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Preprocessing of Landsat images is a double-edged sword, transforming the raw data into
a useful format but potentially introducing unwanted values with unnecessary steps.
Through recovering missing data of satellite images in time series analysis, gap-filling is an
important, highly developed, preprocessing procedure, but its necessity and effects in
numerous Landsat applications, such as tree canopy cover (TCC) modelling, are rarely
examined. We address this barrier by providing a quantitative comparison of TCC
modelling using predictor variables derived from Landsat time series that included gap-
filling versus those that did not include gap-filling and evaluating the effects that gap-filling
has on modelling TCC. With 1-year Landsat time series from a tropical region located in
Taita Hills, Kenya, and a reference TCC map in 0–100 scales derived from airborne laser
scanning data, we designed comparable random forest modelling experiments to address
the following questions: 1) Does gap-filling improve TCC modelling based on time series
predictor variables including the seasonal composites (SC), spectral-temporal metrics
(STMs), and harmonic regression (HR) coefficients? 2) What is the difference in TCC
modelling between using gap-filled pixels and using valid (actual or cloud-free) pixels? Two
gap-filling methods, one temporal-based method (Steffen spline interpolation) and one
hybrid method (MOPSTM) have been examined. We show that gap-filled predictors
derived from the Landsat time series delivered better performance on average than
non-gap-filled predictors with the average of median RMSE values for Steffen-filled and
MOPSTM-filled SC’s being 17.09 and 16.57 respectively, while for non-gap-filled
predictors, it was 17.21. MOPSTM-filled SC is 3.7% better than non-gap-filled SC on
RMSE, and Steffen-filled SC is 0.7% better than non-gap-filled SC on RMSE. The positive
effects of gap-filling may be reduced when there are sufficient high-quality valid
observations to generate a seasonal composite. The single-date experiment suggests
that gap-filled data (e.g. RMSE of 16.99, 17.71, 16.24, and 17.85 with 100% gap-filled
pixels as training and test datasets for four seasons) may deliver no worse performance
than valid data (e.g. RMSE of 15.46, 17.07, 16.31, and 18.14 with 100% valid pixels as
training and test datasets for four seasons). Thus, we conclude that gap-filling has a
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positive effect on the accuracy of TCC modelling, which justifies its inclusion in image
preprocessing workflows.

Keywords: tropical forest, seasonal composite, machine learning, spectral-temporal metrics, random forest
regression, harmonic regression

1 INTRODUCTION

Image preprocessing is an important step in remote sensing,
typically including operations such as solar angle normalization,
atmospheric correction, and topographic correction. Although
certain preprocessing procedures are frequently used, there are no
“standard” preprocessing steps because the need for
preprocessing depends on the specific application and may be
determined by personal preference (Campbell andWynne, 2011).
The users of remote sensing data often find making decisions for
an appropriate preprocessing workflow challenging because
unnecessary steps may create unwanted artifacts, and hence do
not necessarily improve the end results of the analysis. Young
et al. (2017) proposed a guide and a decision tree to help decide an
appropriate level of image preprocessing for common ecological
applications. They recommend a parsimonious approach to
preprocessing that avoids unnecessary steps and recommend
preprocessing steps that are well tested, easily available, and
sufficiently documented. Although some of the most common
preprocessing steps such as geographic correction and
atmospheric correction have been examined, the necessity and
effectiveness of gap-filling in remote sensing applications is rarely
evaluated. It can be assumed that gap-filling can automatically
improve accuracy of the analyses, but it can also be “unnecessary”
or even decrease accuracy as gap-filled values are not real
radiometric observations. Therefore, it is necessary to study
the impact of gap-filling from the application perspective.

The popularity of gap-filling has been rising due to the
frequent use of medium spatial resolution data such as
Landsat in time series approaches. The advantage of gap-filling
is that it handles missing observations (i.e. gaps) caused by clouds,
cloud shadows, and sensor failures and can produce images that
are visually similar to the originals through learning or
interpolating. To date, many gap-filling methods have been
proposed, and are categorized into several types (e.g. spatial-
based, temporal-based, and hybrid methods), among which, the
temporal-based methods have been investigated by the most
researchers (Shen et al., 2015). Temporal spline methods, such
as Steffen spline interpolation, a 1-dimensional monotonic
interpolation based on piecewise cubic functions (Steffen,
1990), has obtained good performance in several studies
(Inglada et al., 2015; Hamrouni et al., 2021). Hybrid gap-filling
methods have been recently developed in a growing number,
among which, Missing Observation Prediction based on Spectral-
Temporal Metrics (MOPSTM) has delivered good performance
in a short-term time series (Tang et al., 2021). MOPSTM predicts
gaps based on valid pixels in the image to be reconstructed and
statistical spectral-temporal metrics computed for a 1-year period
as feature space using a k-Nearest Neighbor (k-NN) machine-
learning method (Tang et al., 2021).

TCC modelling based on remote sensing data, an essential
measurement in forest management, vegetation growth cycle
monitoring, and disease prevention, has received strong
interest in research on mountainous tropical areas (Wang
et al., 2005; Anchang et al., 2020; Tang et al., 2020).
Measurement of TCC using wall-to-wall airborne lidar is
comparable to that using field data (Korhonen et al., 2011) but
can provide a large size of samples and enables random samples
to be used in inaccessible terrain (Adhikari et al., 2016). However,
sensor-based TCC modelling relies heavily on the quality of
satellite images that require valid observations in a successive
time series (Baccini et al., 2008; Margono et al., 2012), which
makes cloud-free satellite images greatly preferred in existing
TCC modelling studies (Yang et al., 2012; Karlson et al., 2015;
Derwin et al., 2020). The abandonment of incomplete images, in
turn, shrinks the amount of data available for TCC modelling in
tropical regions, where continuous cloudy weather occurs during
rainy seasons (Anderson et al., 2010).

Gap-filling has potential to improve the quality of time series
metrics (or composites) that are related to TCC modelling. One
popular example is to use image composites, typically referring
to cloud-free median reflectance of spectral bands, e.g. the red
and near infrared (NIR) bands, or vegetation indices (VIs), e.g.
Normalized Difference Vegetation Index (NDVI) (Tucker,
1979) and Enhanced Vegetation Index (EVI) (Liu and
Huete, 1995). Seasonal composite (SC) refers to a composite
image computed for a particular season, such as rainy and dry
seasons in the tropics. SCs characterizing the intra-annual
dynamics of vegetation have demonstrated their advantages
for several applications (Karlson et al., 2015; Liu et al., 2016;
Chaparro et al., 2018). For example, Kushal et al., 2021
developed a spatial and temporal inventory for crop covers
using two SCs derived from the Landsat time series.
Furthermore, a combination of multiple SCs showed
superiority over a single SC when mapping fractional woody
cover in semi-arid savannas in South Africa (Higginbottom
et al., 2018).

Spectral-temporal metrics (STMs) (Adhikari et al., 2016;
Azzari and Lobell, 2017) that reduce the pixelwise spectral
variance into statistical metrics such as mean, median, and
percentile points, are other widely used tools to derive
reflectance and VI metrics for TCC modelling. Examples of
the applications that include STMs are pan-European land
cover mapping (Pflugmacher et al., 2019), urban-rural
gradients of settlements and vegetation mapping (Schug et al.,
2020), and global forest canopy height mapping (Potapov et al.,
2020).

In addition to SCs and STMs, Fourier (harmonic) analysis has
long been used to assess vegetation dynamics and classify basic
vegetation formations (Moody and Johnson, 2001; Wang et al.,
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2019), and delivers good performance in characterizing land
surface phenology (Moody and Johnson, 2001). Harmonic
regression (HR) coefficients were found to be better predictors
for TCC modelling than median composites in Derwin et al.
(2020) and Wilson et al. (2018). These two studies, however, did
not examine the sensitivity of HR coefficients concerning gaps, as
the former used almost cloud-free Landsat images, and the latter
pointed out that HR associated with TCC modelling provides a
means for overcoming gaps in Landsat time series but lacked a
sensitive test for the gaps.

Apart from time series approaches, using a single-date image
remains an established approach for applications such as land
cover classification (Langley et al., 2001), forest cover change
detection (Mayes et al., 2015), and modelling tropical forest
canopy height (Ota et al., 2014), tree canopy cover, and
aboveground biomass (Karlson et al., 2015). Images in a time
series have demonstrated advantages over single-date images
(Karlson et al., 2015; Chrysafis et al., 2019), but such
approaches are limited by the availability of cloud-free images
(Vogeler et al., 2018). When cloud-free images are rarely
available, gap-filling can enable the use of partly cloud-covered
single-date images.

In this study, our objective was to examine whether gap-filling
preprocessing is necessary for TCCmodelling and how gap-filling
benefits TCC modelling based on annual Landsat time series. We
mainly examined our gap-filling method, MOPSTM, which is a
hybrid method as it is simple to tune and accurate in
reconstructing large-area gaps and continuous time series
(Tang et al., 2021). To explore how the selection of gap-filling
method affects TCC modelling results, we included a popular
temporal-based method, Steffen spline interpolation, for
comparison. We selected Steffen spline interpolation because it
demonstrated the best performance among several temporal
interpolation methods in Tang et al. (2022). The study area
encompassed a large Afromontane landscape in Taita Hills,
Kenya with seasonally persistent cloud cover and a bimodal
rainfall pattern, which poses a challenge for acquiring cloud-
free images and applying time series approaches. To evaluate the
results quantitatively, a TCC map derived from the airborne laser
scanning (ALS) data was used as reference data. This study is
organized as follows: 1) We compared the TCC modelling
performance based on time series predictors including SCs,
STMs, and HR coefficients derived from images that were
non-gapfilled and that were gap-filled using Steffen spline and

FIGURE 1 | Flowchart of the tree canopy cover modelling experiments using bootstrap sampling random forest regression. Abbreviations: SCs: seasonal
composites; STMs, spectral-temporal metrics; HR, harmonic regression.
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MOPSTM; 2) We used various proportions of MOPSTM gap-
filled and valid pixels from single-date images to evaluate how
gap-filled pixels deviated from the valid pixels in terms of TCC
modelling accuracy.

2 MATERIAL AND METHODS

The workflow of this study is illustrated in Figure 1. The first step
was to preprocess the Landsat time series. Then, Landsat time
series were used to compute VIs. The two main procedures
contained 1) time-series predictor variable experiments to
compare TCC modelling performance using Landsat time
series that were gap-filled and not gap-filled and 2) single-date
predictor variable experiments to compare how gap-filled data
deviated from the valid data in TCC modelling.

2.1 Study Area
The study area is located in the Taita Hills (3°18′S, 38°30′E) in
southeastern Kenya (Figure 2). The area has variable topography,
in which the altitude of hills ranges from around 1,000 to 2,200 m.
The surrounding plains have an approximate altitude of between
430 and 1,000 m. This area has a bimodal rainfall pattern—long
rains between March and May and short rains between October
and December (Pellikka et al., 2009; Pellikka et al., 2013). The
main land cover types in this area include bushland, cropland,
montane and plantation forests, grassland, and built-up areas
(Pellikka et al., 2018).

2.2 Airborne Laser Scanning Data
Airborne Laser Scanning (ALS) data were collected between January
2014 and February 2015 with a Leica ALS60 sensor, pulse rate of

58 kHz, scan rate of 66 Hz, scan angle of ±16°, mean range of
1,460 m, mean pulse density of 3.1 pulses m−2, and mean return
density of 3.4 returns m−2. The data were processed into a 2 m
resolution digital elevation model, which were used to normalize
ALS point cloud elevations to the height above ground level and to
remove the returns of noise using LAStools software, rapidlasso
GmbH (Adhikari et al., 2016; Heiskanen et al., 2019). The electric
lines were removed by manual editing. Finally, reference TCC was
calculated at 30 m resolution as a ratio of the first returns from the
canopy and the total number of first returns. A 3m height threshold
was used to separate understory and ground returns from the tree
canopy returns.

2.3 Landsat Time Series
Landsat 8 Operational Land Imager (OLI) Collection 1 Level-2
Surface Reflectance products for 2015 (Table 1) were obtained
from the USGS website1. Pixels contaminated by clouds and
cloud shadows were masked out using Fmask (Zhu and
Woodcock, 2012). Even so, contaminated pixels were still
present in the images. To eliminate the effects of the
remaining contaminated pixels (Zhu and Woodcock, 2014),
we used only 11 images that have over 70% valid pixels
(Derwin et al., 2020). The ultra-blue band that is useful for
coastal and aerosol studies (Acharya and Yang, 2015) was
eliminated, with reference to other canopy cover studies
(Korhonen et al., 2017; Derwin et al., 2020).

As the topographic normalization showed an improvement in
the prediction of vegetation biophysical variables in an earlier
study (Adhikari et al., 2016), we applied a C-correction method
(Teillet et al., 1982) to the six spectral bands (blue, green, red,
NIR, SWIR1, and SWIR2) of the Landsat time series. As
recommended by Adhikari et al. (2016), Shuttle Radar

FIGURE 2 | Location of the study area with a map of tree canopy cover. (A) The area of interest (Taita Hills) located in Kenya; (B) Tree canopy cover map from the
Airborne Laser Scanning data in Taita Hills; (C) 30 m digital surface model (DSM) from the Japan Aerospace Exploration Agency (JAXA) in Taita Hills and (D) An example
of Landsat 8 image acquired on 16 December 2015, displayed in R: SWIR1, G: NIR, B: red band.
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Topography Mission (SRTM) DEM was used for topographic
normalization.

2.4 Gap-Filling Algorithm
We used the Steffen spline method from the open-source software
Processing Kernel for geospatial data (Pktools) (Mclnerney and
Kempeneers, 2014; Kempeneers, 2018), written in C++ and
relying on the GDAL API. It guarantees the monotonicity of
the interpolating function between the valid observations in the
time series.

To perform MOPSTM, STMs were first derived from the
Landsat time series. Then, a k-NN regression model was trained
based on the valid pixels in the image to be gap-filled. The last step
was to predict the missing observations using the trained k-NN
model and STMs. Since our images were acquired in 2015, there
was no need to set any temporal window to guarantee a 1-year
period when applying MOPSTM.

2.5 Time-Series Predictor Variables
Three time series predictor variables—SCs, STMs, and HR
coefficients—were derived from six Landsat 8 spectral bands
and five commonly used VIs (Table 2) including EVI, Green
Normalized Difference Vegetation Index (GNDVI), Normalized
Difference Moisture Index (NDMI), NDVI, and Non-
Photosynthetic Vegetation Normalized Difference (NPVND).

2.5.1 Seasonal Composites
Since the study area has a bimodal rainfall pattern, we labelled the
four seasons as S1 (dry and hot season, January–February), S2
(long rains, March–May), S3 (dry and cool season,
June–September), and S4 (short rains, October–December).
Median composites derived for the S1–S4 are labelled as
SC1–SC4 (Table 3).

2.5.2 Spectral-Temporal Metrics
Many descriptive metrics can be used to calculate STMs from the
time series. Based on the good performance in the previous
studies (Potapov et al., 2017; Souverijns et al., 2020), we
calculated the mean, as well as the 10th, 25th, 50th, 75th,
90th, 90th–10th, and 75th–25th percentiles of the spectral
bands and VIs (Table 3).

2.5.3 Harmonic Regression Coefficients
Considering the bimodal rainfall pattern over a year in our study
area, we selected the 2-term harmonic model in Eq. 1 for
harmonic regression. The harmonic model formula is, therefore:

TABLE 1 | Characteristics of Landsat 8 Operational Land Imager (OLI) images.

Parameter Value

Location Taita Hills, Kenya
Path and row 167, 62
Sensor OLI
Band Blue, Green, Red, NIR, SWIR1 and SWIR2
Area (km2) 1882
Spatial resolution (m) 30
Number of images 11
Acquisition dates (year: day of year) 2015: 14, 30, 78, 110, 142, 190, 222, 238, 270, 286, 350

TABLE 2 | Summary of vegetation indices using blue, green, red, near infrared, and shortwave infrared spectral bands of Landsat 8 sensors.

Vegetation Index Formula References

Enhanced Vegetation Index (EVI) 2.5 · NIR−red
NIR+6·red−7.5·blue+1 Liu and Huete (1995)

Green Normalized Difference Vegetation Index (GNDVI) NIR−green
NIR+green Gitelson et al. (1996)

Normalized Difference Moisture Index (NDMI) NIR−SWIR1
NIR+SWIR1

Ruefenacht (2016)

Normalized Difference Vegetation Index (NDVI) NIR−red
NIR+red Tucke (1979)

Non-Photosynthetic Vegetation Normalized Difference (NPVND) SWIR1−(NIR+red)
SWIR1+NIR+red Poitras et al. (2018)

TABLE 3 |Model-specific predictor variables. Each predictor includes six spectral
bands (blue, green, red, NIR, SWIR1, and SWIR2) and five vegetation indices
(EVI, GNDVI, NDMI, NDVI, and NPVND). Abbreviations: SCs: seasonal
composites; STMs, spectral-temporal metrics; HR, harmonic regression.

Predictor Types Number
of Predictor Variables

SCs SC1a 11
SC2b 11
SC3c 11
SC4d 11
SC1–SC4e 44

STMsf 88
HRg 55

aMedian composite from dry and hot season (January–February).
bMedian composite from long rains (March–May).
cMedian composite from dry and cool season (June–September).
dMedian composite from short rains (October–December).
eA combination of multi SCs.
fMean, as well as the 10th, 25th, 50th, 75th, 90th, 90th–10th, and 75th–25th percentiles.
ga0, a1, a2, b1, b2 (Eq. 1), the constant, cosine amplitudes, and sine amplitudes of the
harmonic fit.
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f t( ) � a0 + a1 cos t + b1 sin t( ) + a2 cos 2 t + b2 sin 2 t( ) (1)
where f(t) is a time-dependent function for Landsat spectral
bands and VIs, t is the time an image was acquired within a year
expressed as a fraction between 0 (January 1) and 1 (December
31), a0 is the constant, a1 and a2 are the amplitudes of cosine
waves, and b1 and b2 are the amplitudes of sine waves.

For convenience, we take SWIR1 data as an example to explain
the steps of the experiment. First, we filled the gaps in a
SWIR1 band using MOPSTM. Then, both original and gap-
filled data were combined into time-series stacks, with each
pixel representing a vector of reflectance values chronologically
ordered through time. The next step was to calculate the HR
coefficients with a harmonic curve fitted to each pixel of the
SWIR1 original and gap-filled stacks. Applied successfully in the
study of Derwin et al. (2020), the EWMACD algorithm (Brooks,
2014; Brooks et al., 2014) was used to derive five coefficients
including the constant, first sine, first cosine, second sine, and
second cosine for each pixel. The same experimental procedure
was applied to all spectral bands and VIs. The five HR coefficients
(Table 3) were subsequently used as predictor variables in the
random forest regression (Section 2.7).

2.5.4 Time-Series Experiments
We designed seven experiments to evaluate the effect of gap-
filling on the three sets of predictors including SCs, STMs, and
HR. To be specific, each experiment contains the same set of
predictors, but derived from images that were not gap-filled
(actual images) and images that were gap-filled by the Steffen
spline andMOPSTMmethods. The seven experiments vary based
on the combination of predictors used: 1) SC1, 2) SC2, 3) SC3, 4)
SC4, 5) a combination of SCs, 6) STMs, and 7) HR.

2.6 Single-Date Predictor Variables
2.6.1 Filling Simulated Gaps in Single-Date Images
To study how gap-filled observations differed from valid
observations in terms of modelling accuracy, we selected one
image from each season. The four images were acquired from the
day of year (DOY) 30, 142, 222, and 350 in 2015 and had as many
valid observations as possible during each season. Then, we
simulated artificial gaps by removing all the pixels in the four
single-date images where the simulated gap rates are 94%, 68%,
56%, and 52%, respectively. The simulated gap rate was not 100%
because of the existence of real gaps in these images. We then
filled the gaps with pixels from an extension of the study area
using MOPSTM (Tang et al., 2021). Because the comparison was
between gap-filled and actual pixels, we used the more accurate
MOPSTM-gap-filled results (gap-filling performance
comparisons of MOPSTM and Steffen spline can be seen in
Tang et al. (2022)).

2.6.2 Single-Date Experiments
With the MOPSTM gap-filled and actual images, we designed the
experiments to compare their performance in TCC modelling.
We selected 10,000 training and test pixels randomly from the
overall TCC pixels where the training and test data had no

overlaps. The training data were split into a set of proportions
of gap-filled and valid pixels from 0, 0.1, 0.2, . . . , 1, and so were
the test data. Then, various combinations of training and test data
were used to model and predict TCC. Specifically, for example,
the model trained with 0.3/0.7 gap-filled/valid training data was
used to predict the test data with 0/1, 0.1/0.9, 0.2/0.8, . . . , 1 gap-
filled/valid test data. We repeated the above steps 100 times to get
an average of the accuracy.

2.7 Random Forest Regression
Random forest (RF) method (Ho, 1995) has become popular in
modelling vegetation attributes (Vauhkonen et al., 2010; Shataee
et al., 2012; Heiskanen et al., 2017) because it has many advantages,
such as easy parameter tuning, insensitivity to multicollinearity of
the predictor variables and variable selection, and advantages in
modelling complex relationships (Ho, 1995; Ali et al., 2012).
Therefore, we applied RF to model the relationship between the
TCC reference data and predictor variables. We used the
“randomForest” package (Liaw and Wiener, 2002) in R
environment (Team, 2018). Bootstrap sampling with replacement
was applied to evaluate model predictions (James et al., 2013). For
each time-series predictor, there were 100 bootstrap samples in
which each bootstrap sample contained 10,000 random training
pixels and 8,000 random test pixels.

2.8 Accuracy Assessment and Variable
Importance
Model accuracy was assessed based on the test data using root
mean square error (RMSE) and R2.

RMSE �
������������∑n

i�1 Vi − V̂i( )2
n

√
(2)

R2 � 1 − ∑n
i�1 Vi − V̂i( )2∑n
i�1 Vi − Vi( )2 (3)

whereVi is the ith observed value in the total observations of n, V̂i

is the ith fitted value, and Vi is the mean of the observed values.
Accuracy was assessed by comparing reference TCC and the
predicted values obtained from RF models.

Variable importance, provided in RF models, is used to
measure the importance of the predictor variables by a means
of statistical inference. The most advanced variable importance
measurement in RF is the “permutation accuracy importance”
(Strobl et al., 2007), which compares the difference in accuracy
between the original predictor variable and the permuted
predictor variable. The measurement is available in the
“randomForest” package (Liaw and Wiener, 2002) in R.

To compare the relative importance between the same
predictor variables derived from gap-filled or non-gap-filled
images, we applied the variable importance method to three
types of combinations from SCs, STMs, and HR models that
contain both gap-filled and non-gap-filled variables. For the SCs
model, we combined SCs from all seasons to demonstrate the
variable importance.
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3 RESULTS

3.1 Comparisons of Time Series
Experiments
3.1.1 Model Accuracy Between Predictors
The non-gap-filled and MOPSTM-gap-filled Landsat reflectance
and VIs for DOY 14 in 2015 are illustrated in Figure 3, where
MOPSTM produced smooth and natural-looking reconstructed
images.

Figure 4 demonstrates the RMSE and R2 distributions of
TCC modelling using SCs, STMs, and HR predictor variables.
On average, predictors based on gap-filled images performed
better than those without gap-filling. Steffen spline delivered
slightly worse accuracy than non-gap-filled data for S1, S3,
and STMs, but it surpassed them more greatly for other
predictors. MOPSTM indicated better performance than non-
gap-filling models for the predictor variables all the predictors,
except for SC1. Also, MOPSTM gap-filled SCs showed the
greatest improvement in S4 when the median RMSE
decreased by approximately 1.8 and the median R2 increased
by approximately 0.06.

As the number of valid observations of pixels throughout the
year can be a driver behind overall RMSE, we examined how the
RMSE of SC1–SC4 relies on the number of valid observations
used for computing median (Figure 5). When the valid
observation was zero in Figures 5D–G, it meant there was no
valid data in the specific season, but gap-filling methods can still
work based on data from other seasons. However, if there were no
valid observations throughout the four seasons, neither Steffen
spline nor MOPSTM can work.

A clear improvement after applying MOPSTM gap-filling
was observed in all classes of valid observations in SC2–SC4, and
the greatest improvement was observed in SC4. For SC1, no
improvement after gap-filling was observed when the number of
valid observations was 1 or 2, but the MOPSTM RMSE of the
zero valid observations case was not worse than when there was
at least 1 valid observation. For other seasons, MOPSTM gap-
filled results yielded higher accuracy than non-gap-filled results,
especially for SC4. Although Steffen spline method had poorer
performance than MOPSTM in most SCs, it had higher
accuracy than non-gap-filled results for all the cases in
SC2 and SC4. Steffen spline method yielded lower accuracy

FIGURE 3 | The non-gap-filled and MOPSTM-gap-filled images and for the Landsat image acquired on DOY 14 2015. (A) Spectral reflectance displayed in false
color of R: SWIR1, G: NIR, and B: red surface reflectance, (B) EVI, (C) GNDVI, (D) DNMI, (E) NDVI, and (F) NPVND. Abbreviations: EVI, enhanced vegetation index;
GNDVI, green normalized differential vegetation index; NDMI, normalized difference moisture index; NDVI, normalized difference vegetation index; NPVND, non-
photosynthetic vegetation normalized difference.
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than non-gap-filled results in SC3, one reason for which was
that Steffen spline method produced artifacts in SC3
(Figure 5B).

For STMs, RMSE for one valid observations was not shown
because Steffen spline did not interpolate values in that case. The
largest difference between the non-gap-filled and MOPSTM gap-
filled predictors is situated in the 8–11 valid observations through
the time series (Figures 5H,J,L). Steffen gap-filling models
performed less accurate than non-gap-filling models
(Figure 4) because it produced less accurate STMs (Figure 5I).

For the HR model, RMSE is shown for pixels that have six and
more than six valid observations (Figure 5K). A clear
improvement in MOPSTM gap-filled models depending on
the number of observations can be observed in the HR model
no matter how many numbers of observations there are through
the time series. Steffen spline models had similar results to the
non-gap-filling models but was less accurate when the valid
number was the largest.

Although the overall RMSE and RMSE stratified by the
number of valid observations indicated higher accuracy for
MOPSTM gap-filling models than non-gap-filling models, we
compared their performance using an additional accuracy
measurement, absolute residuals (i.e., the differences between
observed and fitted values) in Figure 6. Similar to the results in
Figure 5, a greater improvement for MOPSTM gap-filled models
was observed when valid numbers were 1, or larger than 7. Minor

improvement for MOPSTM gap-filled models, however, can also
be found when 2–6 valid observations existed.

3.1.2 Harmonic Curves of Single-Pixel NDVI Time
Series
In this section, we show the illustrative harmonic curves of NDVI
time series in Figure 7, where the harmonic curves were fitted by
only valid pixels and a mix of gap-filled and valid pixels,
respectively, across three land cover types—bushland, forest,
and cropland. Six pixel locations (Figure 7G) with two
bushland types located in (3°27′17.9″S, 38°6′17.2″E) and
(3°24′27.0″S, 38°28′53.6″E), two forest types located in
(3°18′34.2″S, 38°28′7.1″E) and (3°21′38.7″S, 38°22′5.3″E) and
two cropland types located in (3°24′49.2″S, 38°21′50.7″E) and
(3°24′17.1″S, 38°26′32.6″E).

Figures 7A,B demonstrate the annual NDVI time series for
two bushland pixels with five and six valid observations,
respectively. The former had only one trough for the yellow
line. The latter had a long period of missing observations between
DOY 190 to 286, which resulted in an anomalous trough in the
yellow harmonic fit with a bottom NDVI lower than zero during
this period. In contrast, the green harmonic fits for both pixels
appeared similar and plausible owing to the gap-filled
observations. Figures 7C,D illustrate an annual NDVI time
series for two forest pixels, which are supposed to have double
peaks. Figure 7C had a small trough for the yellow fit due to a
missing point on DOY 78. For Figure 7D, an anomalously high
yellow harmonic fitted line (over 1.0) occurred due to no valid
observations from the DOY 190 to 286. Figures 7E,F indicate
NDVI harmonic fitted for two cropland pixels where successive
missing points caused a greatly incorrect oscillation in yellow
harmonic fits.

3.1.3 Comparisons of the Predictor Variable
Importance
The variable importance for the combination of SCs, STMs, and
HR coefficients that included MOPSTM gap-filling and did not
include gap-filling is compared in Figure 8. The MOPSTM gap-
filled variables are always the most important variables, and the
MOPSTM gap-filled variables dominated the top 20 variables in
the amount. When comparing the same variables, the MOPSTM
gap-filled variables had greater importance scores than their non-
gap-filled counterparts.

3.2 Comparisons of Single-Date Image
Experiments
MOPSTM gap-filled pixels performed equivalently to the valid
pixels through 121 cross combinations of training and test
datasets where the proportions of gap-filled and valid pixels
ranged from 0 to 100% (Figure 9). The second row and third
column, for example, represent RMSE of the TCC RF model
when the training dataset had 10% valid pixels and test dataset
had 20% valid pixels. When the proportion of valid pixels was the
smallest or the largest in training and test datasets, RMSE was the
smallest, which can be observed in the top-left or bottom-right
corners in Figure 9. The single-date image acquired from S1 had

FIGURE 4 | Bootstrapping results for the variables using non-gap-filling
versus using gap-filling (Steffen spline and MOPSTMmethods), predicting the
tree canopy cover. The kernel densities are based on 100 bootstrap samples
for the tested Landsat reflectance and vegetation indices. A wide spread
in kernel density indicates variation among the bootstrap samples.
Abbreviations: S1 denotes dry and hot season (January–February),
S2 denotes long rains (March–May), S3 denotes dry and cool season
(June–September), S4 denotes short rains (October–December), S1–S4 is a
combination of all the seasons.
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the smallest RMSE on average while S4 had the largest RMSE on
average.

4 DISCUSSION

4.1 Overall Performance of Gap-Filling
in TCC
A parsimonious approach to preprocessing, avoiding unnecessary
steps, has been recommended for Landsat-based studies (Young
et al., 2017). Applying gap-filling in time series analysis makes

sense for researchers who use images that are contaminated by
sensor failures or clouds and cloud shadows. In this study, we
examined TCC modelling to explore the necessity and
effectiveness of including gap-filling in the preprocessing step
because TCC modelling is an essential measurement in forest
management and vegetation growth cycle monitoring and is
rarely evaluated for such a purpose. Besides, accurate and time-
series maps of TCC are usually limited to the availability of valid
observations of the Earth’s surface. Although numerous studies
preferred the cloud-free images (Selkowitz, 2010; Yang et al.,
2012; Derwin et al., 2020), locations that have persistent cloud

FIGURE 5 |Dependence of RMSE on the number of observations for four SCs, STMs and HR coefficients derived from Landsat images that were not gap-filled and
images that were gap-filled. (A) SCs without gap-filling; (B) SCs with Steffen spline gap-filling; (C) SCs with MOPSTM gap-filling; (D) SC1 RMSE; (E) SC2 RMSE; (F)
SC3 RMSE; (G) SC4 RMSE; (H) STMs (25th and 75th percentile metrics) without gap-filling; (I) STMs (25th and 75th percentile metrics) with Steffen spline gap-filling (J)
STMs (25th and 75th percentile metrics) with MOPSTM gap-filling (K) HR RMSE; and (L) STMs RMSE. The x-axis for (D–G), (K,L) is the number of the valid
observations of each pixel through the time series, y-axis on the left is the RMSE, y-axis on the right is the frequency (in percentage) of number of valid observations,
displayed in grey lines.
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cover in rainy seasons, e.g. tropical landscapes, have no valid
observations available (Anderson et al., 2010), which becomes a
barrier to TCC modelling. Due to the recommendation for
preprocessing methods that are well tested, easily available,
and sufficiently documented (Young et al., 2017), we chose a
hybrid MOPSTM gap-filling method (Tang et al., 2021) for the
main examination and a temporal-based method, Steffen spline
interpolation as the assistance to explore how the selection of
gap-filling method affects TCC modelling results.

We investigated the relative predictive power of TCC
models using predictor variables derived from Landsat time
series that included gap-filling versus those that did not
include gap-filling across a landscape where trees are
abundant outside forests. Time series predictors and single-
date predictors were used because of their broad applications
(Potapov et al., 2015; Halperin et al., 2016; Tong et al., 2017;
Brandt et al., 2018; Lister et al., 2020). An overall
improvement in RMSE was observed in the models that

FIGURE 6 | Dependence of absolute residuals on the number of observations for spectral-temporal metrics (STMs). The x-axis is the number of the valid
observations of any one pixel through the time series, and y-axis is the absolute residuals. The gap-filling method was MOPSTM.

FIGURE 7 | Examples of harmonic curves fitted by only valid points (yellow lines) and a combination of MOPSTM gap-filled and valid points (green lines) for NDVI
time series across three different land cover types: (A,B) bushland, (C,D) forest, (E,F) cropland, and (G) TCC map of the three land cover type locations. The
corresponding color dashed lines are the median of the annual NDVI values. The grey points show the only valid NDVI values and the black points show the MOPSTM
gap-filled NDVI values.
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contained gap-filled predictors on average. Furthermore, the
variable importance comparison indicates consistently higher
variable importance of MOPSTM gap-filled variables than
non-gap-filled variables.

4.2 Comparisons of Time Series
Experiments
For SC experiments, the best model without gap-filling was SC in
S1, the dry and hot season from January to February. This was
partially explained by the variable importance results (Figure 8)
where the most important variables were mostly from S1. This
finding is in agreement with the previous studies which found
that the dry season has the best performance in mapping

vegetation attributes (Liu et al., 2016) and characterizing tree,
soil, and biodiversity attributes in African savannas (Heiskanen
et al., 2017).

Superior performance was observed in SC1 without gap-filling
(Figure 4). A possible explanation for this is that the median
composite in S1 was of high quality because of the relatively good
availability of valid pixels. In contrast, in SC3 and SC4, pixels
that were contaminated by clouds and cloud shadows caused
great spectral variation and reduced the quality of the median
composites derived from the images that were not gap-filled
(Figure 5A). Using MOPSTM gap-filling, the median composites
in S3 and S4 look smooth and natural (Figure 5C). This can
explain why MOPSTM gap-filling had the largest positive effects
on SC3 and SC4 predictors. Steffen spline models performed less

FIGURE 8 | Top 20 variable importance measured by mean decrease in accuracy from random forest models using three types of variable predictors: (A)
combination of multi SCs, (B) STMs, and (C) HR coefficients. Variables that do not have gap-filling applied start with “N”while variables that have MOPSTM gap-
filling applied start with “G”. The importance scores are the mean values for 100 iterations.

FIGURE 9 | RMSE of single-date images from four seasons with respect to different proportions of MOPSTM gap-filled and valid observations involved in both
training datasets and test datasets in random forest models. Four Landsat 8 images were acquired from (A) DOY (day of year) 30 in dry and hot season, (B) DOY 142 in
long rain season, (C) DOY 222 in dry and cool season, and (D) DOY 350 in short rain season in 2015.
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accurately than non-gap-filling models in S3. Therefore, gap-
filling may offer a limited advantage for TCC modelling in cases
when median composites can be generated from sufficient valid
observations in the time series. Moreover, in some cases, less
accurate gap-filling results limited the TCC modelling
performance.

Like SCs, gap-filled multi-date images acquired from
each season can be potential predictors because these images
are cloud-free and possess the same seasonal characteristics
as SCs. Therefore, we compared the performance of seasonal
gap-filled images (SGIs), labelled as SGI1–SGI4 from S1–S4
(Table 4). Although Steffen spline method delivered larger
RMSE for SC1 and SC3 than non-gap-filled results, it had
the smaller RMSE for all of the SGIs. Furthermore,
MOPSTM yielded the smallest RMSE for SGIs in each
season. It supports the great benefit of gap-filled images
directly applied in the TCC modelling, even though they
are not commonly used. However, using all gap-filled images
in a time series to model TCC directly can be costly in
calculations and RAM (Belgiu and Drăguţ, 2016) when
dozens or hundreds of images are observed in the time series
(e.g. including more observations from other satellite sensors).
A well-organized implementation in a High Performance
Computing environment can resolve the problem (Herrera
et al., 2019).

The STMs using MOPSTM gap-filling only showed slight
improvement in overall accuracy (Figure 4) while improving for
all cases with various numbers of valid observations in Figure 5.
Absolute residuals (Figure 6) with respect to the different
numbers of valid observations suggest that gap-filled
predictor variables had smaller median absolute residuals.
RMSE and absolute residuals results, either gap-filled or non-
gap-filled, for greater number of observations (e.g. 8–11) were
not as good as those for a smaller number of observations (e.g.
5–7), which may be explained by the different distributions of
training data selected from the entire pixels that have a specific
number of observations. Pixels that have a greater number of
valid observations are less likely to occur in montane forests

(Nair et al., 2003; Pellikka et al., 2009) where canopy cover is
high. Thus, training data selected from these pixels had a poor
coverage of the highest TCC areas, resulting in modelling TCC
less reliably.

The HR predictor variables without gap-filling surpassed all
SCs in TCC modelling (Figure 4), which corroborates with
previous results Derwin et al. (2020). HR is capable of
mitigating the side effects of the artifacts and noise caused
by gaps (Wilson et al., 2018), but the improvement of HR
model with gap-filling emphasized the importance of gap-
filling, which can fix the harmonic shape of the curve following
the expected seasonal pattern of vegetation over the year
(Thomas et al., 2021).

The best model in time-series predictors was the
combination of SCs with slightly smaller RMSE than that of
HRmodels. The poorer performance of HRmay be explained by
overfitting in the models, which was a common issue as the
maximum number of valid observations was only eleven while
the number of harmonic coefficients was five. However, the
determination of harmonic terms is a trade-off between the fact
that reducing the harmonic terms can help with overfitting and
that more harmonic terms are capable of fitting data in dual-
rainy-season situation e.g. in the Taita Hills (Brooks et al., 2012;
Derwin et al., 2020). Although solving the overfitting effects in
HR is beyond the scope of this paper in evaluating the effects of
gap-filling in TCC modelling, the improvement from applying
gap-filling in HR may help solve the overfitting effects by
increasing the number of valid observations (Brooks et al.,
2012).

4.3 Comparisons of Single-Date Image
Experiments
For single-date predictor experiments, the overall accuracy
indicated better performance from using images acquired
from the dry seasons than from the wet seasons, which is in
line with previous work (Chrysafis et al., 2019, 2017).
Furthermore, the results showed that the MOPSTM gap-filled
data may have equivalent performance to valid data in terms of
TCC modelling accuracy, which was observed from Figure 9.
There was no sign that modelling is less accurate using only
MOPSTM gap-filled data than using only valid pixels. Figure 9
also suggests that the same proportion of gap-filled pixels in
both training and test data is more likely to produce the highest
accuracy.

4.4 Different Gap-Filling Methods and
Future Perspectives
Between the temporal-based Steffen spline interpolation, and hybrid
MOPSTMmethod, MOPSTM delivered higher accuracy for most of
the predictors, except for SC2, a combination of SCs, and HR
coefficients (Figure 4). Although both of them had a positive
effect on TCC modelling, the strength of the effect varied. In

TABLE 4 | The median RMSE of seasonal composites (using non-gap-filling,
Steffen spline gap-filling, and MOPSTM gap-filling) and seasonal gap-filled
images by Steffen spline and MOPSTMmethods for modelling tree canopy cover.
The highest and lowest values are presented in bold. Abbreviations: SGI: seasonal
gap-filled images.

Season Non-gap-filling Steffen Spline
Gap-Filling

MOPSTM Gap-
Filling

SC SC SGIa SC SGI

1 15.70 16.04 15.57 15.96 15.56
2 17.00 16.52 15.40 16.65 15.34
3 17.48 17.64 16.44 16.81 16.23
4 18.65 18.17 17.33 16.84 16.20

aThe numbers of predictor variables for both Steffen spline andMOPSTMSGI1–SGI4 are
22, 33, 44, and 22, respectively.
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general, a higher accurate gap-filling method (MOPSTM) produced
more accurate predictions.

This study only used 1 year of the Landsat time series to model
TCC because MOPSTM gap-filling method is proposed to fill
gaps over a 1-year period (Tang et al., 2020, 2021) although the
method can also use STMs calculated over several years for
imputation of missing values. It will be more challenging to
examine gap-filling effects for a longer period (Brandt et al., 2018)
as few gap-filling methods have been suggested to deliver good
performance in a long time series. Further studies can focus on
examining other types of gap-filling methods, other predictors,
such as best-pixel composites (White et al., 2014), and other
downstream tasks, such as land surface temperature monitoring
(Li et al., 2013).

5 CONCLUSION

Landsat data record is a rich resource for time series analysis,
like tree canopy cover monitoring, but the lack of
appropriate guides in gap-filling, which aims to recover
missing observations in images, remains as a barrier to its
effective use. To provide a concise guide of the effects of gap-
filling on TCC modelling, we used hybrid MOPSTM gap-
filling method and temporal-based Steffen spline
interpolation to explore how gap-filling affects TCC
modelling accuracy. We conclude that gap-filling improves
accuracy based on time series SCs, STMs, and HR predictor
variables. More accurate the gap-filling method, the greater
the positive impact will be on the modelling accuracy.
However, when the predictors are derived from sufficient
valid observations, gap-filling can be optional. A single
MOPSTM-gap-filled image can be an alternative to the
original image in terms of TCC modelling.
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