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A fast and shallow convolutional neural network is proposed for hyperspectral image
super-resolution inspired by Spatial-Spectral Reconstruction Network (SSR-NET). The
feature extraction ability is improved compared to SSR-NET and other state-of-the-art
methods, while the proposed network is also shallow. Numerical experiments show both
the visual and quantitative superiority of our method. Specifically, for the fusion setup with
two inputs, obtained by 32× spatial downsampling for the low-resolution hyperspectral (LR
HSI) input and 25× spectral downsampling for high-resolutionmultispectral (HRMSI) input,
a significant improvement of the quality of super-resolved HR HSI over 4 dB is
demonstrated as compared with SSR-NET. It is also shown that, in some cases, our
method with a single input, HR MSI, can provide a comparable result with that achieved
with two inputs, HR MSI and LR HSI.

Keywords: image fusion, remote sensing, hyperspectral imaging, multispectral imaging, spectral reconstruction,
super-resolution

1 INTRODUCTION

The hyperspectral image super-resolution is a fast-growing research area in computer vision,
particularly due to technical difficulties of high-resolution hyperspectral data acquisition with
both high spatial and spectral resolutions. Unlike conventional cameras capturing images with
three spectral bands (RGB), hyperspectral imaging systems capture hundreds of spectral bands of
different wavelengths. Due to the significant increase of information that hyperspectral images (HSI)
provide with respect to RGB images, they are considered beneficial for many computer vision tasks,
especially in cases when three channels of RGB images are not enough to identify and distinguish
objects and materials (Segl et al., 2003; Khan et al., 2018; Cavalli, 2021). Hyperspectral imaging is
widely used in areas such as anti-spoofing (Kaichi and Ozasa, 2021), food quality and safety
assessment (Feng and Sun, 2012), medical diagnosis (Fei, 2020), precision agriculture (Rascher et al.,
2007). Moreover, for extracting more information, somemethods apply HSI super-resolution (SR) as
a preprocessing step for other computer vision tasks, such as dehazing (Makarau et al., 2014; Gan
et al., 2016; Mehta et al., 2020, 2021) and object detection (Pham et al., 2019; Yan et al., 2021).

Unfortunately, hyperspectral imaging systems mainly focus on captioning higher spectral
resolution because of the hardware limitations, which adversely affect spatial resolution. Instead,
multispectral cameras capture multispectral images (MSI) with much higher spatial resolution than
HSI cameras. Therefore, the most practical way to obtain higher resolution imaging for both spatial
and spectral domains is to fuse these two types of inputs, HRMSI and LRHSI, by taking advantage of
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spatial information of the first input, and a correlation among the
spectral bands of the second input. There are two special cases of
hyperspectral image super-resolution when only one of the inputs
(HR MSI or LR HSI) is given.

In this paper, a novel two-input fusion HSI SR method is
proposed as a modification of the baseline method, SSR-NET
(Zhang X. et al., 2021) architecture, which is a state-of-the-art HSI
SR network. To improve the spatio-spectral feature extraction
ability of this baseline method and at the same time to keep the
network shallow, we add long and short skip connections and two
convolutional blocks. As a result, the proposed method, modified
SSR-NET (MSSR-NET), outperforms the baseline SSR-NET and
other state-of-the-art methods quantitatively and qualitatively.
We demonstrate the efficiency and robustness of our network by
training and testing it for different types of input data formation.

Perhaps the biggest problem in HSI super-resolution is the
absence of real input and output data pairs, which are necessary
for training a neural network. It is almost impossible to capture
exactly the same scene in two different spatial and spectral resolutions
(Chen et al., 2015; Pan and Shen, 2019; Zhou et al., 2020). The
standard approach to overcome this image co-registration issue is to
generate HR MSI and LR HSI directly from HR HSI. The drawback
of this approach is amismatch of thismodeling with respect to reality
and, as a result, unpredictable behavior of even state-of-the-art
methods in real-life applications. Another problem is a lack of
hyperspectral data due to acquisition difficulties. Only a few
public datasets are available for training and testing HSI SR
methods which mainly contain only a single large image. To be
able to apply the proposedmethod in a real-life scenario, we train and
evaluate it for different methods of input data generation.

To summarize, the main contributions of this work are:

1. A novel fast CNN is proposed as a modification of SSR-NET
for hyperspectral image super-resolution. It has a simple
architecture and comparable or smaller model size
compared with the state-of-the-art methods.

2. For different types of input data formation, the proposed method
has a superior reconstruction quality visually and numerically
compared with SSR-NET and other state-of-the-art methods.

3. The proposed network has been modified and trained to work
also with single-input data: HR MSI or LR HSI. It is shown that
for HRMSI input data, the reconstruction accuracy in some cases
is very close to the accuracy achieved in the two-input scenario.

The rest of the paper is organized as follows: Section 2
provides the formal definition of HSI SR and its sub-tasks,
summarizes the main approaches for each of them, describes
in detail the baseline SSR-NET and proposed methods. The
experiments on remote sensing datasets are described in
Section 3. Finally, the conclusions are given in Section 4.

2 MATERIALS AND METHODS

2.1 Problem Formulation
Let Z ∈ RH×W×L be a target HR HSI that need to be recovered by
fusing LR HSI X ∈ Rh×w×L(h≪H,w≪W) and HR MSI

Y ∈ RH×W×l(l≪L), where H, W and L denote the height,
width and number of the bands in the spectral cube HR HSI,
respectively. Correspondingly, h and w are the spatial dimensions
of LR HSI, and l is the number of spectral bands of HR MSI.

For simplicity of mathematical formulation, the reshaped
versions (mode-3 unfolding matrices) of Z, X and Y will be
denoted asZ ∈ RHW×L,X ∈ Rhw×L,Y ∈ RHW×l. The observations
for modeling of the fusion based super-resolution are given by the
following equations:

X � ZD (1a)
Y � CZ (1b)

where D ∈ RHW×hw is a downsampling operator along the spatial
dimension to obtain LR HSI by downsampling HR HSI, and
C ∈ Rl×L is the camera spectral response function that maps the L
spectral channels into l channels.

The reconstruction of Z from these observations is the
super-resolution (SR) problem. HSI SR methods can be
classified into the following categories, corresponding to
three cases of super-resolution in the spatial domain (only
Eq. 1a is used), in the spectral domain (only Eq. 1b is used),
and in both spatial and spectral domains (both observations of
Eq. 1 are exploited):

1. HSI-from-MSI spectral reconstruction, with the goal to
reconstruct HSI from a given MSI, which, in particular, can
be an RGB image. Here the spatial resolution of HSI and MSI
are the same, and the number of channels in the output HSI is
larger than that of MSI, i.e., generating HSI with dimensions
H × W × L from the MSI with dimensions H × W × l,
where l ≪ L.

2. HR-from-LR HSI super-resolution, with the aim to produce a
HR HSI from the given LR HSI. Here spatial resolution
increases, while the number of channels is kept the same,
i.e., generating HSI with dimensions H × W × L from LR HSI
with dimensions h × w × l, where h ≪ H, w ≪ W.

3. Fusion-based super-resolution, with the aim to estimate HR
HSI from two inputs: HRMSI and LR HSI. Here, the final HSI
shall have the same spatial resolution as HR MSI and have the
same number of spectral bands (channels) as LR HSI. Thus,
the goal of HSI super-resolution is to recover HR HSI with
dimensions H ×W × L by fusing LR HSI with dimensions h ×
w × L (h≪H, w≪W) and HRMSI with dimensionsH ×W ×
l (l ≪ L).

2.2 Related Work
There are three main approaches for HSI SR: bayesian-based
(Bungert et al., 2017; Chang et al., 2020; Vella et al., 2021), tensor-
based (Gao et al., 2021; Peng et al., 2021; Xue et al., 2021), and
matrix factorization-based (Liu J. et al., 2020; Borsoi et al., 2020;
Li X. et al., 2021) methods. The drawbacks of these model-based
methods are the hand-crafted priors and the inference time as
they mainly use alternating direction method of multipliers
algorithm for optimization. The learning-based methods
outperform the traditional ones due to better spatial
information extraction, especially in the case of complex scenes.
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Due to the powerful feature extraction ability, deep learning
approaches make up the majority of recent state-of-the-art
methods. Most of them belong to supervised learning. Some
learning-based methods try to extract spatio-spectral features, the
correlation among spectral bands simultaneously with spatial
information, by exploiting 3D convolutions (Mei et al., 2017; Li
et al., 2020; Fu et al., 2021; Li et al., 2021b,d). This approach is
mainly used for the feature extraction from input LR HSIs. The
drawback of this technique is the computational complexity
which leads to large model size and long reconstruction time.
Some of them are hybrid frameworks, i.e., the network tries to
learn parameters of a model-based method (Dian et al., 2021;
Vella et al., 2021; Ma et al., 2022). They mainly use the alternating
direction method of multipliers algorithm to estimate the
coefficients, which leads to slow performance.

However, because of the data insufficiency problem, there
exists also an interest in semi-supervised (Li K. et al., 2021) and
unsupervised (Qu et al., 2018; Fubara et al., 2020; Zhang L. et al.,
2021; Zheng et al., 2021) learning approaches. Some recent works
try to tackle the problem of image co-registration (Wang et al.,
2019; Zhou et al., 2020; Qu et al., 2022).

2.3 Baseline Method: SSR-NET
As a baseline method, we have selected the learning-based
method, Spatial–Spectral Reconstruction Network (SSR-NET)
(Zhang X. et al., 2021), which is the state-of-the-art among
shallow CNN-based methods developed for remote sensing
datasets. In terms of the number of model parameters and test
speed, SSR-NET outperforms other state-of-the-art methods.
SSR-NET consists of three main parts: cross-mode message

FIGURE 1 | MSSR-NET architecture. The operation types are written in each block and the arrows with plus sign denote skip-connections. The blue arrows and
blocks are our modifications to the baseline scheme.

FIGURE 2 | Two different data formation strategies for HR MSI generation.

TABLE 1 | Remote sensing datasets for hyperspectral image super-resolution.

Dataset Camera Resolution Range of wavelength Number of bands

Botswana Hyperion sensor 1,476 × 256 400–2,500 nm 145
Pavia Centre ROSIS sensor 1,096 × 715 400–2,500 nm 102
Pavia University ROSIS sensor 610 × 340 430–860 nm 103
Urban HYDICE sensor 307 × 307 400–2,500 nm 162
Indian Pines AVIRIS sensor 145 × 145 400–2,500 nm 200
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inserting (CMMI) network, spatial reconstruction
network (SpatRN) and spectral reconstruction network
(SpecRN).

Each of the networks–building blocks of SSR-NET, consists of
a standard 3 × 3 convolutional layer and a ReLU activation
function, and in the case of SpatRN and SpecRN, skip-
connections are applied. The architectures of SpatRN and
SpecRN are similar, and they differ only with their sub-
network-specific loss functions.

The goal of CMMI block is to generate a so-called hypermultiple
spectral image (HMSI) which contains the essential information of
LR HSI and HR MSI. For that purpose, it firstly generates the
preliminary fused version by taking all the known values for pre-

fixed bands, and then takes values for other bands by applying
upsampling of LR HSI. After applying convolution, the obtained
hypermultiple spectral image passes through the next blocks,
SpatRN and SpecRN, which use spatial and spectral edge losses,
respectively. The overall loss function is a sum of three losses: spatial
edge loss, spectral edge loss and fusion loss. Spatial edge loss is the
weighted sum of the mean squared errors between the edge maps of
the ground-truth and initial super-resolved HSI, which is the output
of SpatRN, for the horizontal and vertical directions. Spectral edge
loss calculates the mean squared error between the ground-truth
edge map and edge map of the output of SpecRN, along the spectral
dimension. Fusion loss computes mean squared error between the
reconstructed and ground-truth HSIs.

TABLE 2 | Quantitative results on Botswana dataset. HR MSI is generated
according to Type 1 model.

Model Scale PSNR ↑ ERGAS ↓ SAM ↓

SSFCNN 4× 37.92 9.78 2.23
8× 36.06 10.23 2.76
16× 29.62 10.64 7.61
32× 28.83 12.19 7.32

ResTFNet 4× 38.78 2.62 2.04
8× 38.07 2.67 2.16
16× 37.65 2.8 2.27
32× 37.28 2.69 2.33

SSR-NET 4× 35.85 11.35 2.86
8× 35.9 10.3 2.85
16× 36 9.7 2.8
32× 36.02 8.2 2.8

MSSR-NET 4× 39.61 3.85 1.91
8× 39.13 5.35 2.01
16× 38.9 4.93 2.06
32× 38.78 5.89 2.1

The best scores are written in bold.

TABLE 3 | Quantitative results on Pavia University dataset. HR MSI is generated
according to Type 1 model by taking five spectral bands.

Model Scale PSNR ↑ ERGAS ↓ SAM ↓

SSFCNN 4× 36.32 2.13 5.2
8× 37.06 2.89 4.14
16× 31.99 3.71 6.79
32× 41 1.57 2.41

ResTFNet 4× 41.85 1.46 2.31
8× 41.54 1.51 2.36
16× 41.48 1.52 2.38
32× 40.94 1.61 2.45

SSR-NET 4× 43.48 1.21 1.94
8× 43.07 1.25 2.02
16× 43.04 1.26 2.03
32× 42.05 1.4 2.17

MSSR-NET 4× 43.77 1.17 1.89
8× 43.51 1.21 1.94
16× 43.3 1.24 1.98
32× 43 1.28 2

The best scores are written in bold.

FIGURE 3 | Qualitative comparison on Botswana dataset in case of 4× spatial downsampling. For visualization purposes, three spectral bands (47-14-3) are
selected from the output data and difference images are calculated based on that preselected three bands. The first row shows (A) input LRHSI, (B)SSFCNN output, (C)
ResTFNet output, (D) SSR-NET output, (E) MSSR-NET output, (F) GT HR HSI; the second row shows corresponding difference images between the GT HR HSI and
(A–F), respectively.
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The input LR data is generated by a bilinear downsampling
operation from HR HSI, which is in advance blurred by a
Gaussian filter. HR MSI is obtained by sampling equal
intervals of bands from HR HSI.

2.4 Proposed Method: MSSR-NET
As it was mentioned in SSR-NET paper (Zhang X. et al., 2021),
the network capacity to reconstruct complex spatial information
is decreasing along with increasing scene complexity. The reason
behind this limitation is the network’s very shallow structure. To
overcome the issue mentioned above, we propose a network with
a more powerful feature extraction ability that alleviates these
problems.

Our proposed network can be seen as a modification of SSR-
NET. The main contributions to the baseline architecture are the
following: 1) long and short skip-connections to reuse convolved
hypermultiple feature map, and 2) two extra conv + ReLU blocks.
The first convolution is applied on LR HSI before the hypermultiple
spectral image construction block, and the second one follows that
block. The intuition behind these two additional convolutions is to
strengthen the feature extraction capability, which is one of the main
drawbacks of SSR-NET due to its shallow structure. We added those
blocks to the spatial reconstruction part because the spatial context is
more complex than the spectral one. The structure of the MSSR-
NET is depicted in Figure 1, where blue blocks and arrows indicate
our modifications.

TABLE 4 | Quantitative results on Indian Pines dataset. HR MSI is generated
according to Type 1 model.

Model Scale PSNR ↑ ERGAS ↓ SAM ↓

SSFCNN 4× 25.68 13.54 9.62
8× 26.61 13.45 8.6
16× 27.78 13.25 7.52
32× 25.83 12.41 9.2

ResTFNet 4× 35.73 2.38 2.65
8× 34.82 2.06 2.86
16× 34.4 2.13 2.97
32× 33.87 2.2 3.12

SSR-NET 4× 33.95 11.23 3.37
8× 33.99 10.26 3.29
16× 33.73 9.17 3.38
32× 32.62 9.59 3.82

MSSR-NET 4× 37.56 3.7 2.16
8× 36.49 3.47 2.45
16× 35.8 3.58 2.66
32× 35.8 3.97 2.66

The best scores are written in bold.

TABLE 5 | Quantitative results on Pavia Center dataset. HR MSI is generated
according to Type 1 model.

Model Scale PSNR ↑ ERGAS ↓ SAM ↓

SSFCNN 4× 36.15 4.58 4.93
8× 36.78 4.21 4.34
16× 34.63 5.35 4.54
32× 34.74 5.29 4.55

ResTFNet 4× 36.68 4.24 4.46
8× 36.42 4.38 4.58
16× 34.61 5.38 4.67
32× 34.55 5.38 4.65

SSR-NET 4× 37.49 3.9 3.84
8× 37.79 3.73 3.9
16× 35.83 4.66 4.03
32× 35.39 4.93 4.05

MSSR-NET 4× 39.04 3.23 3.67
8× 38 3.61 3.76
16× 36.27 4.41 3.86
32× 36.21 4.45 3.79

The best scores are written in bold.

FIGURE 4 | Qualitative comparison on Indian Pines dataset in case of 4× spatial downsampling. For visualization purposes, three spectral bands (28-14-3) are
selected from the output data and difference images are calculated based on that preselected three bands. The first row shows (A) input LRHSI, (B)SSFCNN output, (C)
ResTFNet output, (D) SSR-NET output, (E) MSSR-NET output, (F) GT HR HSI; the second row shows corresponding difference images between the GT HR HSI and
(A–F), respectively.
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We consider two different data formation models for HR MSI
(Type 1 and Type 2), which are illustrated in Figure 2. In Type 1,
we apply the data formation strategy used in Zhang X. et al.
(2021). In this case, HR MSI is generated by direct sampling of
five spectral bands located at equal intervals of GT HR HSI
without any modification of spectrum. As a result, five spectral
bands of ground-truth data are directly involved in training and
testing. In Type 2, the spectral response function corresponding
to IKONOS sensor is applied on GT HR HSI to obtain HR MSI
with four spectral channels, and therefore the spectral bands of
the ground-truth data are smoothed according to the spectral
properties of the sensor.

Moreover, the single input scenarios are discussed, and the
impact of each input component will be shown in the next
section. Specifically, the experiments showed that the scores of
evaluation metrics are slightly changed when we remove LR HSI
as an input. In particular, the difference between the PSNR values
in the case of two inputs and single HR MSI is less than 1 dB on
Pavia University dataset in the case of our method.

3 RESULTS

3.1 Experimental Setup
The experiments are done on remote sensing datasets, each of
which contains a single image. Table 1 provides more details
about the datasets used in the experiments. Following SSR-NET’s
train-test splitting strategy, the central patch 128 × 128 is cropped
for testing in Botswana, Pavia Centre, Pavia University, Urban
datasets, and the rest is used for training. As Indian Pines consists
of a single small hyperspectral image, the central 64 × 64 patch
will be used for testing. The inputs, HR MSI and LR HSI, are
generated from the ground-truth (GT) HR HSI. Following SSR-

NET image formation strategy, the input LR HSI is generated by
bilinear downsampling operation from the GT HR HSI, which is
in advance blurred by a 5 × 5 Gaussian filter with standard
deviation 2 in the spatial domain.

Four evaluationmetrics are used for quantitative comparisons:
Peak Signal-to-Noise Ratio (PSNR), Erreur Relative Globale
Adimensionnelle de Synthèse (ERGAS) (Thomas and Wald,
2006) and Spectral Angle Mapper (SAM).

3.2 HSI SR Experiments for Two Different
Models of HR MSI Data
3.2.1 Experiments for Type 1 Data Formation
Here we have five spectral bands at equal intervals without any
modification. From Table 2 one can see that the improvement
over the baseline method in the case of Botswana dataset is about
4 dB in PSNR for 4× spatial downsampling while both networks
have comparable model sizes. As mentioned in SSR-NET,
because of the very shallow structure of their network, it is
hard to reconstruct less uniform scenes, as well as more
complex architectures can do. Botswana dataset has a
relatively more complex structure compared with other remote
sensing datasets, which leads to the lower PSNR values for SSR-
NET. The result of ResTFNet (Liu X. et al., 2020) is about 1 dB
less than ours, but also it has a deeper structure. Our network
consists of five convolutional layers, while ResTFNet has four
times more layers. SSFCNN has very unstable behavior on some
datasets. Specifically, the PSNRs corresponding to SSFCNN (Han
et al., 2018) for Pavia University dataset have values from 30 to
42 dB.Moreover, the higher the spatial downsampling ratio is, the
higher PSNR can be. A possible reason can be not proper
utilization of LR HSI data. Figure 3 shows the difference
images between GT HSI and the outputs of each network for

TABLE 6 | Quantitative results on Urban dataset. HR MSI is generated according
to Type 1 model.

Model Scale PSNR ↑ ERGAS ↓ SAM ↓

SSFCNN 4× 27.42 4.86 8.23
8× 27.52 3.83 8.87
16× 34.23 2.62 3.85
32× 30.16 3.28 6.27

ResTFNet 4× 38.18 1.38 2.41
8× 36.7 1.59 2.73
16× 36.29 1.67 2.85
32× 35.92 1.76 2.98

SSR-NET 4× 37.98 1.3 2.52
8× 37.58 1.34 2.6
16× 37.23 1.4 2.72
32× 36.52 1.57 2.97

MSSR-NET 4× 38.54 1.22 2.32
8× 37.77 1.31 2.44
16× 37.59 1.32 2.5
32× 37.09 1.42 2.63

The best scores are written in bold.

TABLE 7 | Quantitative results on Pavia University dataset. HR MSI is generated
according to Type 2 model.

Model Scale PSNR ↑ ERGAS ↓ SAM ↓

SSFCNN 4× 36.99 2.63 3.57
8× 27.56 5.09 11.19
16× 28.81 3.91 9.73
32× 34.73 3.22 4.33

ResTFNet 4× 40.72 1.59 2.52
8× 39.46 1.79 2.81
16× 38.96 1.88 2.94
32× 38.18 2.06 3.17

SSR-NET 4× 38.55 1.92 2.96
8× 38.06 1.99 3.08
16× 37.78 2.06 3.21
32× 36.72 2.34 3.6

MSSR-NET 4× 42.39 1.4 2.2
8× 42.28 1.41 2.24
16× 41.99 1.46 2.31
32× 41.44 1.54 2.42

The best scores are written in bold.
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three selected spectral bands. Especially from that difference
images can be seen that the MSSR-NET significantly
outperforms the results of SSR-NET and SSFCNN. The errors
are clearly visible near the edges. As the results of ResTFNet and
MSSR-NET are close, it is hard to see the difference from their
difference images.

Table 3 shows that for Pavia University dataset, which has a
relatively simple context, the capability of the shallow network
can be enough for a good reconstruction quality. Due to that
property, the results of our method are slightly better than those
for the baseline method.

From Table 4 can be seen that the difference between the
baseline and our method is about 3.6 dB in terms of PSNR for

FIGURE 5 |Qualitative comparison on Pavia University dataset in case of 32× spatial downsampling and Type 2 spectral downsampling. For visualization purposes
three spectral bands (66-28-0) are selected from the output data and difference images are calculated based on that preselected three bands. The first row shows (A)
input LR HSI, (B) SSFCNN output, (C) ResTFNet output, (D) SSR-NET output, (E)MSSR-NET output, (F) GT HR HSI; the second row shows corresponding difference
images between the GT HR HSI and (A–F), respectively.

TABLE 8 | Model complexity analysis on Urban datset using NVIDIA GeForce RTX 3090 GPU.

Model Model size (MB) Time (Ms) Computational
complexity (GMac)

Number
of parameters (M)

SSFCNN 4.34 44.54 18.62 1.14
ResTFNet 9.08 38.78 9.32 2.38
SSR-NET 2.71 36.53 11.63 0.7
MSSR-NET 4.51 54.42 19.38 1.18

TABLE 9 |Qualitative results on Pavia University dataset in case of two inputs: HR
MSI and noisy LR HSI with σ standard deviation. Four spectral bands of HR
MSI are generated according to Type 1 model and LR HSI is 4× downsampled.

Model Noise PSNR ↑ ERGAS ↓ SAM ↓

SSR-NET σ = 0 42.29 1.35 2.08
σ = 100 37.9 2.08 3.44

MSSR-NET σ = 0 42.73 1.28 2.02
σ = 100 41.3 1.49 2.35

TABLE 10 | Quantitative results on Pavia University dataset in case of single
inputs. HR MSI is generated according to Type 2 model.

Model Input Scale PSNR ↑ ERGAS ↓ SAM ↓

SSFCNN LR HSI 4× 27.02 5.46 10.09
LR HSI 8× 25.31 7.45 9.13
LR HSI 16× 22.94 10.12 9.16
LR HSI 32× 21.74 12.39 11.12
HR MSI 103/4× 40.55 1.65 2.61

ResTFNet LR HSI 4× 30.73 4.22 4.17
LR HSI 8× 26.38 6.78 6.11
LR HSI 16× 23.54 9.38 8.59
LR HSI 32× 21.76 12.33 11.2
HR MSI 103/4× 37.94 2.13 3.25

SSR-NET LR HSI 4× 29.3 4.97 4.72
LR HSI 8× 25.84 7.25 6.62
LR HSI 16× 22.63 10.64 9.22
LR HSI 32× 21.69 12.45 11.27
HR MSI 103/4× 39.5 1.87 2.96

MSSR-NET LR HSI 4× 30.12 4.52 4.38
LR HSI 8× 26.01 7.14 6.39
LR HSI 16× 22.84 10.32 9.27
LR HSI 32× 21.7 12.42 11.15
HR MSI 103/4× 41.69 1.51 2.38

The best scores are written in bold.
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Indian Pines dataset. Figure 4 illustrates the outputs and their
corresponding difference images for three spectral channels. The
figure shows that the outputs of SSFCNN, ResTFNet and SSR-
NET are blurry compared with the output HSI of our method.
Corresponding difference maps verify the superiority of our
method over other methods.

The experiments on Pavia Center (Table 5) and Urban
(Table 6) datasets also confirm that the MSSR-NET has better
values of evaluation metrics compared to others.

3.2.2 Experiments for Type 2 Data Formation
For these experiments, Pavia University dataset is used, which
consists of a single huge image with 610, ×, 340 spatial resolution
and 103 spectral bands. LR HSI generation part remains the same
as in Zhang X. et al. (2021): HR HSI is blurred by 5 × 5 Gaussian
filter with standard deviation 2, and LR HSI is obtained by
spatially downsampling the blurred HR HSI by bilinear
interpolation at a factor of 4, 8, 16, 32.

It can be seen from Table 7, that the advantage of our
proposed method over SSR-NET becomes more significant
than it was for the observations based on the model Type 1.

The differences can be easily seen from the difference images
illustrated in jet colormap in Figure 5. The lighter the color, the
bigger is the difference. From the difference image corresponding
to the output of SSR-NET, Figure 5D, it can be seen that
especially near the edges, the difference is bigger compared
with our method. Similar observations can be made about
ResTFNet and SSFCNN.

Moreover, it is worth mentioning that compared with the
results corresponding to the first data formation strategy
(Table 3), the PSNR of the baseline method drops by 5 dB.
Thus, the baseline method is not capable of reconstructing
slightly modified HR MSI as well as in the case of unmodified
ground-truth spectral bands. Unlike the baseline method, our
method could reconstruct the HSI with almost the same quality in
both data formation cases. For 32× spatial and about 25× spectral
downsampling, the difference between the baseline method and
ours is 4.7 dB.

Table 8 shows a comparison of the model size, inference time
and FLOPs [approximately twice of multiply–accumulate
operations (Mac)] corresponding to each method. The
measurements are done on Urban dataset test image using

FIGURE 6 |Qualitative comparison on Pavia University dataset in case of single input HRMSI and Type 2 spectral downsampling. For visualization purposes, three
spectral bands (66-28-0) are selected from the output data and difference images are calculated based on that preselected three bands. The first row shows (A)
SSFCNN output, (B) ResTFNet output, (C) SSR-NET output, (D)MSSR-NET output, (E)GT HR HSI; the second row shows corresponding difference images between
the GT HR HSI and (A–E), respectively.

TABLE 11 | Ablation experiments on Pavia Center dataset. Four spectral bands of HR MSI are generated according to Type 1 model and LR HSI is 4× downsampled.

Model PSNR ↑ ERGAS ↓ SAM ↓

SSR-NET 37.79 3.74 3.89
SSR-NET + first conv 37.86 3.74 3.61
SSR-NET + second conv 38.27 3.53 3.77
SSR-NET + first conv + second conv 38.02 3.67 3.57
SSR-NET + first conv + second conv + short skip 38.03 3.65 3.61
MSSR-NET 38.33 3.49 3.63

The best scores are written in bold.
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NVIDIA GeForce RTX 3090 GPU. The FLOPs of MSSR-NET are
1.6 times more than the FLOPs of SSR-NET.

Additionally, to investigate a comparative robustness of
SSR-NET and MSSR-NET with respect to noise we train
HR MSI with noiseless data and noisy LR HSI with the
additive Gaussian noise. HR MSI is generated by taking
four spectral bands based on Type 1 data formation, and
additive Gaussian noise with σ = 100 standard deviation is
added to LR HSI. From Table 9 can be seen that MSSR-NET is
more noise resistant than the baseline SSR-NET, PSNR
corresponding to MSSR-NET is decreased about 1.5 dB
when we consider a noisy case, meanwhile, that gap for
SSR-NET is more than 4 dB. But in general, even for this
kind of high σ, PSNR values are still high. The reason of such a
behavior can be explained by higher correlation between
spectral bands than the spatial correlation within each
spectral band. As it is mentioned above, the network mainly
relies on the input HRMSI, and even aggressive downsampling
of the second input (LR HSI) by a factor of 32 does not affect
much on the results.

3.3 HSI SR With Single Input Data
As can be seen from the tables mentioned above, the changes in
the downsampling ratio in the spatial domain do not affect
much on the results. So as a next step, single input cases are
discussed to find out the impact of each input component. For
that purpose, we feed to the network only one input, LR HSI or
HR MSI.

Firstly, we feed spatially downsampled image, LR HSI, with
different downsampling ratios. One can see by comparing
Tables 8 and 10, that even in the case of 4× downsampling,
PSNR drops by about 10 dB when we remove input HR MSI
and leave only LR HSI. From Table 10 one can see that the
results with a single input LR HSI lead to inferior results for all
the methods, i.e., the input information is not enough for good
reconstruction.

Secondly, let HR MSI, formed by Type 2, be fed to the
network. By comparing the results of the two-input case
(Table 8) with the lines of Table 10 corresponding to a
single HR MSI input, we can see that the scores of
evaluation metrics are very close. So, the network mainly
learns from HR MSI, and feeding LR HSI to the network
only slightly improves the results. Specifically, for MSSR-NET,
the impact of the two-input case over a single HR MSI input
case is less than 1 dB in terms of PSNR, which can also be seen
by comparing the outputs illustrated in Figures 5 and 6.

A possible reason behind this high accuracy performance of
the method with a single input data, HR MSI, is a high
correlation among the spectral channels, so even four high-
resolution spectral bands are enough to reconstruct 103 bands
with very high quality. The correlations in the spatial domain
are much weaker, so the spatial quality is much more critical
for the learning process.

3.4 Ablation Study
Ablation experiments are done to show the impact of each
component of MSSR-NET architecture. During the

experiments we have seen that adding convolutional layers
to the spectral reconstruction block does not provide any
improvements, so we make changes before the spectral
reconstruction block. A spatial reconstruction block is
modified to allow better feature extraction and from
Table 11 can be seen that it leads to improvements over the
baseline method. Notations used in the first column of
Table 11 are the followings: each addition means that we
add only that part to the baseline network excluding others,
e.g., “first conv” denotes the convolutional layer + ReLU
applied on LR HSI just before CMMI block, “econd conv”
is the convolution + ReLU layer between CMMI block and
SpatRN.

4 DISCUSSION

In this paper, a shallow convolutional neural network-based
method was proposed to fuse LR HSI and HR MSI for HSI SR.
Based on SSR-NET we proposed MSSR-NET of the shallow
structure, small model size and short inference time. MSSR-
NET demonstrates an essentially better performance due to a
more powerful feature extraction capability. The quantitative
and qualitative comparisons demonstrate the superiority of
MSSR-NET on different remote sensing scenes.Experiments
with different data formation strategies show that MSSR-NET
is more robust with respect to different types of data
formations than other state-of-the-art methods. Specifically
for Botswana and Indian Pines datasets, the difference
between PSNR values corresponding to the baseline SSR-
NET and MSSR-NET is more than 3 dB in case of Type 1
data formation. That gap is about 4 dB for Pavia University
dataset for Type 2 data formation. Moreover, with the increase
of the downsampling ratio, that gap becomes
bigger.Furthermore, we add additive Gaussian noise to the
second input, LR MSI, to investigate MSSR-NET behaviour
for both blurry and noisy LR HSI. Table 9 shows that MSSR-
NET is more robust to noise than the baseline SSR-NET. The
PSNR values corresponding to baseline SSR-NET are
decreased by more than 4 dB when we consider a noisy
case, meanwhile, that gap for MSSR-NET is about 1.5 dB.
However, even for aggressive noise with standard deviation σ
= 100 the PSNRs are still high.As a result of such behavior, we
investigated the importance of the input LR HSI. We show
that the network mainly relies on the input HR MSI.
Specifically, for Pavia University dataset, the PSNR of our
method will drop less than 1 dB when we remove input LR
HSI. In the future, we plan to extend our shallow network to
solve combined HSI enhancement problems, such as
denoising and demosaicing.

5 CONCLUSION

This paper proposes a shallow CNN, MSSR-NET, for HSI SR
based on SSR-NET architecture. MSSR-NET outperforms state-
of-the-art HSI SR methods on five remote sensing datasets.
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Moreover, MSSR-NET shows its superiority in different data
formation setups. Another property that we discovered is that the
difference between the results corresponding to a single HR MSI
input and two input cases is little.
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