
A Time Series of Snow Density and
Snow Water Equivalent Observations
Derived From the Integration of GPR
and UAV SfM Observations
Daniel McGrath1*, Randall Bonnell 1, Lucas Zeller 1, Alex Olsen-Mikitowicz2, Ella Bump2,
Ryan Webb3 and Hans-Peter Marshall 4

1Department of Geosciences, Colorado State University, Fort Collins, CO, United States, 2ESS-Watershed Science, Colorado
State University, Fort Collins, CO, United States, 3Department of Civil and Environmental Engineering, University of Wyoming,
Laramie, WY, United States, 4Department of Geoscience, Boise State University, Boise, ID, United States

Snow depth can be mapped from airborne platforms and measured in situ rapidly, but
manual snow density and snow water equivalent (SWE) measurements are time
consuming to obtain using traditional survey methods. As a result, the limited number
of point observations are likely insufficient to capture the true spatial complexity of snow
density and SWE in many settings, highlighting the value of distributed observations. Here,
we combine measured two-way travel time from repeat ground-penetrating radar (GPR)
surveys along a ~150m transect with snow depth estimates from UAV-based Structure
from Motion Multi-View Stereo (SfM-MVS) surveys to estimate snow density and SWE.
These estimates were successfully calculated on eleven dates between January and May
during the NASA SnowEx21 campaign at Cameron Pass, CO. GPR measurements were
made with a surface-coupled Sensors and Software PulseEkko Pro 1 GHz system, while
UAV flights were completed using a DJI Mavic 2 Pro platform and consisted of two
orthogonal flights at ~60m elevation above ground level. SfM-MVS derived dense point
clouds (DPCs) were georeferenced using eight ground control points and evaluated using
three checkpoints, which were distributed across the ~3.5 ha study plot containing the
GPR transect. The DPCs were classified to identify the snow surface and then rasterized to
produce snow-on digital surface models (DSMs) at 1 m resolution. Snow depths on each
survey date were calculated by differencing these snow-on DSMs from a nearly snow-off
DSM collected near the end of the melt season. SfM-derived snow depths were evaluated
with independent snow depth measurements from manual probing (mean r2 = 0.67,
NMAD = 0.11 m and RMSE = 0.12 m). The GPR-SfM derived snow densities were
compared to snow density measurements made in snowpits (r2 = 0.42, NMAD =
39 kgm−3 and RMSE = 68 kgm−3). The integration of SfM and GPR observations
provides an accurate, efficient, and a relatively non-destructive approach for measuring
snow density and SWE at intermediate spatial scales and over seasonal timescales.
Ongoing developments in snow depth retrieval technologies could be leveraged in the
future to extend the spatial extent of this method.
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INTRODUCTION

Mountain snowpacks are a primary water resource for
downstream communities, yet our ability to accurately
measure snow water equivalent (SWE) is limited, as
autonomous stations (e.g., SNOTEL) are sparse and
spaceborne methods are still in development. Across the
western United States, snow provides more than 50% of the
total runoff, which further increases to more than 70% of runoff
in mountainous portions of the region (Li et al., 2017). Here, SWE
has significantly declined since the 1950s, with cumulative
decreases of 15–30% (Mote et al., 2018). Snowpack losses are
predicted to decline by a further ~35% by mid-century and ~50%
by 2100 (Siirila-Woodburn et al., 2021), further highlighting our
need to accurately measure this important resource.

SWE, the amount of water stored in the snowpack, can be
calculated from snow depth and snow density observations.
Manual snow depth observations are routinely made via
incremented snow probes, but observations of density are time
consuming (e.g., 1–2 h for a 1 m deep snowpit for one surveyor or
20:1 time ratio between depth and SWE core observations; Sturm
et al., 2010) and have higher uncertainty. Snow depth
observations from both airborne platforms (Deems et al.,
2013; Harpold et al., 2014; Painter et al., 2016) and satellite
platforms (Shean et al., 2016) are becoming increasingly common
(McGrath et al., 2019; Deschamps-Berger et al., 2020; Eberhard
et al., 2021), yet the conversion to SWE still requires density
estimates, which have been shown to be a major uncertainty in
measuring SWE at basin and mountain range scales, in particular
for deep snowpacks (Raleigh and Small, 2017). At present, there is
no single spaceborne approach that is able to consistently
measure SWE over the spatial and temporal scales required to
adequately inform appropriate resource management in the
mountains. This gap is a primary motivation for the NASA
SnowEx and other international campaigns, which seek to
develop spaceborne methods to measure SWE on global scales,
as it is arguably the most important term in the mountain
hydrology water balance.

Ground-penetrating radar (GPR) is an established tool for
measuring the spatiotemporal patterns in snow depth, density,
and SWE at both fixed locations over time and across the
landscape (Gubler and Hiller, 1984; Gubler and Weilenmann,
1986; Sand and Bruland, 1998; Marchand et al., 2003; Marshall
and Koh, 2008; Lundberg et al., 2010; McCallum, 2014; Schmid
et al., 2014; Heilig et al., 2015; McGrath et al., 2018; Webb, 2018).
The increased availability and robustness of commercial GPR
equipment has facilitated broad use of this method for mapping
SWE over large spatial scales (Holbrook et al., 2016; McGrath
et al., 2019). Further, recent studies have integrated GPR
observations with independent estimates of snow depth to
estimate snow density and liquid water content (LWC;
discussed below). GPR systems measure the two-way travel
time (twt) for an electromagnetic wave traveling from the
transmitter, through the snow to the ground surface, and back
to the receiver. The twt depends on the distance traveled (layer
thickness or snow depth) and the velocity of the electromagnetic
wave. In a dry snowpack, radar velocity depends on snow density

and can be calculated using coincident radar twt and snow depth
measurements (Helfricht et al., 2014) or empirical relationships
based on observed or modeled density (e.g., Kovacs et al., 1995).
An alternative radar approach independently estimates density
from multiple transmitters and receivers, which has been
demonstrated in polar firn (Meehan et al., 2021), but is
logistically challenging in mountainous terrain. Radar-derived
snow depths can then be coupled with density to estimate SWE.
In a snowpack containing liquid water, the conversion of twt to
depth is more complicated, as the relative permittivity of water is
~60 times greater than that of dry snow. However, numerous
studies (Lundberg and Thunehed, 2000; Bradford et al., 2009;
Webb et al., 2018; Bonnell et al., 2021; Webb et al., 2021) have
leveraged the observed increase in relative permittivity over dry
snow conditions to estimate the LWC of the snowpack.

The use of Structure from Motion Multi-View Stereo (SfM-
MVS; SfM hereafter) by researchers and end users has increased
exponentially in the past decade due to the increased availability
of low-cost consumer drones and easy to use processing software.
These advances have allowed end users to produce centimeter
scale topographic data for a fraction of the cost of traditional
methods such as airborne lidar (Westoby et al., 2012). The
widespread use of SfM to measure distributed snow depths at
the 100 s of meters to km scale has taken longer to develop, in part
due to the challenges of the environment (e.g., highly reflective
snow surface, challenging light conditions, etc.). However, recent
studies have demonstrated the use of uncrewed airborne
platforms (UAVs) to measure snow depths with decimeter
accuracy (Vander Jagt et al., 2015; Bühler et al., 2016; Harder
et al., 2016; Avanzi et al., 2018; Goetz and Brenning, 2019;
Eberhard et al., 2021; Revuelto et al., 2021a). These previous
studies have shown that the accuracy of the SfM-derived snow
depths depend heavily on: 1) Surface conditions of the snowpack,
2) environmental conditions during image acquisition (e.g.,
brightness and contrast during flight, wind speeds,
precipitation), 3) SfM survey/flight design (e.g., UAV flight
elevation, flight pattern, percent overlap of images, distribution
and accuracy of ground control points) and 4) SfM processing
procedures.

The combination of GPR-measured twt and spatially-
distributed snow depth, observed from either repeat lidar
or SfM, allows for the determination of snow density and
SWE (Yildiz et al., 2021). As detailed in the methods, this
approach combines GPR twt observations and independent
snow depths to calculate radar velocities, which can then be
used to calculate the relative dielectric permittivity of the
snowpack. These permittivity observations can subsequently
be converted to snow density using empirical relationships
(e.g., Roth et al., 1990; Kovacs et al., 1995; Webb et al., 2021)
and finally to SWE, when combined with the SfM-derived
snow depths. As noted previously, other studies have also
coupled snowpit-measured snow densities to estimate LWC in
the snowpack (Webb et al., 2018; Bonnell et al., 2021), but
these require independent estimates of snow density.
Collectively, these methods provide powerful and non-
destructive approaches for estimating key snowpack
parameters in a distributed manner, for which limited
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methodology currently exists from either ground-based or
airborne platforms.

In this study, we combined GPR-measured twt and SfM snow
depths on eleven survey dates between January and May 2021 to
estimate snow permittivity, density and SWE at a high-elevation
study plot in north central Colorado. We compared the SfM-
derived snow depths and the GPR-SfM derived permittivity and
density to independent in situ pit observations to evaluate the
accuracy of the method.

Study Site
Field observations were collected in a ~3.5 ha, high-elevation
(~3,000 m) site approximately 5 km northeast of Cameron Pass
in north central Colorado (Figure 1A). The site is within the
persistent snow zone of the Cache la Poudre River watershed, an
important river system that provides municipal water supplies to
numerous cities (Fort Collins, Greeley) along the Front Range.
The field site was severely burned during the 2020 Cameron Peak
wildfire, the largest fire in Colorado history, and thus the ground
surface is devoid of vegetation. The lack of vegetation creates a
sharper snow-ground interface in the radargrams and minimizes
the error associated with ground vegetation in SfM snow depth
retrievals. The trunks of primarily lodgepole pine (Pinus cortorta)
trees remain (Figure 1B), but given the loss of branches and
needles, snow interception was limited.

During the 2020–21 winter season, ~590 mm of SWE
accumulated at the Joe Wright SNOTEL station, located
3.8 km southwest of the field site, and an estimated 490 mm of
SWE accumulated at an automatic weather station (AWS) within
the study site (Figure 1). The SNOTEL station is located outside
of the Cameron Peak burn area, while the AWS was installed in
the burn area post-fire. SWE at the SNOTEL station is measured
directly using a snow pillow equipped with a Sensotec pressure
transducer. SWE at the AWS was estimated by combining snow
depths measured with a Campbell Scientific SR50A sonic sensor
and snow density measured by the SNOTEL station. The GPR/

SfM surveys, which extended from mid-January to late May,
captured nearly 300 mm of SWE accumulation.

METHODS

Observations
Snowpit and Probe Observations
Field observations occurred weekly to biweekly from mid-
January until snow disappearance in late May. Snowpit
observations were collected centrally within the study plot,
with the pit location migrating several meters through time
to ensure undisturbed snow was being sampled. For each pit,
snow temperature was measured at the snow surface shaded by a
shovel blade and then at even 10 cm depths above ground using
a Taylor digital thermometer (± 0.5°C accuracy). Snow density
was measured with a 1,000 cc wedge cutter in duplicate at 10 cm
vertical increments along the snowpit face and weighed on a
digital scale (± 1 g accuracy). A third measurement was made if
the first two differed by greater than 20%. Additionally,
duplicate permittivity observations were collected at 10 cm
vertical increments using an A2 WISe permittivity sensor for
nine of the eleven survey dates (the sensor malfunctioned on
February 18 and 24). A triplicate was measured if the first two
observations were substantially different from each other (e.g., a
difference of 0.4 relative permittivity or ~20%), which only
occurred during the May 7 survey. For comparison to the GPR-
SfM derived permittivities and densities, we calculated column-
averaged values from the mean of the discrete increment
observations, after removing the outlier for any observations
made in triplicate.

We collected snow depth observations using an aluminum
incremented probe (± 1 cm resolution) at ~10 m spacing along a
~150 m transect across the study plot. The exact probe locations
varied between surveys, but individual probe observations were
geolocated with a Juniper Systems Geode GNSS receiver (<30 cm

FIGURE 1 | (A) Location of the study site and other features in north central Colorado. (B) Photograph of the study site. (C) Snowwater equivalent at the JoeWright
SNOTEL station and automatic weather station (AWS) during winter 2020–21. The black vertical lines indicate the GPR and SfM survey dates.
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horizontal accuracy) mounted on the top of the snow probe.
Probe observations that were suspected to have hit a downed tree
were removed (4% of total number of observations) prior to
comparison with SfM snow depths.

Ground-Penetrating Radar Observations
Ground-penetrating radar surveys were collected using a Sensors
and Software PulseEKKO Pro system and two common-offset
1 GHz antennas in broadside orientation with a constant offset of
15 cm. Traces were collected every 0.1 s with a sample rate of 0.1 ns.
The antennas were mounted in a plastic sled that was towed on the
snow surface behind a technician and offset laterally by ~50–100 cm
to ensure undisturbed snow beneath the radar sled. GPR traces were
geolocated using a Emlid RS2 GNSS receiver mounted in the radar
sled. The trace positions were post-processed using a second Emlid
RS2 GNSS receiver mounted at a fixed location between surveys
using RTKLib (version 2.4.3; Takasu and Yasuda, 2009). The final
positions have a manufacturer reported horizontal and vertical
accuracy of 5 and 10mm.

Radargrams were processed in ReflexW (Sandmeier
geophysical research, 2022) by applying a trace-varying time
zero correction, dewow filter, and a background removal 2D
filter to enhance the ground reflector. The time zero correction
was determined automatically by identifying the first positive
reflection for each trace, which were then subsequently
smoothed along profile with a 50 trace median filter. The
trace spacing was resampled to the mean spacing (~0.1 m)
using the previously described GNSS positions. The twt of the
ground reflector was semi-automatically picked using a phase-
following algorithm and further refined via manual
interpretation (Figure 2).

UAV flights and Processing
On twelve dates during the study period, UAV flights were
conducted using a DJI Mavic 2 Pro drone in a predetermined
double grid flight pattern programmed using Pix4D Capture
(Pix4D, 2022). The first flight occurred at ~60 m above
ground level (AGL) with a nadir camera position, while
the second orthogonal flight occurred at 50 m AGL with a
20 degree off nadir camera orientation. In total, ~400 jpeg
images were collected between these two flights and, under
normal flight conditions (air temperatures between –10 and
0°C and wind speeds <15 mph), the flights required the

cumulative use of two standard capacity (3,850 mAh)
batteries.

Eleven ground control points (GCPs) were utilized, consisting
of five elevated ~40 cm wide checkered cross targets mounted on
top of fixed 2 m tall t-posts and six distinct locations along the
road (typically tar strips intersecting the solid white “fog line” at
the road margin; Figure 4L). All eleven GCPs were surveyed once
near the end of the season (7 May 2021) using an Emlid RS2
GNSS receiver using a post-processed kinematic workflow. A
second Emlid RS2 GNSS receiver served as the base station during
this survey (~2 km away); its position was first post-processed in
RTKLib using the closest National Geodetic Survey CORS station
(COFC; ~65 km baseline). For each survey, eight GCPs were used
to reference the model and three GCPs were used as checkpoints
to evaluate model performance.

The SfM processing was completed in Agisoft Metashape
(version 1.6.1; Agisoft, 2022). The photos were aligned with
“high” accuracy, utilizing adaptive camera model fitting. After
alignment, “Gradual Selection” was used to identify and remove
lower quality points using the thresholds suggested by Goetz and
Brenning (2019). Filtering consisted of reconstruction
uncertainty, projection uncertainty and, after GCP import,
reprojection error. After lower quality points were removed, a
final camera optimization was performed prior to dense point
cloud generation. The resulting Control Point and Check Point
Errors are reported in Table 1. The dense point cloud was built at

FIGURE 2 | Example radargram from 6 April 2021. The semi-automatically picked snow-ground reflector is indicated by the red line. The depth axis is based on an
assumed radar velocity of 0.23 m ns−1.

TABLE 1 | Control and Check Point Errors for the twelve SfM surveys (eleven
snow-on and one snow-off).

Date Control
point error (m)

Check
point error (m)

January 20 0.02 0.08
February 2 0.02 0.08
February 18 0.01 0.09
February 24 0.03 0.04
March 3 0.03 0.1
March 18 0.01 0.06
March 22 0.02 0.09
April 6 0.03 0.11
April 23 0.01 0.17
May 7 0.01 0.02
May 20 0.02 0.1
May 27 0.03 0.12
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“high” quality using aggressive depth filtering. The ground
surface was classified using the “Classify Ground Points”
function in Agisoft and the resulting ground points were
exported as a ASPRS LAS file in UTM Zone 13N (EPSG:
32613). The point cloud was subsequently imported into
ArcGIS Pro (ESRI, 2022), where the points were gridded at
1 m resolution without interpolation. These rasters were
subsequently differenced (see below) to calculate snow depths.

Integration of SfM and GPR Observations to
Estimate Snow Parameters
Here, we describe 1) how SfM-derived snow depths and GPR-
measured twt were combined to estimate radar velocity and relative
permittivity for each pixel of overlapping SfM andGPR observations
and 2) how relative permittivity outliers were removed in order to
calculate amedian snow density for each date. This snow density was
then applied to all GPR observations on that date tomap SWE along
the GPR transect. Although not shown, this density value could also
be applied to the SfM-derived snow depths to map SWE spatially.

Spatial maps of snow depth were calculated as a DEM of
Difference (DoD) by subtracting the snow-off DSM (collected on
27 May 2021) from the snow-on DSM for each prior date. To
maximize vertical alignment of the DSMs, we calculated and
subsequently removed the median bias of each DoD along a
200 m x ~8 mwide region of interest along the stable road surface.
These values ranged from –0.05 m to 0.09 cm. As the ground
surface was not completely snow free on the May 27 survey and a
portion of the study plot contains dense canopy (Figure 4L), we
created a mask using the high-resolution SfM orthophoto to
remove these portions (~23% of the total area).

GPR twt observations were also gridded to 1 m resolution
(with a minimum of 5 traces/pixel) for comparison to the gridded
snow depth products by taking the median twt of all traces within
that pixel. From these independent observations, radar velocity, v,
was calculated as:

v � SD

0.5ptwt
(1)

where v has units of m ns−1, snow depth, SD, has units of meters,
and twt has units of ns. Once the radar velocity was determined
for each pixel with coincident observations, the relative dielectric
permittivity, ε, was calculated as:

ε � (c
v
)
2

, (2)

where c is the speed of light in a vacuum (0.299 m ns−1; Daniels,
2007). To remove outliers and determine a best estimate of ε for each
date, we applied two steps: 1) Removed all relative permittivity values
less than 1, as those are not physically realistic and 2) removed all
relative permittivity values less than the 25% percentile and greater
than the 75% percentile (i.e., only include the inner 50% of the
distribution). Numerous empirical relationships exist for the
conversion of dielectric permittivity to snow density. Previous
work (e.g., Di Paolo et al., 2018; Webb et al., 2021) has shown
significant scatter between these equations, but for the purposes of

this work, we applied two equations: Kovacs et al. (1995) that
calculates snow density, ρ, from:

ε � (1 + 0.845ρ)2. (3)
and Webb et al. (2021) that calculates snow density from:

ε � 1 + 0.0014ρ+2p10−7ρ2. (4)
The density units for Eq. 3 are in g cm−3 and for Eq. 4 are in

kg m−3. For the purposes of evaluating the SfM-GPR method, we
assume that the snowpack was dry (i.e., LWC = 0). This
assumption is valid for the majority of our survey dates,
although the snowpack was isothermal on three of the eleven
dates. The impact of LWC is further described in the discussion.

Lastly, SWE (presented with units of mm of water equivalent)
was calculated as:

SWE � SDpρ. (5)

Evaluation of Data Products
The SfM-derived snow depths were evaluated for each date using
manual snow depth observations made with the incremented
probe. The SfM-GPR derived dielectric permittivities and
densities were evaluated with two independent comparisons:
1) A direct comparison to pit-measured permittivities made
with the A2 Photonics WISe sensor and 2) a comparison to
pit-measured snow densities after the SfM-GPR permittivities
were converted to density via empirical relationships. Each of
these in situ observations, while made in the same snowpit, are
independent from one another. An important distinction,
however, is that the value reported from the SfM-GPR
analyses are the median value of all values along the ~150 m
transect for that given date, whereas the pit-derived estimates are
layer-averaged means from the pit (i.e., a single location proximal
to the radar transect). This difference in spatial coverage (transect
vs. point) means that there are inherent differences between these
estimates due to spatial variations in snow properties, which
increased throughout the survey period due to melt.

For each of these comparisons, we report three statistical
metrics: 1) The coefficient of determination (r2) from a robust
linear regression, 2) the root mean square error (RMSE), and 3)
the normalized median absolute deviation (NMAD; Hohlle and
Hohle, 2009). The NMAD is comparable to an estimate of the
standard deviation that is less sensitive to outliers in the dataset
and is calculated as:

NMAD � 1.4826pmedian(∣∣∣∣Δhj −mΔh

∣∣∣∣) (6)
Where Δhj are the individual errors andmΔh is the median of the
errors. A smaller NMAD indicates better agreement between the
observations.

RESULTS

Snowpit observations show median snow densities of
270–320 kg m−3 between January 20 and March 18 (Figure 3).
Snow densities steadily increased after this date, reaching a
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FIGURE 3 | (A) Pit-measured snow densities for each layer on each survey date. (B) Pit-measured snow temperatures for each survey date. (C) Boxplots of pit-
measured snow densities on each survey date. (D) Boxplots of pit-measured snow temperatures on each survey date.

TABLE 2 | SfM snow depths (over entire study plot) and probe snow depths (along survey line) and results from statistical comparison.

Date SfM snow
depths (median

± St.
Dev.) (m)

Probe snow
depths (median

± St.
Dev.) (m)

r2 NMAD (m) RMSE (m)

January 20 0.65±0.24 0.73±0.15 0.69 0.09 0.11
February 2 0.84±0.27 0.86±0.19 0.67 0.08 0.09
February 18 1.18±0.39 1.24±0.20 0.43 0.16 0.17
February 24 1.10±0.33 1.25±0.30 0.70 0.13 0.14
March 3 1.16±0.27 1.26±0.22 0.70 0.10 0.12
March 18 1.40±0.39 1.53±0.22 0.75 0.08 0.09
March 22 1.27±0.37 1.45±0.28 0.72 0.10 0.09
April 6 0.97±0.34 1.18±0.25 0.54 0.08 0.09
April 23 1.03±0.37 1.31±0.26 0.58 0.21 0.22
May 7 0.81±0.30 1.06±0.29 0.81 0.07 0.08
May 20 0.31±0.20 0.68±0.37 0.79 0.10 0.09
Mean 0.97 1.14 0.67 0.11 0.12
Median 1.03 1.24 0.70 0.10 0.09
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FIGURE 4 | (A–K) Plan view of distributed snow depth observations derived from differencing snow-on and snow-off DSMs. The snow depth rasters have been
clipped to remove locations where snow persisted in the “snow-off” DSM or significant forest canopy remained. The colored circles in each plot correspond to snow
depths measured by a snow probe. (L) Snow-off orthomosaic from 27 May 2021. The black polygon indicates the study regions and the red polygons indicate the
masked regions due to remaining snow cover or closed canopy. The red circles indicate locations of GCPs.
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FIGURE 5 | (A,C,E,G,I,K,M,O,Q,S,U,W) Scatterplot of probe measured snow depths (SDs) and SfM measured SDs. (B,D,F,H,J,L,N,P,R,T,V,X) Histograms of
snow depth differences between the two independent methods. The NMAD is reported for each comparison.
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median density of 430 kg m−3 on May 7 and May 20. Median
snowpit temperatures ranged between –4.9 and –1.1°C for the
survey dates in January through March. For the final four survey
dates, median snow temperatures were between –0.2 and 0°C, and
on three dates, the snowpack was isothermal over the entire
column (Figure 3). Median SfM-derived snow depths increased
from 0.65 m on January 20 to a maximum of 1.40 m onMarch 18,
prior to declining to 0.31 m on May 20 (Table 2). The distributed
snow depths showed consistent spatial patterns throughout the
winter, with regions of lower and higher snow depths persisting
through time (Figure 4). SfM-derived snow depths were
evaluated with independent measurements of snow depth on
each date (Figure 5; Table 2). These comparisons yielded a mean
coefficient of determination of 0.67 (range of 0.43–0.81), a mean
NMAD of 0.11 m (range of 0.07–0.21 m), and a RMSE of 0.12 m
(range of 0.08–0.22 m). There was no significant correlations
between these statistical parameters and the median snow depth
(r2 = 0.09, r2 = 0.05, and r2 = 0.03, respectively).

The SfM-GPR derived relative permittivities closely matched
the WISe measured permittivities for five of the nine survey dates
and largely captured the seasonal evolution of this important
parameter (Figure 6A). A comparison of all observations from
the winter had a coefficient of determination of 0.67 and NMAD
of 0.11 (Figure 6B). Similarly, the seasonal evolution of snow
density at the study plot was captured by the SfM-GPR approach,
with snow densities below 300 kg m−3 until mid to late March,
followed by increased densities ranging between 330 and

430 kg m−3 in April and May (Figure 6C). For the first six of
the eleven survey dates, the SfM-GPR approach, utilizing the
Kovacs et al. (1995) equation, underestimated the pit-measured
snow densities, with a NMAD of 39 kg m−3. For the remaining
five surveys, the Kovacs et al. (1995) estimated densities either
matched (3) or exceeded (2) the observed snow densities recorded
at the SNOTEL station. The Webb et al. (2021) estimated snow
densities closely agreed with the SNOTEL densities for four of the
first six surveys, but then exceeded these densities for the
remaining five surveys (Figure 6C).

Spatiotemporal patterns in snow depth, based on the SfM
surveys, and SWE, calculated using the date specific radar
velocities and snow densities, are presented in Figure 7. Given
the range in empirically-based density estimates for a given
permittivity value, we calculated a mean of both the Kovacs et al.
(1995) and Webb et al. (2021) relationships. Snow depth increased
from January 20 to March 18, before declining through the end of
the season (Figure 7A). In comparison, SWE increased from
January 20 to April 23 and then declined during the final two
surveys of the season (May 7 and May 20). A similar timing in peak
SWEwas also observed at the co-locatedAWS (Figure 1C). The SfM
and GPR surveys revealed undulating patterns in snow depth and
SWE along the transect that varied on the order of ~40 cm in depth
and ~100mm of SWE, respectively (Figure 7). The location of the
troughs and peaks remained relatively consistent throughout the
winter, likely reflecting patterns of wind redistribution interacting
withmodest topographic variations, although no simple relationship

FIGURE 6 | (A)Comparison of relative permittivity measured by the A2 PhotonicsWISe sensor and derived from the SfM-GPR analysis. The error bars for theWISe
are based on the standard deviation of the individual layer observations and for the SfM-GPR are the standard deviation of the observations along the transect. (B)
Scatterplot of GPR-SfM snow density and pit-measured density. (C) Snow density from the Joe Wright SNOTEL (smoothed with a 14-day window), manual snowpit
measurements, and derived from the SfM-GPR analysis. The error bars for the snowpit are ± 6% of the measured density (Proksch et al., 2016) and for the SfM-
GPR are the standard deviation of observations along the transect. (D) Scatterplot of GPR-SfM snow density and pit-measured density using both Kovacs et al. (1995;
maroon) and Webb et al. (2021; light blue) empirical relations.
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existed between snow depths and local maxima/minima in
elevations (Figure 7A).

Uncertainty
We conducted a Monte Carlo analysis to estimate the uncertainty
in relative permittivity due to uncertainty in SfM-derived snow
depths and GPR twt measurements. SfM snow depth errors can
arise from a multitude of sources, including the co-registration of
the snow-on and snow-off DSMs and poor SfM reconstructions
due to low image contrast/tie point matching. GPR errors can
arise from uncertainty in picking the ground reflector in complex
terrain (e.g., in the vicinity of downed trees), geolocation errors,
or displacement of snow mass by the GPR sled. We present the
uncertainty relative to density as it is more applicable to a broader
scientific audience than relative permittivity. Previous work has
shown significant spread in permittivity-density equations (e.g.,
Di Paolo et al., 2018; Webb et al., 2021), but for the purposes of
this analysis we utilized a single equation to determine the “true”
density based on the calculated permittivities, but we
acknowledge that the application of this method to derive
SWE requires accounting for the potential uncertainty
associated with these equations (Di Paolo et al., 2018).

We assume a mean snow depth of 1.0 m and a standard
deviation of 0.1 m, which approximates the mean snow depths
and SfM-probe NMAD errors during the study period. We
assume a mean GPR twt of 8.6 ns and a standard deviation of
0.31 ns Together, the specified depth and twt result in a “true”
snow density of 345 kg m−3 when the corresponding radar
velocity is inverted for density using the Kovacs et al. (1995)

equation. The standard deviation of 0.31 ns accounts for two
factors: 1) Variability in twt observations within each pixel
(calculated as 0.11 ns across all pixels and all survey dates)
and 2) a ± 2 samples (0.2 ns) in the measured twt. We assume
errors are normally distributed and thus randomly sampled each
variable 100,000 times from a normal distribution. The standard
deviation of the resulting snow densities, which we use as the
uncertainty estimate for our analysis, is 169 kg m−3 (Figure 8).
The uncertainty in SfM snow depths (0.1 m) alone results in a
standard deviation of 159 kg m−3, while the uncertainty in GPR
twt (0.31 ns) has a standard deviation of 55 kg m−3.

DISCUSSION

Comparison to Previous Work
The mean statistical parameters reported in this work, r2 of 0.67,
NMAD of 0.11 m and RMSE of 0.12 m, are comparable to
previously reported assessments in the literature. For
instance, Eberhard et al. (2021) reported NMAD and RMSEs
of 0.11 and 0.16 m for UAS snow depth maps in the Swiss Alps.
Bühler et al. (2015) found NMAD and RMSEs of 0.22 and
0.35 m for UAS snow depths compared to manual snow depth
measurements. Lastly, Avanzi et al. (2018) reported RMSE of
0.06 and 0.2 m (without and with outliers, respectively) in the
second year of their study near Belvedere Glacier in Italy. Yildiz
et al. (2021) also coupled SfM and GPR to derive snow density
and SWE. This study reports comparable results for
independent comparisons of snow depth (correlation = 0.78,

FIGURE 7 | (A) SfM-derived snow depths along the GPR-probe transect. The legend in b is applicable to this plot. The snow-off surface elevation is shown in black.
(B) Snow water equivalent along the GPR transect for the eleven survey dates.
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RMSE = 9 cm), but lower correlations for snow density when
compared to manual snow tube measurements (correlation =
0.14, RMSE = 74 kg m−3). Importantly, there are a number of
key differences between these studies that are worth noting.
First, the study site for Yildiz et al. (2021) included more
variable vegetation cover and was more topographically
complex, both which could contribute to additional errors in
SfM snow depth reconstructions. Secondly, their study
presented spatially distributed observations from a single
survey date rather than the time series approach presented in
this study. We found significant scatter at the individual pixel
scale on any given date and thus we focused on calculating a
single “best” estimate for each date. Future work could focus on
capturing both spatial and temporal variations in density,
particularly for study plots where the dynamic range in
density on any given date might be larger.

Comparison Between SfM Snow Depths,
GPR-SfM Permittivity and Density With
Manual Observations
For nine of the eleven survey dates, the NMAD in probe-SfM
snow depths were less than 0.15 m and for eight of the survey
dates, the NMADwas equal to or less than 0.1 m. For all dates, the
probe-SfM snow depth differences were approximately normally
distributed around 0 (i.e., the errors were not positively or
negatively biased). The largest errors occurred on February 18
and April 23, which had either relatively poor lighting conditions
(i.e., flat light and low contrast; Revuelto et al., 2021b), smooth
snow textures or intermittent snow showers (April 23), as

compared to dates (February 24 and May 7) when the best
agreement was evident (Figure 9).

For the nine survey dates with both WISe and SfM-GPR
observations, seven showed close agreement, all of which
occurred prior to late April. For the two dates with significant
disagreement (April 23 and May 7), the SfM-GPR method first
overestimated and then underestimated permittivity relative to
the WISe observations. On April 23, the snowpack was nearly
isothermal (median layer temperature of –0.2°C) and had
multiple ice lenses (<1 cm in thickness, which have a relative
dielectric permittivity of ~3.15; Kovacs et al., 1995) that were
difficult to sample with the WISe sensor. By not sampling the ice
lenses, the WISe sensor might have underestimated the true
permittivity on this date. On May 7, the snowpack was
isothermal (median layer temperature of 0°C) and pit
observations documented meltwater throughout the snow
column. Individual WISe observations were highly variable on
this date (>50% of layer observations required a third observation
due to substantial differences between the first two observations),
indicating high variability within individual layers within the
snowpit and likely substantial spatial heterogeneity along the
GPR transect. In support of this, we found that the median
standard deviation of GPR twt observations within individual 1 m
pixels on this date was 0.19 ns, whereas the median for all other
dates was 0.11 ns (Figure 10).

The NMAD of 39 kg m−3 between the SfM-GPR density and
pit-measured density is approximately twice as large as a
reported maximum uncertainty (e.g., Proksch et al., 2016)
on manual density measurements (6% or 18 kg m−3 for a
density of 300 kg m−3), although this difference is likely the

FIGURE 8 | (A) Snow densities from a Monte Carlo analysis of uncertainty in SfM-derived snow depths and GPR-measured twt. Black vertical line in all subplots
indicates the “true” density of 345 kg m−3 (B) Identical analysis but limiting uncertainty to twt. (C) Identical analysis but limiting uncertainty to snow depth.
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result of both real physical differences in density along the
GPR transect and errors in each of the methods. We applied
two different empirical relationships to convert the derived
permittivity to snow density—Webb et al. (2021) showed
better agreement to both the pit-measured and SNOTEL-
derived density values for permittivities below 1.5 whereas
Kovacs et al. (1995) showed better agreement above 1.5 (which
corresponds to densities greater than 300 kg m−3). This
difference potentially reflects the specific snow conditions
analyzed during the development of these empirical
relations, as the former solely analyzed seasonal snow in
Colorado and New Mexico with snow densities below
360 kg m−3.

On the last four survey dates, the mean snowpack temperature
was ≥ –0.6°C, indicating near isothermal or isothermal
conditions. The presence of liquid water within the snowpack
significantly increases the bulk relative dielectric permittivity
(e.g., Bradford et al., 2009; Bonnell et al., 2021; Webb et al.,
2021), as water has a relative permittivity of ~88 and therefore can
introduce significant errors in empirical permittivity-density
relations that do not account for this component. LWC can be
estimated within the snowpack, but it requires three measured
parameters: 1) Snow depth, 2) twt, and 3) a dry snow density
estimated from snow pit observations. For this study, an explicit
goal was to use non-invasive methods (i.e., avoiding snowpits) to
estimate snow density and SWE, and thus the last parameter was

FIGURE 9 | Example UAV photographs for two dates ((A) February 24, (B) April 23) showing contrasting lighting conditions and snow surface textures. In (B), the
combination of lighting and snow surface conditions likely contributed to the poor agreement with in situ observations.

FIGURE 10 | Boxplots of the standard deviation of twt within all individual pixel on each survey date.
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not available. To explore the corresponding error, we assess the
uncertainty associated with the presence of LWC using pit-based
calorimeter observations from May 20. The calorimeter
observations estimate a LWC of 4.3% on this date (Webb
et al., 2021). The presence of this LWC would decrease the
radar velocity by ~18% (from 0.22 m ns−1 to 0.18 m ns−1;
Bonnell et al., 2021). On this date, the median SfM measured
snow depth was 0.31 m, meaning that the field-measured twt
would have increased by ~23% (from 2.83 to 3.49 ns) due to the
presence of the LWC. In addition, the empirically-estimated
density (based on the calculated radar velocity and an
assumption of dry snow) would increase significantly, from
~430 to 790 kg m−3. However, as shown in Figure 6, this
significant overestimate of the true density based on the GPR-
SfM integration was not observed. There are a number of
potential explanations for this, including 1) the GPR
observations were completed before 11 a.m. local, at a time
when LWC was at a relative minimum and 2) LWC has been
shown to exhibit substantial spatial variability at the scales of
meters and thus a single pit based measurement may not be fully
representative of a larger area (Griessinger et al., 2018; Webb
et al., 2018; Bonnell et al., 2021). In summary, LWC presents a
significant and persistent challenge for radar-based methods,
particularly in the absence of in situ observations. As such, we
recommend that additional considerations of LWC be taken
when observations are made when a snowpack is at or near
isothermal conditions.

Uncertainty and Lessons Learned
The method presented here is sensitive to uncertainties in both
snow depth and GPR-measured twt (Figure 8A). Given
reasonable estimates of uncertainty (± 0.1 m and ± 0.31 ns),
we find a standard deviation of ~170 kg m−3. When assessed
individually, we find that the method is substantially less sensitive
to errors in twt (Figure 8B) and more sensitive to errors in snow
depth (Figure 8C), resulting in standard deviations in snow
density of ~55 and ~160 kg m−3, respectively. This finding
suggests that future improvements in this method focused on
reducing the uncertainty in SfM-derived snow depths, perhaps
via the use of RTK-enabled UAV platforms, would have the
greatest impact. An additional benefit of this approach over
others, is that the inverse relationship between snow density
and radar velocity (i.e., higher snow density, lower radar velocity),
acts to reduce uncertainty in final SWE estimates. In other
words, if snow depth is overestimated for a given radar twt, the
corresponding velocity will be overestimated, but density and
SWE will be underestimated. Alternatively, if snow depth is
underestimated for the same twt, the corresponding velocity
will be underestimated, but snow density and SWE will be
overestimated. While the final errors in SWE are still
significant, the inverse relationship between radar velocity
and density acts to minimize this error rather than
exacerbate it.

The study site was well suited for the application of this method
for a multitude of reasons. The area experienced a severe wildfire in
the preceding summer, so no ground vegetation was present,
thereby removing errors associated with identifying the ground

surface in snow-off DSMs and reducing errors associated with
correctly identifying/picking the ground surface with the manual
snow probe and GPR. The application of this method, along with
other depth-based snow remote sensing approaches, would have
additional uncertainties where extensive ground vegetation is
present. In addition, a plowed road surface paralleled the study
site, which allowed for an independent snow-free surface to enable
alignment of the respective DSMs on each date. In the absence of
this road surface, the corresponding UAV-derived snow depths
would have an additional uncertainty of ~5–10 cm, which would
introduce greater uncertainty into the corresponding permittivity
and density calculations. Further, the presence of the remaining
tree trunks (Figure 9) facilitated tie point identification throughout
the full extent of the study area, regardless of the surface snow
conditions. In coincident surveys in a nearby meadow devoid of
such features, portions of the survey area did not have sufficient
texture and/or contrast to produce tie points in the SfM processing.
Lastly, the use of static GCPs throughout the survey period greatly
improved the efficiency in acquiring UAV imagery on each date, as
GCP surveying can be time-consuming and is an additional source
of uncertainty.

CONCLUSION

This study integrated UAV-derived snow depth observations and
GPR-measured twt to calculate relative permittivity, snowdensity and
SWE over an entire winter season. SfM-derived snow depths agreed
favorably with independent snow depth measurements frommanual
probing (mean r2 = 0.67, NMAD = 0.11m and RMSE = 0.12). The
GPR-SfM derived permittivities and snow densities were additionally
compared to independent measurements made in snowpits (relative
permittivity: r2 = 0.67, NMAD = 0.11 and RMSE = 0.17 and snow
density: r2 = 0.42, NMAD = 39 kgm−3 and RMSE = 68 kgm−3). The
derived permittivity of individual pixels had significant scatter, so
given current technology, this study suggests that this approach is best
suited for determining amedian permittivity based on a large number
of observations along a transect, rather than for individual pixels. The
SfM-GPR approach, while sensitive to accurate snow depth
observations, is a path forward for non-destructively and
efficiently estimating snow density and SWE over intermediate
scales and given ongoing development of new technologies in
satellite-based snow depth retrievals, this method could be readily
expanded to much larger spatial extents.
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