused by

insufficient calibration or/and atmospheric correction over

shallow waters (Garcia et al., 2018; Wei et al., 2020).

Furthermore, uncertainties in the optical properties may also

be consequential because they are determined by the

concentration of each constituent and instrument (Röttgers

et al., 2016; Twardowski et al., 2007). Further studies should

associate uncertainties to the retrieved variables, which the

HOPE model does not do, and use quality indices such as the

Substratum Detectability Index (SDI) proposed by Brando

et al. (2009), allowing users to identify questionable pixels

that could be masked to produce reliable maps of those

variables.

The optical properties of ABR certainly changed during

the in-water sampling and the image acquisition (9 years),

limiting the utilization of optical data (collected in 2013) as a

base to specify the limits for the model performed on the

PRISMA image (acquired in 2022). And, even using few

validation data acquired with years of difference and the

lack of knowledge about the optical properties at the

moment of image acquisition (to help defining the

parameterization range), the model obtained qualitatively

good results. Previous studies have showed the potential of

PRISMA data for optical bathymetry retrieval (Alevizos et al.,

2022), seabed mapping (Borfecchia et al., 2021), and retrieval

of water quality parameters in inland waters (Niroumand-

Jadidi et al., 2020; Bresciani et al., 2022). Together with the

results presented in our present analysis, these studies indicate

the potential of the hyperspectral PRISMA sensor for

monitoring aquatic systems.

5 Conclusion

The bio-optical properties of the ABR are influenced by

oceanographic processes and by continental terrigenous input.

Along with the bottom characteristics, waves, and Sun light

penetration in the water column, they imprint the remote

sensing reflectance. The Brazil Current can reduce the

potential effect caused by terrigenous sediments input in

the ABR and even the input of nutrients from local rivers.

However, these inputs associated with the geomorphological

and hydrodynamic barrier present in the region are essential

in controlling the differences observed in the water column

between the ABR’s inner and outer arcs, especially in relation

to chlorophyll-a and non-algal particulate matter. The coral

reefs are probably the primary source of CDOM and may be

responsible for the dominant contribution of CDOM to total

non-water absorption in both arcs. The SCDOM, Sr, and SNAP
values suggested that degraded dissolved organic matter with

relatively low molecular weight and organic rather than

mineral particles dominated the absorption coefficient.

The bio-optical properties of ABR can be considered

unique compared to those of other coastal and coral reef

areas worldwide. The Chl-a, aphy, and aCDOM values were

higher than those previously reported for shelf water of

Kimberley Marine Region, Pacific reefs, and Caribbean

waters, while the aNAP values were lower than those of the

GBRWHA (wet season), Northern Australia, and fringing

Pacific reefs. The warm and nutrients-poor Brazil Current,

the land-derived material inputs, and the geomorphological

characteristics of the bottom substrate control the bio-optical

properties in ABR. In KMR, the bio-optical properties are

controlled by the Holloway Current and Indo-Pacific

through-flow associated with the low river discharge. In the

Caribbean Sea, the water column stratification and the river

discharge are responsible for the values of Chl-a, aphy and

aCDOM. In Northern Australia and GBRWHA, the monsoonal

climate associated with the presence of several rivers and the

tidal currents that drive the water dynamics control their bio-

optical properties, especially in the wet season. Thus, the

physical and biogeochemical oceanographic processes, the

geomorphology, and inputs of land-derived material are

probably responsible for the differences in the bio-optical

properties among those regions.

The HOPE model retrieved the optical properties and depth

in ABR from in situ Rrs with acceptable uncertainties (R2 = 0.7,

0.45, 0.56 and 0.81 for aphy(440), adg(440), aT-w(440) and depth,

respectively). It also provided satisfactory depth retrievals when

applied to the PRISMA image (R2 = 0.87). However, the influence

of turbidity, atmospheric correction (Rrs errors), shallow depths

(bottom substrate), and model uncertainties hampered the

correlation between measurements and estimates, and made it

difficult to restitute spatial patterns properly. Further studies

should associate uncertainties and use quality indices enabling

users to mask questionable pixels producing more accurate maps

of retrieved variables. When bottom influence becomes small, the

retrieval of water depth and bottom substrate begins to be

problematic, but one expects the retrieval of IOPs to improve

(since bottom contamination is less an issue). It is crucial to

further improve ocean color models considering all the above

challenges, so that actual changes, not model artifacts, are

captured and, therefore, bio-optical variability of the ABR

(and similar optically shallow and complex water bodies) are

correctly described in the context of environmental and climate

change. The PRISMA image processing indicated a potential in

retrieving bathymetry and optical properties in shallow water

environments based upon a physics-based inversion model. The

use of images with low turbidity and an improved atmospheric

correction should yield better retrievals of water column and

bottom properties. The results are promising, but additional
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matchups between satellite and in situ measurements are

required for more robust analyses.
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