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We present an overview and several important upgrades to the Vector Discrete Ordinate
Radiative Transfer (VDISORT) code. VDISORT is a polarized (vector) radiative transfer code
that can be applied to a wide range of research problems including the Earth’s atmosphere
and ocean system. First, a solution is developed to the complex algebraic eigenvalue
problem resulting when the b2 component of the Stokes scattering matrix is non-zero. This
solution is needed to compute the V component of the Stokes vector I � [I‖, I⊥,U,V]T .
Second, a significant improvement in computational efficiency is obtained by reducing the
dimension of the algebraic eigenvalue by a factor of 2 resulting in a speed increase of about
23 = 8. Third, an important upgrade of the VDISORT code is obtained by developing and
implementing a method to enable output at arbitrary polar angles by the integration of the
source function (ISF) method for partially reflecting Lambertian as well as general non-
Lambertian surfaces. Fourth, a pseudo-spherical treatment has been implemented to
provide important corrections for Earth curvature effects at near horizontal solar zenith and
observation (viewing) polar angles. Fifth, a post-processing single-scattering correction
procedure has been developed to enhance the accuracy and speed for strongly forward-
peaked scattering. With these significant improvements the results from the upgraded
version of the VDISORT code match published benchmark results for Rayleigh scattering,
Mie scattering, and scattering by non-spherical cirrus particles. The performance of
VDISORT for a polarized incident beam source is equally satisfactory. The VDISORT
vector radiative transfer code is made public and freely available for use by the growing
polarimetric research community including the space-borne polarimeters on the future
NASA PACE and AOS missions.
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1 INTRODUCTION

This paper documents a state-of-the-art numerical code called
VDISORT for monochromatic polarized radiative transfer in
non-isothermal, vertically inhomogeneous, but horizontally
homogeneous media. The physical processes included are
Planckian thermal emission, scattering with a general phase
matrix, absorption, and surface reflection. The system may be
driven by parallel or isotropic unpolarized or polarized radiation
incident at the boundaries, as well as by internal thermal sources
and thermal emission from the boundaries. The Stokes vector is
returned at user-specified angles and levels. The azimuthally-
averaged Stokes components are also available. Irradiances and
mean radiances can be generated from the azimuthally-averaged
radiance, i.e., the first component of the Stokes vector [I,Q,U,V]T.

VDISORT is based on articles published in the open literature,
but its theoretical background and algorithmic developments
have not been systematically described in one single
document. This paper provides an up-to-date complete
description of VDISORT including a self-contained account of
its theoretical basis and a discussion of the numerical
implementation of the theory.

Like DISORT, the scalar version, VDISORT has been designed
to be a good scientific software package and a numerical code of
general utility. The VDISORT package takes advantage of robust
existing software tools to make it numerically well-conditioned,
and user-friendly. A set of test cases have been adopted to verify
the numerical code against published results.

1.1 Outline of Paper
This paper is organized as follows. Section 1 provides the
motivation for and a brief history of VDISORT, while Section
2 provides theoretical background, introduces the radiative
transfer equation for unpolarized and polarized radiation, and
discusses the inherent optical properties including the phase
matrix. The solution of the vector radiative transfer equation
(VRTE) is discussed in Section 3 including the discrete ordinate
method, important upgrades of the vector discrete ordinate code
(VDISORT), the ISF method, and treatment of polarized
reflectance from the lower boundary. Section 4 discusses the
merits of the 4 × 4 solution versus the 3 × 3 approximation, while
Section 5 is devoted to the single-scattering approximation,
which is used in a post-processing step to enhance the
accuracy of the computed results for a given number of
discrete ordinate streams. Test results are presented in Section
6 including comparisons with published benchmarks. Finally, in
Section 7 a brief summary and concluding remarks are provided.

1.2 Brief History
The discrete ordinate radiative transfer algorithm (DISORT) has
proven to be an accurate, versatile and reliable method for the
solution of the scalar radiative transfer problem in plane-parallel,
vertically inhomogeneous media (Stamnes et al., 1988; Lin et al.,
2015; Laszlo et al., 2016; Stamnes K. et al., 2017). An extension of
the scalar discrete ordinate theory to solve for the complete Stokes
vector I = [I,Q,U,V]T was reported by Weng (1992), who adopted
an approach to the solution of the vector problem completely

analogous to the scalar case. Hence, the computer code for the
vector problem, VDISORT, could rely on the same well-tested
routine to obtain the eigenvalues and eigenvectors as the one used
in the scalar version (DISORT). Also, the same scaling
transformation (Stamnes and Conklin, 1984) could be applied
to circumvent the notorious ill-conditioning that occurs when
applying boundary and layer interface continuity conditions.

The first version of the FORTRAN code developed by Weng
(1992) had a few shortcomings related to the fact that it had been
applied exclusively in the microwave region, and thus had not
been tested for beam source applications. In addition, the
procedure employed to compute the Fourier components of
the phase matrix turned out to be both inaccurate and
inefficient. To correct these shortcomings an improved version
of the code was developed by Schulz et al. (1999). In this new
version of the code 1) errors in the numerical implementation
were corrected, 2) the procedure used to compute the Fourier
components of the phase matrix was replaced by a more accurate
and efficient method, 3) the basic performance of the code was
tested against benchmark results. However, although the code
seemed to have the potential to become an accurate and reliable
tool for a variety of applications, no attempt was made to test it in
a systematic and comprehensive manner. Also, no attempt was
made to document the code thoroughly and extensively, and it
was assumed that the homogeneous solution involved only real
eigenvalues/eigenvectors, which are sufficient to solve for the I,Q,
and U Stokes parameters, but the V component requires complex
arithmetic.

The original code provided solutions for the I, Q, and U Stokes
parameters at the discrete ordinates (i.e. at the quadrature polar
angles). Since the computing time required for the discrete ordinate
method increases cubically with the number of quadrature angles, it
becomes cost-effective to obtain the solution at a limited number of
quadrature angles and then generate the solution at additional angles
by using an efficient interpolation scheme. To this end analytic
expressions were developed that were shown to be accurate for
the I, Q, and U components, but not for the V component, at
arbitrary angles and optical depths (Schulz and Stamnes, 2000) in
much the same way they were developed for the scalar version
(Stamnes, 1982). These analytic expressions obtained by the ISF
method (Stamnes, 1982) satisfy not only the radiative transfer
equation, but also the boundary and layer-interface continuity
conditions at arbitrary polar angles, and they have proven to be
superior to standard interpolation schemes such as cubic splines
(Stamnes, 1982; Schulz and Stamnes, 2000). To complete this
development, an extension of this ISF method to include accurate
computation of the V Stokes parameter, which requires complex
arithmetic, is described Section 3.5.

2 THEORETICAL BASIS

2.1 Unpolarized Radiation
We consider an inhomogeneous horizontal slab of scattering/
absorbing material with inherent optical properties that vary only
in the vertical direction z, where z increases upward. The
corresponding vertical optical depth is defined by
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τ z( ) � ∫∞

z
α z′( ) + β z′( )[ ]dz′ (1)

where α and β are the absorption and scattering coefficients in
units of reciprocal length, respectively, and the vertical optical
depth is defined to increase downward from τ(z = ∞) = 0 at the
top of the slab. The slab is assumed to be in local thermodynamic
equilibrium so that it emits radiation according to the local
temperature T (τ(z)). The diffuse radiance distribution I (τ, u,
ϕ) can be described by the scalar radiative transfer
equation (RTE)

u
dI τ, u, ϕ( )

dτ
� I τ, u,ϕ( ) − S τ, u,ϕ( ) (2)

where the source function is given by

S τ, u, ϕ( ) � Sp τ, u,ϕ( ) + [1 − ϖ— +( )]B τ( )

+ ϖ— τ( )
4π

∫2π

0
dϕ′∫1

−1
p τ, u′, ϕ′; u, ϕ( )I τ, u′, ϕ′( )du′.

(3)

Here u is the cosine of the polar angle θ, ϕ is the azimuth angle,
ϖ(τ) = β(τ)/[α(τ) + β(τ)] is the single-scattering albedo, p (τ, u′,
ϕ′; u, ϕ) is the scattering phase function, and B(τ) is the thermal
radiation field given by the Planck function. The single-scattering
source term is given by

Sp τ, u,ϕ( ) � ϖ τ( )
4π

p τ,−μ0, ϕ0; u,ϕ( )Sbe−τ/μ0 (4)

where Sb is the incident (solar) irradiance and μ0 is the cosine
of the solar zenith angle. The differential vertical optical depth is
[see Eq. 1]

dτ z( ) � − α τ( ) + β τ( )[ ]dz (5)
where the minus sign indicates that τ increases in the

downward direction, whereas z increases in the upward
direction, as noted above. The scattering angle Θ and the
polar and azimuth angles are related by (see Figure 1)

Ω̂′ · Ω̂ � cosΘ � cos θ cos θ′ + sin θ′ sin θ cos ϕ′ − ϕ( ).
Here Ω̂′ is the unit vector of the incident beam direction and Ω̂

is the unit vector of the scattered direction. By definition, θ = 180°

is directed toward nadir (straight down) and θ = 0° toward zenith
(straight up). Thus, u = cos θ varies in the range [ − 1, 1] (from
nadir to zenith). For oblique illumination of the slab, ϕ0 = 180° is
defined to be the azimuth angle of the incident light.

2.2 Polarized Radiation
To generalize Eq. 2 to apply to polarized radiation, the scalar
source function must be replaced by the appropriate vector
version. Hence, the multiple-scattering term Sms(τ, u, ϕ) �
ϖ(τ)
4π ∫2π

0
dϕ′∫1

−1 du′p(τ, u′, ϕ′; u, ϕ)I(τ, u′, ϕ′) in Eq. 3 must be
replaced by

Sms τ, u, ϕ( ) � ϖ τ( )
4π

∫2π
0

dϕ′∫1
−1
du′P τ, u′, ϕ′; u, ϕ( )I τ, u′, ϕ′( ) (6)

FIGURE 1 | Coordinate system for scattering by a volume element atO. The points C, A and B are located on the unit sphere. The incident light beam with Stokes
vector IincS is in direction OA (θ′, ϕ′) with unit vector Ω̂′, the scattered beam with Stokes vector IscaS is in direction OB(θ, ϕ) with unit vector Ω̂ (Hovenier et al., 2004).
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where I (τ, u′, ϕ′) is the Stokes vector, and P (τ, u′, ϕ′; u, ϕ) is
the scattering phase matrix. The first element of the vector Sms(τ,
u, ϕ) represents the energy per unit solid angle, per unit frequency
interval, and per unit time that is scattered by a unit volume in the
direction (u = cos θ, ϕ). Hence, in a plane-parallel (slab) geometry,
the integro-differential vector radiative transfer equation (VRTE)
for polarized radiation is expressed in terms of a Stokes vector I
(τ, u, ϕ) as

u
d I τ, u,ϕ( )

dτ
� I τ, u,ϕ( ) − S τ, u,ϕ( ) (7)

where the vector source function is

S τ, u, ϕ( ) � Sms τ, u, ϕ( ) + Q τ, u, ϕ( ). (8)
Here Sms(τ, u, ϕ) is given by Eq. 6 and the source termQ (τ, u,

ϕ), due to beam and thermal sources, is given by:

Q τ, u, ϕ( ) � ϖ τ( )
4π

P τ,−μ0, ϕ0; u,ϕ( )Sbe−τ/μ0 + 1 − ϖ τ( )[ ] St τ( ).
(9)

The first term on the right hand side of Eq. 9 describes the
incident beam Sb in direction (−μ0, ϕ0), which is attenuated at
depth τ by a factor e−τ/μ0 and undergoes single scattering into the
direction (u, ϕ). For an unpolarized incident beam Sb has the form

Sb � I0/2, I0/2, 0, 0[ ]T or I0, 0, 0, 0[ ]T (10)
where the superscript T denotes the transpose, and where the

first or second expression corresponds to the choice of Stokes
vector representation, [I‖, I⊥, U, V]T or [I,Q,U,V]T. The second
term on the right hand side of Eq. 9 is due to thermal emission,
which is unpolarized, and St(τ) is given by

St τ( ) � B T τ( )( )/2, B T τ( )( )/2, 0, 0[ ]T or B T τ( )( ), 0, 0, 0[ ]T
(11)

where B is the Planck function, and where the first or second
expression corresponds to the choice of Stokes vector
representation. We have set μ0 ≡|u0|≡| cos θ0|, where θ0 is the
polar angle of the incident light beam.

2.3 Effects of Earth Curvature–The
Pseudo-Spherical Approximation
For many applications plane-parallel geometry is adequate. For
large solar zenith angles (θ0 ≥ 70° and for near horizontal polar
viewing angles θ), however, the plane-parallel approximation
(PPA) provides inaccurate results. Then the Earth curvature
must be considered. Large solar zenith angles occur around
the times of sunrise and sunset at any location on a planet.
Such large solar zenith angles are present, for example, in
observations made by instruments onboard geostationary
satellites that observe a large part of Earth’s disk throughout
the day. Sensors deployed on polar-orbiting satellite platforms
also observe at large solar zenith angles at high latitudes.

As discussed by several investigators (see He et al. (2018) and
references therein), the so-called pseudo-spherical approximation

(PSA) (Dahlback and Stamnes, 1991) represents a very useful
correction to the plane-parallel approximation. In the PSA the
direct beam single-scattering term, also called the solar pseudo-
source term, is treated in spherical geometry while the multiple-
scattering term is treated using the PPA. Hence, in the PSA the
exponential attenuation in Eqs. 4 and 9 is replaced by the
Chapman function, that is, exp (−τ/μ0) → exp (−τCh(μ0)),
where the Chapman function Ch(μ0) takes Earth curvature into
account, but ignores refraction. As shown by He et al. (2018) the
influence of Earth curvature increases rapidly with solar zenith
angle, being up to 1, 3, and 12% for solar zenith angles of 75°, 80°,
and 85°, respectively.

2.4 Scattering Phase Matrix
The development of vector radiative transfer theory may start
with the Stokes vector representation I � [I‖, I⊥, U, V]T. In terms
of the complex transverse electric field components of the
radiation field E‖ � |E‖|e−iδ‖ and E⊥ � |E⊥|e−iδ⊥ , these Stokes
vector components are given by:

I‖ � E‖Ep
‖

I⊥ � E⊥E
p
⊥

U � 2|E‖||E⊥| cos δ
V � 2|E‖||E⊥| sin δ

(12)

where the phase difference δ is δ‖ − δ⊥. The connection
between the I � [I‖, I⊥, U, V]T Stokes vector representation
and the more commonly used IS = [I,Q,U,V]T representation,
where I = I‖ + I⊥ and Q = I‖ − I⊥, is given by:

IS � DI (13)
where

D �
1 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, D−1 � 1
2

1 1 0 0
1 −1 0 0
0 0 2 0
0 0 0 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (14)

The degree of polarization is defined as

p � Q2 + U2 + V2[ ]1/2/I (15)
so that 0 ≤ p ≤ 1, where p = 1 corresponds to completely

polarized light and p = 0 to natural (unpolarized) light. The
degree of circular polarization is defined as

pc � V/I, (16)
the degree of linear polarization as

pl � Q2 + U2[ ]1/2/I, (17)
and alternatively, when U = 0 as

pl U � 0( ) � −Q
I
� I⊥ − I‖
I⊥ + I‖

. (18)

The transverse electric field vector [E‖, E⊥]T of the scattered
field can be obtained in terms of the transverse field vector
[E‖0, E⊥0]T of the incident field by a linear transformation:
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E‖
E⊥

( ) � A
E‖0
E⊥0

( ) (19)

where A is a 2 × 2 matrix, referred to as the amplitude
scattering matrix. The corresponding linear transformation
connecting the Stokes vectors of the incident and scattered
fields in the scattering plane is called the Mueller matrix (in
the case of a single scattering event). For scattering by a small
volume containing an ensemble of particles, the ensemble-
averaged Mueller matrix is referred to as the Stokes scattering
matrix F. Finally, when transforming from the scattering plane to
a fixed laboratory frame, the corresponding matrix is referred to
as the scattering phase matrix P.

2.4.1 Stokes Vector Representation IS = [I,Q,U,V]T

The scattering geometry is illustrated in Figure 1. The plane
AOB, defined as the scattering plane, is spanned by the directions
of propagation of the incident parallel beam with Stokes vector
IincS and the scattered parallel beam with Stokes vector IscaS . Here
the subscript S pertains to the Stokes vector representation IS =
[I,Q,U,V]T. The scattered radiation, represented by the Stokes
vector IscaS , is related to the incident radiation, represented by the
Stokes vector IincS , by a 4 × 4 scattering matrix [see Eqs. 20 and 21
below].

If in a small volume of particles any of the following conditions
are met (Hovenier and van der Mee, 1983) 1) each particle in the
volume element has a plane of symmetry, and the particles are
randomly oriented, 2) each volume element contains an equal
number of particles and their mirror particles in random
orientation, 3) the particles are much smaller than the
wavelength of the incident light, then the Stokes scattering
matrix in the IS = [I,Q,U,V]T representation has the following
form

FS Θ( ) �
a1 Θ( ) b1 Θ( ) 0 0
b1 Θ( ) a2 Θ( ) 0 0
0 0 a3 Θ( ) b2 Θ( )
0 0 −b2 Θ( ) a4 Θ( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (20)

Each of the six independent matrix elements in Eq. 20 depends
on the scattering angle Θ, and will in general also depend on the
position in the medium. For spherical particles, the matrix in Eq.
20 simplifies, since a1 = a2 and a3 = a4, so that only four
independent elements remain.

Two rotations are required to connect the Stokes vector of the
scattered radiation to that of the incident radiation. As illustrated
in Figure 1, the first rotation is from the meridian plane OAC,
associated with the Stokes vector IincS , into the scattering plane
OAB, whereas the second rotation is from the scattering plane
OAB into the meridian plane OBC, associated with the Stokes
vector IscaS . Hence, the Stokes vector for the scattered radiation is
given by (Chandrasekhar, 1960)

IscaS � RS π − i2( )FS Θ( )RS −i1( )IincS ≡ PS Θ( )IincS . (21)
Here i1 and i2 are the angles between the meridian planes of

the incident and the scattered radiation, respectively, and the
scattering plane (Figure 1).The Stokes rotation matrix RS

represents a rotation in the clockwise direction with respect to
an observer looking into the direction of propagation
(Chandrasekhar, 1960). For rotation by an arbitrary angle of ω
(0 ≤ ω ≤ 2π) it can be written as

RS ω( ) �
1 0 0 0
0 cos 2ω( ) −sin 2ω( ) 0
0 sin 2ω( ) cos 2ω( ) 0
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (22)

Hence, according to Eq. 21, the scattering phase matrix, which
connects the Stokes vector of the scattered radiation to that of the
incident radiation, is obtained from the Stokes scattering matrix
FS(Θ) in Eq. 20 by

PS θ′, ϕ′; θ, ϕ( ) � RS π − i2( )FS Θ( )RS −i1( )
� RS −i2( )FS Θ( )RS −i1( ) (23)

where RS (π − i2) = RS (−i2) since the rotation matrix is
periodic with a period π.

According to Eq. 21 (see also Figure 1), the Stokes vector IincS
of the incident parallel beam must be multiplied by the rotation
matrix RS (−i1) before it is multiplied by the Stokes scattering
matrix FS(Θ), whereafter it must be multiplied by the rotation
matrix RS (π − i2). In some radiative transfer (RT) models
including Monte Carlo simulations these matrix
multiplications are carried out explicitly. In other types of RT
models such as the adding-doubling method (De Haan et al.,
1987) and the discrete ordinate method (Siewert, 2000;
Sommersten et al., 2010; Cohen et al., 2013) they are taken
care of implicitly through the expansion of the scattering
phase matrix in generalized spherical functions (Siewert, 1981,
1982) as discussed in Section 2.4.3.

Carrying out the matrix multiplications in Eq. 23 one finds:

PS Θ( ) �
a1 b1C1 −b1S1 0
b1C2 C2a2C1 − S2a3S1 −C2a2S1 − S2a3C1 −b2S2
b1S2 S2a2C1 + C2a3S1 −S2a2S1 + C2a3C1 −b2C2

0 −b2S1 −b2C1 a4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

where aj = aj(Θ), j = 1, . . . , 4, bj = bj(Θ), j = 1, 2, and

C1 � cos 2i1, C2 � cos 2i2 (25)
S1 � sin 2i1, S2 � sin 2i2. (26)

A comparison of Eqs. 20 and 24 shows that only the corner
elements of FS(Θ) remain unchanged by the rotations of the
reference planes. The (1.1)-element of both the scattering phase
matrix PS(Θ) and the Stokes scattering matrix FS(Θ) is the
scattering phase function. Also, since the (4.4)-element of the
scattering phase matrix remains unchanged by the rotations, the
state of circular polarization of the incident light does not affect
the intensity of the scattered radiation after one scattering event.

To compute PS(θ′, ϕ′; θ, ϕ) given by Eq. 23 we must relate the
angles θ′, ϕ′, θ, and ϕ on the left side with the angles i1, i2, and Θ
on the right side. Using spherical geometry, we may apply the
cosine rule forΘ, θ, and θ′ successively, in Figure 1, to obtain (u =
cos θ, u′ = cos θ′) (Hovenier et al., 2004)
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cosΘ � uu′ + 1 − u2( )1/2 1 − u′2( )1/2 cos ϕ′ − ϕ( ) (27)

cos i1 � −u + u′ cosΘ
1 − u′2( )1/2 1 − cos2Θ( )1/2 (28)

cos i2 � −u′ + u cosΘ
1 − u2( )1/2 1 − cos2Θ( )1/2. (29)

The trigonometric functions for the double angles can be
obtained by using

cos 2 i � 2 cos2 i − 1 (30)
and

sin 2 i � 2 sin i cos i (31)
or

sin 2 i � 2 1 − cos2 i( )1/2 cos i if 0< ϕ′ − ϕ< π
−2 1 − cos2 i( )1/2 cos i if π < ϕ′−{ (32)

where i is i1 or i2.
Equations 25–32 describe the conventional way to determine

the variables C1, S1, C2, and S2.
A better approach to compute the variables C1, S1, C2, and S2

appearing in PS(θ′, ϕ′; θ, ϕ) given by Eq. 24 is described in a
recent publication (Berk, 2022). This new approach can be
described as follows. Defining

Δθ � θ′ − θ and Δϕ � ϕ′ − ϕ, (33)
we have

sin2Θ � sin2Δθ + 4 cosΔθ sin θ sin θ′ sin2 Δϕ/2( )
− 4 sin2 θ sin2θ′ sin4 Δϕ/2( ), (34)

and it can be shown that the variables C1, S1, C2, and S2 are
given by

C1 �
1 if sinΘ � 0

2 sin θ cos θ′ sin2 Δϕ/2( ) + sinΔθ[ ]2 − sin2 θ sin2Δϕ
sin2Θ otherwise

⎧⎪⎪⎨⎪⎪⎩
(35)

S1 �
0 if sinΘ � 0

−2 sin θ sinΔϕ[ 2 sin θ cos θ′ sin2 Δϕ/2( ) + sinΔθ[ ]
sin2Θ otherwise

⎧⎪⎪⎨⎪⎪⎩
(36)

C2 �
1 if sinΘ � 0

2 sin θ′ cos θ sin2 Δϕ/2( ) − sinΔθ[ ]2 − sin2θ′ sin2Δϕ
sin2Θ otherwise

⎧⎪⎪⎨⎪⎪⎩
(37)

S2 �
0 if sinΘ � 0

−2 sin θ′ sinΔϕ[ 2 sin θ′ cos θ sin2 Δϕ/2( ) − sinΔθ[ ]
sin2Θ otherwise.

⎧⎪⎪⎨⎪⎪⎩
(38)

The advantage of using Eqs. 33–38 instead of Eqs. 25–32 is
that they eliminate numerical instability issues and the need to
treat positive and negative relative azimuth angles as separate
cases (Berk, 2022).

We now have all the information needed to compute the
scattering phase matrix [see Eq. 24] as a function of the three
variables u = cos θ, u′ = cos θ′, and Δϕ = ϕ′ − ϕ. If there is no
difference in azimuth (i.e. ϕ′ − ϕ = 0), then the meridian planes of
the incident and scattered beams in Fig. 1 coincide with the
scattering plane. Hence, there is no need to rotate the reference
planes (R( − i2) andR( − i1) both reduce to the identity matrix), so
that

PS u′, u, 0( ) � PS u′, u, π( ) � FS Θ( ). (39)
It follows from the cosine law of spherical geometry

cosΘ � uu′ + 1 − u2( )1/21 − u′2)1/2 cos ϕ′ − ϕ( ) (40)
that the phase matrix is invariant to three basic changes in the

polar angles u′ and u and azimuthal angles ϕ′ and ϕ which leave
the scattering angle unaltered: 1) changing the signs of u and u′
simultaneously: PS(−u′, − u, ϕ′ − ϕ) = PS(u′, u, ϕ′ − ϕ), 2)
interchange of u and u′: PS(u′, u, ϕ′ − ϕ) = PS(u, u′, ϕ′ − ϕ) 3)
interchange of ϕ and ϕ′: PS(u′, u, ϕ′ − ϕ) = PS(u′, u, ϕ − ϕ′). Also,
if the b2-element in Eq. 24 is zero, then the Stokes parameter V is
scattered independently of the others, according to the phase
function a4(Θ), and the remaining part of the scattering phase
matrix referring to I, Q, and U becomes a 3 × 3 matrix:

PS Θ( ) �
a1 b1C1 −b1S1
b1C2 C2a2C1 − S2a3S1 −C2a2S1 − S2a3C1

b1S2 S2a2C1 + C2a3S1 −S2a2S1 + C2a3C1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (41)

Finally, in a plane-parallel or slab geometry, there is no
azimuth-dependence for light beams traveling in directions
perpendicular to the slab (either up or down). Thus, if either
the incident or the scattered beam travels in a perpendicular
direction, we may use the meridian plane of the other beam as a
reference plane for both beams. Since this plane coincides with
the scattering plane, Eq. 39 applies in this situation too.

For Rayleigh scattering with parameter f � 1−ρ
1+ρ, where ρ is the

depolarization factor defined in Eq. 53, the Stokes scattering
matrix in the Stokes vector representation IS = [I,Q,U,V]T is given
by (Chandrasekhar, 1960; Sommersten et al., 2010)

FS Θ( ) � 3
3 + f

1 + f cos2Θ −f sin2Θ 0 0
−f sin2Θ f 1 + cos2Θ( ) 0 0

0 0 2f cosΘ 0
0 0 0 3f − 1( )cosΘ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(42)

For the first scattering event of the scalar RTE, only the (1.1)-
element of Eq. 42 matters, and leads to the scattering phase
function given by

pRay Θ( ) � 3
3 + f

1 + f cos2Θ( ). (43)

2.4.2 Stokes Vector Representation I � [I‖, I⊥, U, V]T
The Stokes vector I � [I‖, I⊥, U,V]T is related to IS = [I,Q,U,V]T by

IS � DI (44)
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where D is given by Eq. 14, so that I = I‖ + I⊥, and Q = I‖ − I⊥.
Denoting the Stokes vector obtained after a rotation by

IS′ � RS ω( )IS (45)
we find

I′ � D−1IS′ � D−1RS ω( )IS � D−1RS ω( )DI � R ω( )I. (46)
Hence, the rotation matrix for the Stokes vector in the
representation I � [I‖, I⊥, U, V]T becomes:

R ω( ) � D−1RS ω( )D �

cos2 ω sin2 ω −1
2
sin 2ω( ) 0

sin2 ω cos2 ω
1
2
sin 2ω( ) 0

sin 2ω( ) −sin 2ω( ) cos 2ω( ) 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(47)
The scattering phase matrix P(Θ) in the Stokes vector

representation I � [I‖, I⊥, U, V]T is related to the scattering
phase matrix PS(Θ) in the Stokes vector representation IS =
[I,Q,U,V]T by

P Θ( ) � D−1PS Θ( )D. (48)
Similarly, the Stokes scattering matrix F(Θ) associated with the

Stokes vector representation I � [I‖, I⊥, U, V]T is related to the
Stokes scattering matrix FS(Θ) in Eq. 20 by

F Θ( ) � D−1FS Θ( )D

�

1
2

a1 + a2 + 2b1( ) 1
2

a1 − a2( ) 0 0

1
2

a1 − a2( ) 1
2

a1 + a2 − 2b1( ) 0 0

0 0 a3 b2

0 0 −b2 a4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (49)

In the Stokes vector representation I � [I‖, I⊥, U, V]T, the
Stokes scattering matrix for Rayleigh scattering becomes (using
Eqs. 42 and 49 (Chandrasekhar, 1960)):

F Θ( ) � 3
2 1 + 2ζ( )

cos2Θ + ζ sin2Θ ζ 0 0
ζ 1 0 0
0 0 1 − ζ( )cosΘ 0
0 0 0 1 − 3ζ( )cosΘ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(50)

where ζ � ρ/(2 − ρ) � 1−f
1+3f.

From Eq. 50 we see that for an incident beam of natural
unpolarized light given by
Iinc � [Iinc‖ , Iinc⊥ , Uinc, Vinc]T � [12Iinc, 12Iinc, 0, 0]T, the scattered
intensities in the plane parallel and perpendicular to the
scattering plane are obtained by carrying out the
multiplication Isca = F(Θ)Iinc:

Isca‖ ∝
3

4 1 + 2ζ( ) 2ζ + 1 − ζ( )cos2Θ[ ]Iinc (51)

Isca⊥ ∝
3

4 1 + 2ζ( ) 1 + ζ( )[ ]Iinc. (52)

Thus, for unpolarized incident light, the scattered light at right
angles (Θ = 90°) to the direction of incidence defines the
depolarization ratio:

ρ ≡
Isca‖
Isca⊥

( )
Θ�90°

� 2ζ
1 + ζ

(53)

whereas the degree of linear polarization becomes [Eq. 18]:

pl � I⊥ − I‖
I⊥ + I‖

� 1 − ζ( ) 1 − cos2Θ( )
1 + 3ζ + 1 − ζ( )cos2Θ → 1 − ζ

1 + 3ζ
� 1 − ρ

1 + ρ

� f as Θ → 90°. (54)

2.4.3 Generalized Spherical Functions–The Greek
Constants
For the scalar RTE, only the a1(Θ) element of the Stokes
scattering matrix Eq. 20 is relevant, and this element is the
scattering phase function given by Eq. 69 in general, and by
Eq. 43 for Rayleigh scattering. The scattering phase function can
be expanded in Legendre polynomials [see Eq. 69], which enables
expression as a Fourier cosine series.

In a similar manner, the scattering phase matrix can be
expanded in generalized spherical functions. In the Stokes
vector representation IS = [I,Q,U,V]T, the scattering phase
matrix is PS(Θ) = PS(u′, u; ϕ′ − ϕ) with u = cos θ, θ being the
polar angle after scattering, and u′ = cos θ′, θ′ being the polar
angle prior to scattering. Similarly, ϕ and ϕ′ are the azimuth
angles after and prior to scattering, respectively. To expand in
generalized spherical functions, the scattering phase matrix is first
expanded in a (M + 1)-term Fourier series in the azimuth angle
difference (Δϕ′ = ϕ′ − ϕ):

PS u′, u;Δϕ( ) � ∑M
m�0

Pm
c u′, u( )cos m Δϕ′( ) + Pm

s u′, u( )sin m Δϕ′( ){ }
(55)

where Pm
c (u′, u) and Pm

s (u′, u) are the coefficient matrices of
the cosine and sine terms, respectively, of the Fourier series.

We use an addition theorem for the generalized spherical
functions to express the Fourier expansion coefficient matrices
directly in terms of the expansion coefficients of the Stokes
scattering matrix FS(Θ) [see Eq. 20] as follows (Siewert, 1981;
Siewert, 1982; Mishchenko, 1991):

Pm
c u′, u( ) � Am u′, u( ) + Δ3,4A

m u′, u( )Δ3,4 (56)
Pm
s u′, u( ) � Am u′, u( )Δ3,4 − Δ3,4A

m u′, u( ) (57)
where Δ3,4 = diag (1, 1, −1, 1). The matrix Am (u′, u) is

given by:

Am u′, u( ) � ∑M
ℓ�m

Pm
ℓ

u( )ΛℓP
m
ℓ

u′( ). (58)

The matrix Pm
ℓ
(u) is given by:
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Pm
ℓ

u( ) �
Pm,0
ℓ

u( ) 0 0 0
0 Pm,+

ℓ
u( ) Pm,−

ℓ
u( ) 0

0 Pm,−
ℓ

u( ) Pm,+
ℓ

u( ) 0
0 0 0 Pm,0

ℓ
u( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (59)

where

Pm,±
ℓ

u( ) � 1
2

Pm,−2
ℓ

u( ) ± Pm,2
ℓ

u( )[ ] (60)

and the functions Pm,0
ℓ

(u) and Pm,±2
ℓ

(u) are the generalized
spherical functions (Hovenier et al., 2004). ThematrixΛℓ in Eq. 58 is

Λℓ �
α1,ℓ β1,ℓ 0 0
β1,ℓ α2,ℓ 0 0
0 0 α3,ℓ β2,ℓ
0 0 −β2,ℓ α4,ℓ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (61)

and

a1 Θ( ) � ∑M
ℓ�0

α1,ℓP
0,0
ℓ

cosΘ( ) (62)

a2 Θ( ) + a3 Θ( ) � ∑M
ℓ�2

α2,ℓ + α3,ℓ( )P2,2
ℓ

cosΘ( ) (63)

a2 Θ( ) − a3 Θ( ) � ∑M
ℓ�2

α2,ℓ − α3,ℓ( )P2,−2
ℓ

cosΘ( ) (64)

a4 Θ( ) � ∑M
ℓ�0

α4,ℓP
0,0
ℓ

cosΘ( ) (65)

b1 Θ( ) � ∑M
ℓ�2

β1,ℓP
0,2
ℓ

cosΘ( ) (66)

b2 Θ( ) � ∑M
ℓ�2

β2,ℓP
0,2
ℓ

cosΘ( ). (67)

Here the Greek constants αj,ℓ and βj,ℓ are expansion
coefficients, and aj(Θ) and bj(Θ) are the elements of the Stokes
scattering matrix FS(Θ) in Eq. 20. An example of Greek constants
for Rayleigh scattering is provided in Table 1 (see Mishchenko
and Travis (1997)) where

c � 2 1 − ρ( )
2 + ρ

d � 2 1 − 2ρ( )
2 + ρ

(68)

and ρ is the depolarization ratio given by Eq. 53.
We note that in the scalar (unpolarized) case all components

of the Stokes scattering matrix FS(Θ) [see Eq. 20] are zero except
for a1(Θ), and:

a1 Θ( ) � ∑M
ℓ�0

α1,ℓ τ( )P0,0
ℓ

cosΘ( ) ≡ p τ, cosΘ( ) ≈ ∑M
ℓ�0

2ℓ + 1( )χ
ℓ
τ( )Pℓ cosΘ( )

(69)
since P0,0

ℓ
(cosΘ) ≡ Pℓ(cosΘ), where Pℓ(cosΘ) is the

Legendre polynomial of order ℓ, and α1,ℓ(τ) ≡ (2ℓ + 1)χℓ(τ).
Here the coefficients χℓ(τ) are the moments of the phase function
expanded in Legendre polynomials. Note also that the expansion
coefficients given above [Eq. 61] are for the scattering phase
matrix PS(Θ), which relates the incident and scattered Stokes
vectors in the representation IS = [I,Q,U,V]T.

3 SOLUTION OF THE VECTOR RADIATIVE
TRANSFER EQUATION

3.1 Isolation of Azimuth Dependence
We start from the scattering phase matrix expanded in a Fourier
series (see Eq. 55) (Δϕ′ = ϕ′ − ϕ):

P u′, u;Δϕ′( ) � ∑M
m�0

Pm
c u′, u( )cosmΔϕ′ + Pm

s u′, u( )sinmΔϕ′{ }.
(70)

To isolate the azimuth dependence of the radiation field we
expand the Stokes vector I (τ, u, ϕ) in the VRTE [Eq. 7] and
the source termQ (τ, u, ϕ) in Eq. 9 in a Fourier series in a manner
similar to the expansion of the scattering phase matrix in Eq. 70
(Δϕ0 = ϕ0 − ϕ):

I τ, u, ϕ( ) � ∑M
m�0

Imc τ, u( )cosmΔϕ0 + Ims τ, u( )sinmΔϕ0{ } (71)

Q τ, u,ϕ( ) � ∑M
m�0

Qm
c τ, u( )cosmΔϕ0 +Qm

s τ, u( )sinmΔϕ0{ }
(72)

where the subscript s or c denotes sine or cosine mode. Using
these expansions, we obtain the following equations for the
Fourier components of the VRTE (see Stamnes and Stamnes
(2015) for details)

u
dImc τ, u( )

dτ
� Imc τ, u( ) − ϖ τ( )

4
∫1

−1
du′ Pm

c τ, u′, u( ) Imc τ, u′( ) 1 + δ0m( ){
−Pm

s τ, u′, u( ) Ims τ, u′( )} −Qm
c τ, u( )

(73)

u
dIms τ, u( )

dτ
� Ims τ, u( ) − ϖ τ( )

4
∫1

−1
du′ Pm

c τ, u′, u( ){ Ims τ, u′( )
+Pm

s τ, u′, u( ) Imc τ, u′( )} −Qm
s τ, u( ).

(74)
For scattering by randomly oriented particles, the Fourier

coefficient matrix Pm
c (u, u′) has two (2 × 2) zero submatrices,

one in the upper right corner and one in the lower left corner, and
the matrix Pm

s (u, u′) has a (2 × 2) zero submatrix in the upper left
corner and one in the lower right corner (Hovenier and van der
Mee, 1983). Hence

TABLE 1 | Expansion coefficients for Rayleigh scattering.

ℓ α1,ℓ α2,ℓ α3,ℓ α4,ℓ β1,ℓ β2,ℓ

0 1 0 0 0 0 0
1 0 0 0 3d/2 0 0
2 c/2 3c 0 0

"""
3/2

√
c 0
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Pm
c u, u′( ) �

Cm
11 Cm

12 0 0
Cm

21 Cm
22 0 0

0 0 Cm
33 Cm

34

0 0 Cm
43 Cm

44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Pm
s u, u′( ) �

0 0 Sm13 Sm14
0 0 Sm23 Sm24
Sm31 Sm32 0 0
Sm41 Sm42 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (75)

where we have defined Pm
c (u, u′)i,j ≡ Cm(u, u′)i,j and

Pm
s (u, u′)i,j ≡ Sm(u, u′)i,j to simplify the notation. Therefore,

the homogeneous VRTE [Q = 0 in Eqs. 73 and 74] may be
rewritten as (m ∈ [0, 1, 2, . . . , 2N])

u
dImc τ, u( )

dτ
� Imc τ, u( )

− ϖ τ( )
4

∫1

−1
Cm u, u′( )Imc τ, u′( ) − 1 − δ0m( )Sm u, u′( )Ims τ, u′( )[ ]du′

(76)

u
dIms τ, u( )

dτ
� Ims τ, u( ) − ϖ τ( )

4
1 − δ0m( )

∫1

−1
Cm u, u′( )Ims τ, u′( ) + Sm u, u′( )Imc τ, u′( )[ ]du′. (77)

3.1.1 Vector Radiative Transfer Equation for the
Combined Mode
We note that the Imc (τ, u) and Ims (τ, u) components in Eqs. 76 and
77 are still coupled. To produce a pair of independent differential
equations, we define combined cosine and sine modes as

~I
m

c τ, u( ) ≡
Im‖c τ, u( )
Im⊥c τ, u( )
Um

s τ, u( )
Vm

s τ, u( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ~I
m

s τ, u( ) ≡
Im‖s τ, u( )
Im⊥s τ, u( )
Um

c τ, u( )
Vm

c τ, u( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (78)

After substantial manipulations, one can show that the mth
term of the homogeneous VRTE of the combined modes can now
be written as (m ∈ [0, 1, 2, . . . , 2N]):

u
d~I

m

c τ, u( )
dτ

� ~I
m

c τ, u( ) − ϖ τ( )
2

∫1

−1
~P
m

c u, u′( )~Imc τ, u′( )du′ (79)

u
d~I

m

s τ, u( )
dτ

� ~I
m

s τ, u( ) − ϖ τ( )
2

∫1

−1
~P
m

s u, u′( )Ims τ, u′( )du′ (80)

where the combined scattering phase matrices are defined as:

~P
m

c u, u′( ) �
Cm

11 Cm
12 −Sm13 −Sm14

Cm
21 Cm

22 −Sm23 −Sm24
Sm31 Sm32 Cm

33 Cm
34

Sm41 Sm42 Cm
43 Cm

44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

~P
m

s u, u′( ) �
Cm

11 Cm
12 Sm13 Sm14

Cm
21 Cm

22 Sm23 Sm24
−Sm31 −Sm32 Cm

33 Cm
34−Sm41 −Sm42 Cm

43 Cm
44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (81)

For the special m = 0 case, we have

~P
0

c u, u′( ) �
C0

11 C0
12 0 0

C0
21 C0

22 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ~P
0

s u, u′( ) �
0 0 0 0
0 0 0 0
0 0 C0

33 C0
34

0 0 C0
43 C0

44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(82)
Equations 79 and 80 are two independent differential

equations to be solved.

3.2 The Discrete Ordinate Method
The discrete ordinate method consists of replacing the integration
over u′ in Eqs. 79 and 80 by a discrete sum by introducing the
Gaussian quadrature points uj (the discrete ordinates) and
corresponding weights wj. For each Fourier component one
obtains (i = ±1, ±2, . . . , ±2N):

ui
d~I

m

c τ, ui( )
dτ

� ~I
m

c τ, ui( ) − ϖ τ( )
2

∑N
j�−N
j≠0

ωj
~P
m

c ui, uj( )~Imc τ, uj( )
(83)

ui
d~I

m

s τ, ui( )
dτ

� ~I
m

s τ, ui( ) − ϖ τ( )
2

∑N
j�−N
j≠0

ωj
~P
m

s ui, uj( )Ims τ, uj( )
(84)

The convention for the indices of the quadrature points is such
that uj < 0 for j < 0, and uj > 0 for j > 0. These points are
distributed symmetrically about zero, i.e., u−j = −uj, and the
corresponding weights are equal, i.e. w−j = wj.

The solution of the discrete ordinate approximation to the
VRTE Eqs. 83 and 84 is analogous to that of the scalar RTE.
Detailed derivations, including the removal of the notorious ill-
conditioning problem, can be found elsewhere (Schulz et al.,
1999; Siewert, 2000; Stamnes and Stamnes, 2015), and will not be
repeated here.

3.3 Discrete Ordinate Radiative Transfer
Upgrades
Below we describe some new important upgrades of VDISORT:

• First, a new algorithm to handle the complex eigenvalue/
eigenvector problem is developed and implemented in
VDISORT to give an accurate computation of the V
component of the Stokes vector.

• Second, a reduction of the dimension of the complex
eigenvalue problem is developed to reduce the
computational burden, and the boundary condition for
the complex eigenvalue/vector case is discussed.

• Third, to obtain solutions at arbitrary polar angles, we have
developed and implemented an accurate ISF approach that
works for both real and complex eigensolutions and an arbitrary
bidirectional reflectance distribution matrix is added to
compute the polarized reflectance at the lower boundary.
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• Fourth, a pseudo-spherical treatment has been
implemented to provide important corrections for Earth
curvature effects at large (near horizontal) solar zenith and
observation polar angles.

• Finally, a single-scattering solution is developed and used to
enhance the accuracy and speed for strongly forward-
peaked scattering, such as by large water droplets or ice
particles.

3.3.1 Complex Eigenvalues/Eigenvectors
The appearance of complex eigenvalues/eigenvectors in the
vector radiative transfer problem stems from the
asymmetric structure of the Stokes scattering matrix [ ±
b2(Θ) in Eq. 20], or equivalently, from the Greek constant
matrix [ ± β2 in Eq. 61]. In the scalar DISORT model, this 4
× 4 scattering matrix degenerates into the scalar scattering
phase function Eq. 69 and the complex eigenvalue problem
does not occur.

3.3.2 The Complex Homogeneous Solution
By seeking exponential solutions to the homogeneous VRTE’s,
Eqs. 83 and 84, one obtains a standard algebraic eigenvalue
problem.Writing the VRTE separately for the upward (u > 0) and
downward (u < 0) hemispheres, and defining μ = |u| and α = c, s,
the homogeneous version of the Fourier components of the
VRTE becomes (i = 1, 2, . . . , 2N):

+μi
d~I

m

α τ,+μi( )
dτ

� ~I
m

α τ,+μi( ) −ϖ τ( )
2

∑N
j�1

wj
~P
m

α +μi,−μj( )~Imα τ,−μj( )
−ϖ τ( )

2
∑N
j�1

wj
~P
m

α +μi,+μj( )~Imα τ,+μj( )
(85)

−μi
d~I

m

α τ,−μi( )
ddτ

� ~I
m

α τ,−μi( ) −ϖ τ( )
2

∑N
j�1

wj
~P
m

α −μi ,−μj( )~Imα τ,−μj( )
−ϖ τ( )

2
∑N
j�1

wj
~P
m

α −μi ,+μj( )~Imα τ,+μj( ). (86)

Seeking solutions to Eqs. 85 and 86 of the form
~I
m
α (τ,+μi) � g(μi) exp(−kτ), we obtain an algebraic eigenvalue
problem: Ag = kg, where the 8N × 8N eigenmatrix A can be
written as (here the italic I is the identity matrix):

−ϖ τ( )w1~P
m

μ1 , μ1( )
2μ1

+ I
μ1

/
−ϖ τ( )wN

~P
m

μ1 , μN( )
2μ1

−ϖ τ( )w1 ~P
m

μ1 ,−μ1( )
2μ1

/
−ϖ τ( )wN

~P
m

μ1 ,−μN( )
2μ1

..

.
1 ..

. ..
.

1 ..
.

−ϖ τ( )w1 ~P
m

μN, μ1( )
2μN

/
−ϖ τ( )wN

~P
m

μN , μN( )
2μN

+ I
μN

−ϖ τ( )w1 ~P
m

μN, −μ1( )
2μN

/
−ϖ τ( )wN

~P
m

μN,−μN( )
2μN

−ϖ τ( )w1 ~P
m −μ1 , μ1( )

−2μ1
/

−ϖ τ( )wN
~P
m −μ1 , μN( )

−2μ1
−ϖ τ( )w1 ~P

m −μ1 ,−μ1( )
−2μ1

+ I
−μ1

/
−ϖ τ( )wN

~P
m −μ1 ,−μN( )

−2μ1
..
.

1 ..
. ..

.
1 ..

.

−ϖ τ( )w1~P
m −μN , μ1( )

−2μN
/

−ϖ τ( )wN
~P
m −μN, μN( )

−2μN
−ϖ τ( )w1 ~P

m −μN,−μ1( )
−2μN

/
−ϖ τ( )wN

~P
m −μN,−μN( )

−2μN
+ I
−μN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(87)

In the scalar DISORT case real eigenvalues ± kj and eigenvectors
g±j (±μj) are obtained, so that the homogeneous solution can be
written as a linear combination of the eigensolutions:

Ihomogenous τ,± μi( ) � ∑N
j�1

C−jg−j ± μi( )ekjτ + ∑N
j�1

Cjgj ± μi( )e−kjτ .
(88)

For the 4 × 4 VDISORT problem the g±j (±μi) eigenvector in
the scalar case must be replaced by a 4 × 1 eigenvector g±j (±μi) for
[I‖, I⊥, U, V]T. Since we have 2N quadrature angles ± μ1, ±μ2, . . . ,
±μN, the dimension of the full eigenvector g±j is 8N × 1. A matrix
with real elements has eigenvalue/eigenvector solutions that
either are real or occur in complex conjugate pairs. Therefore,
defining kc, k

p
c as a complex conjugate pair of eigenvalues, gc, g

p
c as

a complex conjugate pair of eigenvectors, and C ± 1, C ± 2 as
arbitrary coefficients, we may, in analogy with the scalar case with
only real solutions, write the complex solution to the
homogeneous VRTE as:

Ihomo τ,± μi( ) � ∑Nr

j�1
Cjgj ± μi( )e−kjτ +∑Nr

j�1
C−jg−j ± μi( )ekjτ︸$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$︸

IREAL

+∑Ni

j�1
C1j gcj ± μi( )e−kcjτ + C2j g

p
cj ± μi( )e−kpcjτ[ ]

+∑Ni

j�1
C−1j g−cj ± μi( )ekpcjτ + C−2j gp−cj ± μi( )ekcjτ[ ]︸$$$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$$$︸

ICOMPLEX

(89)
where Nr is the number of real solutions, Ni is the number of

complex conjugate pair solutions, andN =Nr + 2Ni is the number
of streams in each hemisphere.

The homogeneous solution in Eq. 89 contains complex
numbers that must be converted into real values before
solving for the coefficients. Since linear combinations of
g±ce

±kcτ and g⊥c* e±kc*τ are also a solution of Eqs. 85 and 86,
we can separate the real and imaginary parts. As shown in
Section 8 (Supplementary Appendix A1) the complex
homogeneous solutions may be converted into the
following real solutions:

Ihomo τ,± μi( ) � ∑Nr

j�1
Cjgj ± μi( )e−kjτ +∑Nr

j�1
C−jg−j ± μi( )ekjτ︸$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$︸

IREAL

+ ∑Ni

j�1
C1j ĝ1j τ,± μi( ) + C2j ĝ2j τ,± μi( )[ ] e−krjτ

+ ∑Ni

j�1
C−1j ĝ−1j τ,± μi( ) + C−2j ĝ−2j τ,± μi( )[ ] ekrjτ .︸$$$$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$$$$︸

ICOMPLEX

(90)
The new eigenvalue/vector pairs are real numbers, and the

coefficients C ± 1j, C ± 2j will be determined by the top/lower
boundary as well as the layer continuity conditions. The beauty of
Eq. 90 is that (after the conversion) it has the same form as that of
the scalar homogeneous solution, with all of the differences
incorporated in the new (4 × 1) eigenvectors ĝ±1(τ,± μi) and
ĝ±2(τ,± μi).
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3.3.3 Reduction of the Dimension of the Algebraic
Eigenvalue Problem
A reduction of the dimension of the eigenmatrix by a factor of
2 saves a significant amount of computing time. In the scalar
DISORT code, this reduction is based on the symmetry pm (μi,
μj) = pm (−μi, − μj) of the phase function as explained in detail
elsewhere (Stamnes K. et al., 2017).

However, in the vector case, the phase matrix
pmα (μi, μj) ≠ pmα (−μi,−μj), implying that the reduction of
dimension can not be applied directly, and that a
transformation must be done first as follows:

Pm
α −μ,−μ′( ) � DPm

α +μ,+μ′( )D (91)
where the matrix D = diag (1, 1, −1, −1).
This result just tells us that we need to introduce a new phase

matrix DPm
α (μi, μj)D in the VRTE to restore the special

symmetry structure of the eigenmatrix. For the downward
VRTE in Eq. 86, we multiply it by D on both sides, and then
add D ·D = I on the RHS, so that Eq. 86 becomes:

−μi
d~I

m

α τ,−μj( )
dτ

D � D~I
m

α τ,−μj( ) − ϖ τ( )
2

∑N
j�1

wjD · ~Pm

α −μi ,−μj( )D ·D~Imα τ,−μj( )
−ϖ τ( )

2
∑N
j�1

wjD · ~Pm

α −μi ,+μj( )D ·D~Imα τ,+μj( )
� D~I

m

α τ,−μj( ) − ϖ τ( )
2

∑N
j�1

wj
~P
m

α +μi ,+μj( )D~Imα τ,−μj( )
−ϖ τ( )

2
∑N
j�1

wj
~P
m

α +μi ,−μj( )D~Imα τ,+μj( ).
(92)

In Eq. 85, we simply just multiply by D ·D = I in front of the
term ~I

m
α (τ,−μj) on the RHS, so that it becomes

+μi
d~I

m

α τ,+μi( )
dτ

� ~I
m

α τ,+μi( ) − ϖ τ( )
2

∑N
j�1

wj
~P
m

α +μi,−μj( )D ·D~Imα τ,−μj( )
−ϖ τ( )

2
∑N
j�1

wj
~P
m

α +μi,+μj( )~Imα τ,+μj( ).
(93)

Now we may rewrite the VRTE with the proper symmetry
structure, which is suitable for the reduction of dimension.

+μi
d~I

m

α τ,+μi( )
dτ

� ~I
m

α τ,+μi( ) − ϖ τ( )
2

∑N
j�1

wj
~P
m

α +μi,−μj( )D ·D~Imα τ,−μj( )
−ϖ τ( )

2
∑N
j�1

wj
~P
m

α +μi,+μj( )~Imα τ,+μj( )
(94)

−μi
dD~I

m

α τ,−μj( )
dτ

� D~I
m

α τ,−μj( ) − ϖ τ( )
2

∑N
j�1

wj
~P
m +μi,+μj( )D~Imα τ,−μj( )

−ϖ τ( )
2

∑N
j�1

wj
~P
m +μi,−μj( )D~Imα τ,+μj( ).

(95)

Equations 94 and 95 are identical with Eqs. 85 and 86 if we
make the following connections:

~I
m

α τ,+μi( ) → ~I
m

α τ,+μi( ) unchanged( )
~I
m

α τ,−μj( ) → D~I
m

α τ,−μj( )[ ]
~P
m

α +μi,+μj( ) → ~P
m

α +μi,+μj( ) unchanged( )
~P
m

α +μi,−μj( ) → ~P
m

α +μi,−μj( )D[ ].
To accomplish the reduction of dimension, we define

eigenvectors

~gα,+ � gα,+ �
gα,+1
..
.

gα,+N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ unchanged( ) ~gα,− �
Dgα,−1

..

.

Dgα,−N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
as well as two 4N × 4N matrices as we did in the scalar case

(Lin et al., 2015):

Eα �

ϖ τ( )w1
~P
m

α μ1, μ1( )
2μ1

− I
μ1

/
ϖ τ( )wN

~P
m

α μ1, μN( )
2μ1

..

.
1 ..

.

ϖ τ( )w1
~P
m

α μN, μ1( )
2μN

/
ϖ τ( )wN

~P
m

α μN, μN( )
2μN

− I
μN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fα �

ϖ τ( )w1
~P
m

α μ1,−μ1( )D
2μ1

/
ϖ τ( )wN

~P
m

α μ1,−μN( )D
2μ1

..

.
1 ..

.

ϖ τ( )w1
~P
m

α μN,−μ1( )D
2μN

/
ϖ τ( )wN

~P
m

α μN,−μN( )D
2μN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
to obtain

Eα + Fα( ) Eα − Fα( ) � k2α ~gα,+ + ~gα,−( ). (96)
Equation 96 is similar to the one obtained in the scalar case, so

we may proceed exactly as in that case (Lin et al., 2015).

3.4 Discrete-Ordinate Approximation of the
Vector Source Function
In VDISORT, the source function is a 4 × 1 vector, and the
discrete-ordinate approximation of the mth Fourier component
of the vector source function may be written as

Smα τ,± μ( ) � ϖ
2

∑N
i�1

ωi
~P
m

α −μi,± μ( )Imα τ,−μi( )
+ ϖ

2
∑N
i�1

ωi
~P
m

α +μi,± μ( )Imα τ,+μi( )
+ Xm

0 ± μ( )e−τ/μ0
(97)

Xm
0 ± μ( ) � 2 − δ0m( ) ϖ

4π
~P
m

α −μ0,± μ( )Sb. (98)

In Eq. 97, the Stokes vector Imα (τ,−μi) is given at the
quadrature angles where i = 1, 2, . . . , 2N. For the complex
eigenvalue/vector case, according to Eq. 168, the general solution
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can be written as (ignoring the thermal source, which can be
treated in a similar manner):

~I
m

α τ,± μi( ) � ∑Nr

j�1
Cjgj ± μi( )e−kjτ +∑Nr

j�1
C−jg−j ± μi( )ekjτ︸$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$︸

IREAL

+Z0 ± μi( )e−τ/μ0︸$$$$$$︷︷$$$$$$︸
IPARTICULAR

+ ∑Ni

j�1
C1j ĝ1j τ,± μi( ) + C2j ĝ2j τ,± μi( )[ ] e−krjτ

+ ∑Ni

j�1
C−1j ĝ−1j τ,± μi( ) + C−2j ĝ−2j τ,± μi( )[ ] ekrjτ︸$$$$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$$$$︸

ICOMPLEX

(99)
where the first two summation terms on the right hand side are

the homogeneous solution for real eigenvalues/vectors, the
following term is the particular solution, and the last two
summation terms are the homogeneous solution for complex
conjugate eigenvalues/vectors. The real vectors ĝ1j(τ, ± μi) and
ĝ2j(τ,± μi) are defined in Eqs. 163–167.

Substituting Eq. 99 into the vector source function given by
Eq. 97, we may write the vector source function [Eq. 97] in a
compact form similar to the general solutions [Eq. 99]:

Smα τ,± μ( ) � ∑Nr

j�1
Cj~gj ± μ( )e−kjτ +∑Nr

j�1
C−j~g−j ± μ( )ekjτ + ~Z0 ± μ( )e−τ/μ0

+ ∑Ni

j�1
C1j

˜̂g1j τ,± μ( ) + C2j
˜̂g2j τ,± μ( )[ ] e−krjτ

+ ∑Ni

j�1
C−1j ˜̂g−1j τ,± μ( ) + C−2j ˜̂g−2j τ,± μ( )[ ] ekrjτ .

(100)
In Eq. 100 the following expressions.

~g±j ± μ( ) � ϖ
2

∑Nr

i�1
ωiP

m
α −μi,± μ( )g±j −μi( ) + ωiP

m
α μi,± μ( )g±j +μi( ){ }

(101)
˜̂g±1j τ,± μ( ) � ϖ

2
∑Ni

i�1
ωiP

m
α −μi,± μ( )ĝ±1j τ,−μi( ) + ωiP

m
α μi,± μ( )ĝ±1j τ, μi( ){ }

(102)
˜̂g±2j τ,± μ( ) � ϖ

2
∑Ni

i�1
ωiP

m
α −μi,± μ( )ĝ±2j τ,−μi( ) + ωiP

m
α μi,± μ( )ĝ±2j τ, μi( ){ }

(103)

~Z0 ± μ( ) � ϖ
2

∑N
i�1

ωiP
m
α −μi,± μ( )Z0 −μi( ){

+ωiP
m
α μi,± μ( )Z0 μi( ) + X0 ± μ( )} (104)

are simply convenient analytic interpolation formulas of g, ĝ1,
ĝ2, and Z0. They clearly reveal the interpolatory nature of Eq. 100
for the vector source function. The fact that they are derived from
the basic VRTE to which we seek solutions indicates that these
expressions, like the analogous expressions in the scalar case, will
be superior to any other interpolation scheme (Stamnes et al.,
1988; Schulz and Stamnes, 2000; Lin et al., 2015; Stamnes K. et al.,
2017).

3.5 Integration of the Source Function
Method–Solutions at User-Desired Polar
Angles
The discrete ordinate solutions for the Stokes vector are
computed at the quadrature angles as discussed in the
previous section. To obtain values at arbitrary angles as
desired by the user, an interpolation algorithm has to be
implemented. In previous versions of VDISORT, a standard
spline interpolation scheme, shown to work well for Rayleigh
scattering (Schulz et al., 1999), was used to obtain output at
arbitrary polar angles. However, the spline interpolation generally
requires a large number of quadrature angles (number of
streams), and it may fail when the particles have sharp
forward scattering peaks, such as for large cloud droplets or
ice crystals, when the Stokes components may change rapidly
with polar angle.

A better approach to interpolation is to use the discrete-
ordinate solution to derive explicit expressions for the source
function that can be integrated analytically. This ISF method
is implemented in DISORT (Stamnes et al., 1988; Lin et al.,
2015; Stamnes K. et al., 2017) and also in a previous version of
VDISORT (Schulz and Stamnes, 2000), but that solution is not
valid for the V component of the Stokes vector because the
eigenvalues/vectors were assumed to be real. Therefore, the
solution must be extended to apply to the general case for
which some of the eigenvalues/eigenvectors may be complex.
By doing so, we obtain results at arbitrary polar angles for any
given number of streams, and we may save computing time by
getting accurate results at arbitrary polar angles for a relatively
small number of streams. Below we will use the ISF method to
derive a new interpolation algorithm that works well also for
the complex eigensolutions.

3.5.1 Single-Layer (Homogeneous) Medium
For a slab of thickness τ*, we may solve Eqs. 83 and 84 to obtain.

~I
m

α τ,+μ( ) � ~I
m

α τp,+μ( )e− τp−τ( )/μ + ∫τp

τ

dt

μ
Smα t,+μ( )e− t−τ( )/μ

(105)
~I
m

α τ,−μ( ) � ~I
m

α 0,−μ( )e−τ/μ + ∫τ

0

dt

μ
Smα t,−μ( )e− τ−t( )/μ. (106)

Using Eq. 100 in Eqs. 105 and 106, we find that for a slab of
thickness τ*, the Stokes vectors become

~I τ,+μ( ) � ~I τ*,+μ( )e−τ*−τ
μ + ∑Nr

j�−Nr
j ≠ 0

Cj

~gj +μ( )
1 + kjμ

e−kjτ − e− kjτ*+ τ*−τ( )/μ[ ]{ }
+ ∑Ni

j�−Ni
j ≠ 0

Gj τ,+μ( )e−krjτ − Gj τ*,+μ( )e− krjτ*+ τ*−τ( )/μ[ ]{ }
+ ~Z0 +μ( )
1 + μ/μ0 e−τ/μ0 − e− τ*/μ0+ τ*−τ( )/μ[ ]{ }

(107)
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~I τ,−μ( ) � ~I 0,−μ( )e−τ
μ + ∑Nr

j�−Nr
j ≠ 0

Cj

~gj −μ( )
1 − kjμ

e−kjτ − e−τ/μ{ }

+ ∑Ni

j�−Ni
j ≠ 0

Gj τ,−μ( )e−krjτ − Gj 0,−μ( )e−τ/μ{ }
+ ~Z0 −μ( )
1 − μ/μ0 e−τ/μ0 − e−τ/μ{ }

(108)

where

Gj τ,± μ( ) � 1

μkij( )2 + 1 ± μkrj( )2
× 1 ± μkrj( ) C1j

˜̂g1j τ,± μ( ) + C2j
˜̂g2j τ,± μ( )[ ]{

± μkij C1j
˜̂g2j τ,± μ( ) − C2j

˜̂g1j τ,± μ( )[ ]}.
(109)

Here we assumed k−j = −kj, k−rj = −krj and k−ij = −kij and thus
k−cj = −kcj = −krj − ikij.

In Eqs. 107 and 108, the first term on the RHS is due to
beam attenuation of the Stokes vector. The first of the
following summation terms stems from the integration of
the homogeneous solution with real eigensolutions in the
vector source function [Eq. 100], whereas the second
summation is a new term needed for the complex
eigensolutions in the vector source function [Eq. 100].
Because ˜̂g1j(τ,+μ) and ˜̂g2j(τ,+μ) are functions of ĝ1j(τ,+μ)
and ĝ2j(τ,+μ) that depend on cos (kiτ) and sin (kiτ), we used
the following equations to handle the integration of the
complex eigenvector/vectors:

∫ cos ax ebx dx � 1
a2 + b2

ebx a sin ax + b cos ax( ) (110)

∫ sin ax ebxdx � 1
a2 + b2

ebx b sin ax − a cos ax( ). (111)

3.5.2 Multi-Layer (Inhomogenous) Medium
The single-layer case can be extended into a multi-layer medium,
for which we need to evaluate the integral by integrating layer-by-
layer as follows.

~I
m

α τ,+μ( ) � ~I
m

α τL,+μ( )e− τL−τ( )/μ + ∫τp

τ

dt

μ
Smα,p t,+μ( )e− t−τ( )/μ

+ ∑L
n�p+1

∫τn

τn−1

dt

μ
Smα,n t,+μ( )e− t−τ( )/μ

(112)
~I
m

α τ,−μ( ) � ~I
m

α 0,−μ( )e−τ/μ + ∫τ

τp−1

dt

μ
Smα,p t,−μ( )e− τ−t( )/μ

+∑p−1
n�1

∫τn

τn−1

dt

μ
Smα,n t,−μ( )e− τ−t( )/μ

(113)

Using Eq. 100 for Smα,n(t,−μ) in the nth layer, Eqs. 112 and 113
become:

~I
m

α τ,+μ( ) � ~I
m

α τL,+μ( )e−τL−τ
μ

+∑L
n�p

∑N
j�−N
j≠0

Cjn

~gjn +μ( )
1 + kjnμ

e−kjnτn−1+ τn−1−τ( )/μ − e− kjnτn+ τn−τ( )/μ[ ]{ }
+∑L

n�p
∑N
j�−N
j≠0

Gjn τn−1,+μ( )e−krjnτn−1+ τn−1−τ( )/μ − Gjn τn,+μ( )e− kjnτn+ τn−τ( )/μ[ ]{ }
+∑L

n�p

~Z0n +μ( )
1 + μ/μ0 e− τn−1/μ0+ τn−1−τ( )/μ[ ] − e− τn/μ0+ τn−τ( )/μ[ ]{ }

(114)
with τn−1 replaced by τ for n = p, and

~I
m

α τ,−μ( ) � ~I
m

α 0,−μ( )e−τ
μ

+∑p
n�1

∑N
j�−N
j≠0

Cjn

~gjn −μ( )
1 − kjnμ

e− kjnτn+ τ−τn( )/μ[ ] − e− kjnτn−1+ τ−τn−1( )/μ[ ]{ }
+ ∑p

n�1
∑N
j�−N
j≠0

Gjn τn,−μ( )e− krjnτn+ τ−τn( )/μ[ ] − Gjn τn−1,−μ( )e− krjnτn−1+ τ−τn−1( )/μ[ ]{ }
+ ∑p

n�1

~Z0n −μ( )
1 − μ/μ0 e− τn/μ0+ τ−τn( )/μ[ ] − e− τn−1/mu0+ τ−τn−1( )/μ[ ]{ }

(115)
with τn replaced by τ for n = p, and where

Gjn τ,± μ( ) � 1

μkijn( )2 + 1 ± μkrjn( )2
× 1 ± μkrjn( ) C1jn

˜̂g1jn τ,± μ( ) + C2jn
˜̂g2jn τ,± μ( )[ ]{

± μkijn C1jn
˜̂g2jn τ,± μ( ) − C2jn

˜̂g1jn τ,± μ( )[ ]}.
(116)

It can be verified that for a single layer τn−1 = τ, τn = τL = τ* in
Eq. 114; τn = τ, τn−1 = 0 in Eq. 115, they are reduced to Eqs. 107
and 108, as they should.

3.5.3 Numerical Example
Many practical problems including remote sensing applications
require Stokes vector components at sensor observing angles.
Even though one could envision generating results at sensor
observing angles by interpolating or extrapolating the quadrature
values to such angles, accurate interpolation of these values is
difficult, particularly for optical depths close to zero (upper
boundary) and for extrapolation to angles close to μ = 0 and μ
= 1.0. For example, Figure 2 shows an example of inaccurate
spline interpolation for a benchmark case (Garcia and Siewert,
1989) that has been reproduced by VDISORT.We note that the
spline interpolation produces large oscillations, whereas the ISF
method, see Eqs. 105 and 106 yields accurate analytic results that
agree with the benchmark values at the quadrature angles.

We emphasize that the ISF method allows one to compute
analytically the radiation field at arbitrary angles and optical
depths from the discrete ordinate solutions, both for the scalar
radiative transfer problem (Lin et al., 2015; Stamnes K. et al.,
2017) and, as shown here, for the vector problem including the
complete Stokes vector IS = [I, Q, U, V]T. This capability is one of
the unique advantages of the discrete ordinate method. Also, the
ISF solutions satisfy the boundary and continuity conditions not
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only at the discrete set of quadrature angles, but at arbitrary
angles μ. In fact, we have found that the ISF method improves the
accuracy of the discrete ordinate solution (Schulz and Stamnes,
2000).

3.6 Polarized Reflectance at the Lower
Boundary
In Eq. 99 the homogeneous solution contains unknown constants
C±j, C ± 1j, and C ± 2j, which are to be determined by the boundary
conditions at the top and bottom of the medium and continuity
conditions at layer interfaces.

3.6.1 Top Boundary
In VDISORT, we assume that the light at the top of the
atmosphere is a direct beam such that the diffuse light
contribution is zero:

~I
m

α 0,−μ( ) � 0, 0, 0, 0[ ]T (117)
for m = 0, . . . , 2N − 1.

3.6.2 Layer Interfaces
At layer interfaces the Stokes vector must satisfy continuity
conditions, because by assumption there is no change in the
refractive index between layers. Assuming that τn,bottom is the
optical depth at the bottom of the nth layer, and that τn+1,top is the
optical depth at the top of the (n + 1)th layer, we have.

τn,bottom � τn+1,top (118)

~I
m

α τn,bottom,± μ( ) � ~I
m

α τn+1,top,± μ( ) (119)
where the Stokes vector ~Iα(τ,± μ) is given by the sum of

homogeneous and particular solutions in Eq. 99.The continuity
conditions are applied layer by layer for n = 1, . . . , L − 1. One
important difference from the scalar DISORT model is that the
new real eigenvectors associated with the complex solutions
depend on the optical depth τ in each layer [Eq. 90].
Therefore, for jth eigenvector in the nth layer, we have.

ĝ1j τn,top,± μi( ) ≠ ĝ1j τn,bottom,± μi( ) (120)
ĝ2j τn,top,± μi( ) ≠ ĝ2j τn,bottom,± μi( ). (121)

3.6.3 Lower Boundary
For the RTE, the lower boundary is determined by the
bidirectional reflectance distribution function/matrix (BRDF).
We introduce the matrix or polarized BRDF as the 4 × 4
reflection matrix R by writing:

I μ, ϕ, τL( ) � ∫2π

0
dϕ′∫1

0
dμ′R −μ′, μ, ϕ − ϕ′( )I −μ′, ϕ′, τL( )

+R −μ0, μ, ϕ − ϕ0( )Sbe−τL/μ0 .
(122)

The reflection matrix R (−μ′, μ, ϕ − ϕ′) is then expanded in a
Fourier series:

R −μ′, μ, ϕ − ϕ′( ) � ∑L
m�1

Rm
c −μ′, μ( )cosm ϕ − ϕ′( )

+ ∑L
m�1

Rm
s −μ′, μ( )sinm ϕ − ϕ′( ). (123)

The Fourier mode ~I
m
α (τL, μ) of the Stokes vector at the polar

angle μ just above the lower boundary can then be expressed
in terms of ~R(μ, μ′) by (detailed derivation omitted for
brevity):

~I
m

α τL, μ( ) � ~R
m

α,beam −μ0, μ( )Sbe−τL/μ0
+ π∑N

j�1
ωj

~R
m

α −μj, μ( )~Imα τL,−μj( ) (124)

where.

~R
m

c,beam −μ0, μ( ) �
Rm
c11 Rm

c12 0 0
Rm
c21 Rm

c22 0 0
Rm
s31 Rm

s32 0 0
Rm
s41 Rm

s42 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (125)

~R
m

s,beam −μ0, μ( ) �
0 0 Rm

s11 Rm
s12

0 0 Rm
s21 Rm

s22

0 0 Rm
c31 Rm

c32

0 0 Rm
c41 Rm

c42

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (126)

~R
m

c −μj, μ( ) �
Δ+
0mRc11 Δ+

0mRc12 −Δ−
0mRs13 −Δ−

0mRs14

Δ+
0mRc21 Δ+

0mRc22 −Δ−
0mRs23 −Δ−

0mRs24

Δ−
0mRs31 Δ−

0mRs32 Δ−
0mRc33 Δ−

0mRc34

Δ−
0mRs41 Δ−

0mRs42 Δ−
0mRc43 Δ−

0mRc44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (127)

FIGURE 2 | Comparison of output for (i) quadrature angles (μ = cos θ,
where θ is the polar angle); (ii) spline interpolation; and (iii) analytic results at
arbitrary output angles.
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~R
m

s −μj, μ( ) �
Δ−
0mRc11 Δ−

0mRc12 Δ−
0mRs13 Δ−

0mRs14

Δ−
0mRc21 Δ−

0mRc22 Δ−
0mRs23 Δ−

0mRs24

−Δ−
0mRs31 −Δ−

0mRs32 Δ+
0mRc33 Δ+

0mRc34

−Δ−
0mRs41 −Δ−

0mRs42 Δ+
0mRc43 Δ+

0mRc44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (128)

where Δ±
0m ≡ 1 ± δ0m.

In VDISORT, the implementation of the polarized BRDF has
been tested by assuming a vacuum layer above a rough ocean
surface (Tsang et al., 1985) and by matching the values of the
Stokes vector just above the surface (in the upward direction)
with analytic values of the BRDF computed without the Fourier
expansion. Figure 3 shows an example of a comparison between
VDISORT upward reflected Stokes parameters and analytic Cox-
Munk BRDF results for a 1-D Gaussian surface with a wind speed
of 5 m/s. The V component vanishes because the reflection from
an unpolarized direct beam does not produce circular
polarization. The results show that VDISORT reproduced the
analytic results except for backscattering (ϕ = 180°) of the U
component where the value of zero is given as numerical noise
(~ 10−10) by VDISORT.

4 THE 4 × 4 SOLUTION VERSUS THE 3 × 3
APPROXIMATION

In the discrete ordinate method of radiative transfer, we need to
determine homogenous and particular solutions to arrive at the
general solution. The particular solution is formulated as a set of
linear equations Ax = b that can quickly be solved using standard
techniques of linear algebra, for example Gaussian elimination.
The most time-consuming step is solving the homogenous
problem, which is formulated as a standard algebraic
eigenvalue problem (A− λ)x = 0. In the case of the 4 × 4
solution, this eigenvalue problem involves matrices of size
4N × 4N, where N is the number of quadrature points or
“streams” in the upper and lower hemispheres, since a
reduction of dimension step (Section 3.3.3) is used to reduce
the matrix dimension from 8N × 8N–4N × 4N. This step is
completely analogous to that used in DISORT (Stamnes et al.,
1988) to reduce a matrix of dimension 2N × 2N to N × N. Since
the presence of the sign on b2 in Eq. 20 leads to a matrix A in the
algebraic eigenvalue problem that cannot be made symmetric, the
eigenvalues and corresponding eigenvectors in the 4 × 4

FIGURE 3 | Upper panel: The upward reflection of Stokes parameter I (μ, τL, ϕ) just above the lower boundary for a 1-D Gaussian surface with a ‘Cox-Munk’ slope
variance distribution for a wind speed of 5 m/s. Middle panel: Same as upper panel except for the Stokes parameter Q (μ, τL, ϕ). Lower panel: Same as upper panel
except for the Stokes parameter U (μ, τL, ϕ).
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representation occur in complex conjugate pairs. In the 3 × 3
approximation, the 4th row and column in Eq. 20 are simply
omitted, and the resulting impact on the scattering phase matrix
is obtained by setting b2 = 0 in Eq. 24 which results in Eq. 41.
Then the matrix A is symmetric implying that the resulting
eigenvalues and eigenvectors are real. Note that setting b2 = 0
in the 4 × 4 representation leads to I, Q, and U parameters
identical to those obtained in the 3 × 3 approximation.

Since setting b2 = 0 decouples the V component from I, Q, and
U, the eigenvalue problem required to solve the homogeneous
system in N discrete ordinates is reduced from solving a 4N × 4N
system to solving a 3N × 3N system. The computational burden of
solving an eigenvalue problem scales like n3 where n is the
dimension of the matrix. Therefore, the 3 × 3 approximation
reduces the computational burden by a theoretical factor of 43/33

≈ 2.37. Since the resulting eigenvectors and eigenvalues for the
3N × 3N system are real, significant further computational
savings are obtained by using an eigensolver, such as
ASYMTX available in the DISORT package (Stamnes et al.,
1988) that avoids unnecessary complex arithmetic. In the 4 ×
4 case some of the eigenvectors and eigenvalues occur in complex
conjugate pairs implying that complex arithmetic must be
considered to obtain accurate solutions when b2 ≠ 0.

A comparison of results produced by VDISORT and by a
doubling-adding method (VLBLE) is provided in Figure 4
(Stamnes S. et al., 2017), where the reflected components are
plotted against the polar angle θR, where θR = 0° is the zenith

direction, and θR = 90° is the horizon. The transmitted components
are plotted against the polar angle θT, where θT = 0° is the nadir
direction, and θT = 90° is the horizon. We note that the results for I
and Q produced by the 3 × 3 approximation are essentially
identical to the more computationally demanding 4 × 4 results.

The results shown in Figure 4 pertain to a cirrus cloud consisting
of non-spherical ice crystals. The adequacy of the 3 × 3
approximation was investigated for spherical particles by Hansen
(1971) who concluded that it is usually adequate to work with 3 × 3
matrices to compute multiple-scattering polarization properties.
Hansen (1971) investigated errors only of the reflected radiance
and the degree of polarization; errors for the individual Stokes
components Q and U, and transmittances were not considered.
The results shown in Figure 4 suggest that the 3 × 3
approximation holds not only for water clouds, but also for non-
spherical ice crystals, and that it applies not just to the reflected
radiation, but also to the transmitted radiation and to the Stokes
parameters Q and U (not shown) (Stamnes S. et al., 2017).

5 SINGLE-SCATTERING SOLUTION

Introducing the half-range Stokes vectors (the ± signs denote the
upper (+) and the lower (-) hemispheres, respectively).

I+ τ, θ, ϕ( ) ≡ I+ τ, θ ≤ π/2, ϕ( ) � I+ τ, μ, ϕ( ) (129)
I− τ, θ, ϕ( ) ≡ I− τ, θ > π/2, ϕ( ) � I− τ, μ, ϕ( ) (130)

FIGURE 4 | Top panels: reflected I and Q components at polar angles θR; bottom panels: transmitted I and Q components at polar angles θT. The incident Stokes
vector is IS =[1,0,0,0]. The actual reflection and transmission for I and Q are scaled by a factor π

μ0F0
where F0=1 and μ0 is the cosine of the solar zenith angle θ0. NSTR =

120. The input parameters (phase matrix) for this ice (cirrus) cloud consisting on non-spherical ice crystals are described elsewhere (Stamnes S. et al., 2017).
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FIGURE 5 | (A) Normalized phase function a1; (B) − b1/a1; (C) a4/a1; (D) b2/a1 (Kokhanovsky et al., 2010).

FIGURE 6 | The Stokes parameter I (τ, μ, ϕ) for the aerosol scattering case for reflected (top) and transmitted (bottom) light. Number of discrete ordinate streams,
NSTR = 148.
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and similar definitions for S±(τ, μ, ϕ), Eq. 7may be re-written
as (μ ≡|u|).

μ
dI+ τ, μ, ϕ( )

dτ
� I+ τ, μ, ϕ( ) − S+ τ, μ, ϕ( ) (131)

−μ dI
− τ, μ, ϕ( )
dτ

� I− τ, μ, ϕ( ) − S− τ, μ, ϕ( ). (132)

5.1 Single-Layer (Homogeneous) Medium
For a homogeneous slab, we adopt the following notation:

1) τ0 is the optical depth at the upper boundary (top of the slab);
2) τb is the optical depth at the lower boundary (bottom of the slab).

Integrating Eq. 131 from τb to τ and Eq. 132 from τ0 to τ (τ0 ≤
τ ≤ τb), and solving for I±(τ, μ, ϕ) we obtain.

I+ τ, μ, ϕ( ) � I+ τb, μ, ϕ( )e− τb−τ( )/μ + ∫τb

τ

dt

μ
S+ t, μ, ϕ( )e− t−τ( )

μ (133)

I− τ, μ, ϕ( ) � I− τ0, μ, ϕ( )e− τ−τ0( )/μ + ∫τ

τ0

dt

μ
S− t, μ, ϕ( )e− τ−t( )

μ . (134)

Equations 133 and 134 show that if the source functions S±(t,
μ, ϕ) are known, we can obtain a solution to the radiative transfer
problem by integration (numerically or analytically).

In the single-scattering approximation, we omit the multiple-
scattering term in Eq. 8, so that the source function S±(τ, μ, ϕ) in
Eq. 9 simply becomes:

S± τ, μ, ϕ( ) ≡ Q± τ, μ, ϕ( ) � ϖ τ( )
4π

P τ,−μ0, ϕ0; u,ϕ( )Sbe−τ/μ0
+ 1 − ϖ τ( )[ ] St τ( ).

(135)
The first term on the RHS of Eq. 135 is proportional to the

incident beam Sbwhich for an unpolarized incident beam is given
by Eq. 10, while the second term is due to thermal emission,
which is unpolarized, and St(τ) and is given by Eq. 11.

5.2 Multi-Layer (Inhomogeneous) Medium
The vertical variation of the inherent optical properties (IOPs) in
a slab may be dealt with by dividing it into a number of adjacent,
horizontal layers in which the IOPs are taken to be constant
within each layer, but allowed to vary from layer to layer. The
number of layers should be large enough to resolve the vertical
variation in the IOPs. In such a multi-layered medium, consisting
of a total of L layers, wemay evaluate the integrals in Eqs. 133 and
134 by integrating layer by layer as follows (τp−1 ≤ τ ≤ τp and μ >
0, τb = τL, τ0 = 0) ignoring the boundary terms (setting I+(τb, μ, ϕ)
= 0 and I−(τ0, μ, ϕ) = 0):

I+ τ, μ, ϕ( ) � ∫τp

τ

dt

μ
S+p t, μ, ϕ( )e− t−τ( )/μ + ∑L

n�p+1

∫τn

τn−1

dt

μ
S+n t, μ, ϕ( )e− t−τ( )/μ (136)

FIGURE 7 | The Stokes parameter Q (τ, μ, ϕ) for the aerosol scattering case for reflected (top) and transmitted (bottom) light. NSTR = 148.
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I− τ, μ, ϕ( ) � ∑p−1
n�1

∫τn

τn−1

dt

μ
S−n t, μ, ϕ( )e− τ−t( )/μ

+ ∫τ

τp−1

dt

μ
S−p t, μ, ϕ( )e− τ−t( )/μ. (137)

We can evaluate the integrals in Eqs. 136 and 137 either
numerically or analytically if the source function S±i (t, μ, ϕ) in a
layer denoted by subscript i = n, or p is known. Explicit solutions
obtained in the single-scattering approximation are provided in
Section 9 (Supplementary Appendix A2).

5.3 Alternative Single Scattering Solution
Another way to understand the one-layer single-scattering solution
is to consider the output I±(τ, μ, ϕ) as coming from two sources: 1)
the attenuated incident radiation from the layer boundary and in
the same direction (μ±, ϕ), and 2) the source term contribution
from the direct beam scattering. As seen in Section 5.1 [Eqs. 133
and 134], the attenuated boundary contribution is the first term on
the right, while the source term is the second term on the right.

Next, we consider the single-scattering solution at layer
boundaries τn with n ∈ [0, 1, 2, /L] for a multi-layer
medium. Since there is no diffuse radiation at the following
two boundaries: 1) TOA (Top-Of-Atmosphere) downward τ0;
2) BOA (Bottom-Of-Atmosphere) upward τL, we have1:

I− τ0, μ, ϕ( ) � 0 (138)
I+ τL, μ, ϕ( ) � 0. (139)

Once we have specified the boundary conditions, the one-layer
solution can be called consecutively to create the layer boundary
radiation of the next layer. Hence, for n = 1, 2, . . . , L, we may
recursively compute the downward radiation as:

I− τn, μ, ϕ( ) � I− τn−1, μ, ϕ( )e− τn−τn−1( )/μ + ∫τn

τn−1

dt

μ
S−n t, μ, ϕ( )e−τn−t

μ .

(140)
Similarly, for n = L, . . . , 2, 1, we may recursively compute the

upward radiation as:

FIGURE 8 | The Stokes parameter U (τ, μ, ϕ) (left) and V (τ, μ, ϕ) (right) for the aerosol scattering case for reflected (top) and transmitted (bottom) light. The U and V
components vanish for ϕ =0° and ϕ =180°. NSTR = 148.
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I+ τn−1, μ, ϕ( ) � I+ τn, μ, ϕ( )e− τn−τn−1( )/μ + ∫τn−1

τn

dt

μ
S+n t, μ, ϕ( )e−t−τn−1

μ .

(141)
Having obtained all layer boundary contributions in this

manner, we may simply apply the single-layer solution again
to get the I±(τ, μ, ϕ) at arbitrary optical depth τ.

5.4 Single Scattering Correction
The single-scattering correction is a post-processing step that
further improves the accuracy of radiance output by correcting
the single-scattering term. It was developed by Nakajima and
Tanaka Nakajima and Tanaka (1988) and can be used together
with several phase matrix truncation methods (Wiscombe, 1977;
Hu et al., 2000; Lin et al., 2018).

FIGURE 9 | Upper panel: The Stokes parameter I (τ, μ, ϕ) for the cloud scattering case for reflected (top) and transmitted (bottom) light. NSTR = 148. Lower panel:
Same as the upper panel except for the Stokes parameter Q (τ, μ, ϕ).
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In many radiative transfer models, the phase function/matrix
is expanded in generalized spherical functions (see Section 2.4.3).
However, for strongly forward-peaked scattering a large number
of phase element expansion coefficients are needed for accurate
representation of the phase function/matrix. Due to the
computational burden incurred by use of such a large number
expansion coefficients, a truncation method is commonly applied
so that only the first 2N elements are used, where 2N is set to be
equal to the number of streams. This method greatly improves the
computational efficiency, but also introduces radiance errors due
to the approximate phase matrix representation. Since the
truncation reduces the scattering cross-section and thereby
enhances the direct beam contribution, the differential optical
depth dτ and the single-scattering albedo ϖ are both being scaled
as follows.

d̂τ � 1 − fϖ( )dτ (142)
ϖ̂ � 1 − f( )ϖ

1 − fϖ (143)

where the factor f depends on the particular truncation
method used (Wiscombe, 1977; Hu et al., 2000; Lin et al., 2018).

The single-scattering correction method (Nakajima and
Tanaka, 1988) was designed to decrease the error incurred by
the truncation. To this end we replace the approximate single-
scattering solution obtained by use of the truncated phase matrix
by the correct single-scattering solution obtained from the
accurate phase matrix as described in Section 5.3. Denoting P
and P* as the original and truncated phase matrix, and I* as the
singly-scattered radiance, we may write the single-scattering
correction algorithm as follows (Nakajima and Tanaka, 1988):

Icorrected τ̂, ϖ̂, P*( ) � I τ̂, ϖ̂, P*( ) − I* τ̂, ϖ̂, P*( )
+ I* τ̂,ϖ/ 1 − fϖ( ), P( ). (144)

On the right hand side of Eq. 144, the first term I(τ̂, ϖ̂, Pp) is the
uncorrected radiance computed with the truncated phase matrix P*,
the scaled optical depth τ̂ and the scaled single-scattering albedo ϖ̂.
The second (subtracted) term Ip(τ̂, ϖ̂, Pp) is the uncorrected singly-
scattered radiance obtained by use of the truncated phase matrix Pp,
the scaled single-scattering albedo ϖ̂ and the scaled optical depth τ̂ (as
in the first term). The (added) third term Ip(τ̂,ϖ/(1 − fϖ), P) is the
accurate singly-scattered radiance obtained by use of the accurate

FIGURE 10 | The Stokes parameter U (τ, μ, ϕ) (left) and V (τ, μ, ϕ) (right) for the cloud scattering case for reflected (top) and transmitted (bottom) light. The U and V
components vanish for ϕ =0° and ϕ =180°. NSTR = 148.
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phase matrix P, the scaled τ̂, and another scaled single-scattering
albedo ϖ/(1 − fϖ).

6 DISCRETE ORDINATE RADIATIVE
TRANSFER TEST RESULTS

Schulz et al. (1999) tested a previous of VDISORT against
benchmark results provided by Garcia and Siewert (1989). The
result of the first three Stokes components were reproduced,
but the V component was not considered. In our new version,
this issue is fixed by implementing the complex eigensolutions
as already discussed. The current version of VDISORT has
been tested against benchmark results provided by (Garcia and
Siewert, 1989) and Siewert (2000), and excellent agreement
was found (Lin, 2016). Here we provide comparisons with
benchmark results provided Kokhanovsky et al. (2010) for
more challenging phase matrices that require more than 100
terms in the phase matrix expansion.

6.1 Comparison With Benchmark Results
The Kokhanovsky et al. (2010) benchmark results were provided
for the Stokes parameters of both reflected and transmitted light

in the case of molecular, aerosol, and cloudy multiple-scattering
media at the wavelength λ = 412 nm. A black underlying surface
for three values of the relative azimuth angles ϕ − ϕ0 = 0, 90, 180°

were considered and the solar zenith angle was set to 60°. The
optical thickness was set to 0.3262 for all three single layer cases.
Since the Rayleigh test is simple and has been well tested in
previous versions of VDISORT, we will focus on the more
challenging aerosol and cloud cases.

The phase matrix elements for all three cases are shown in
Figure 5. Because aerosol and cloud particles are much larger
than molecules, their phase matrices were calculated using Mie
theory (Kokhanovsky et al., 2010). In contrast to Rayleigh
scattering, aerosol and cloud particles both have a strong
forward-scattering peak. There are also two peaks around 137°

in scattering angle that correspond to the primary and secondary
rainbows.

The sharp forward-peaked scattering of aerosol and cloud
particles shown in Figure 5 implies that a large number of terms
in the Fourier expansion is required for accurate representation of
the phase matrix. In fact, Kokhanovsky et al. (2010) provide about
1,000 terms of Greek constants, and below we use the first 148
terms for both the aerosol and cloud cases in VDISORT in an
attempt to match the benchmark results.

FIGURE 11 | TOA polarization components of sunlight reflected from a molecular atmosphere overlying a wind-roughened water surface for three different wind
speeds.
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6.1.1 Aerosol Case
The normalized log-normal density distribution of aerosol particles
considered in the benchmark computations of Kokhanovsky et al.
(2010) had mode radius rg = 0.3 μm corresponding to a mode size
parameter of ~ 2.3 at 412 nm, and a standard deviation σg= 0.92. The
size distributionwas integrated from r1 = 0.005 μmto r2 = 30 μm.The
refractive index of the aerosol particles was set to m = 1.385, which
yields a single-scattering albedo of 1.0, and an asymmetry factor g =
0.79275. Figure 6 shows reflected (top) and transmitted (bottom)
results for the Stokes parameter I (τ, μ, ϕ) for solar beam incidence at
60° solar zenith angle on a homogeneous slab of optical thickness
0.3262 overlying a black surface. Similar results for the Stokes
parameter Q (τ, μ, ϕ) are shown in Figure 7 and for the Stokes
parameters U (τ, μ, ϕ) and V (τ, μ, ϕ) in Figure 8.

6.1.2 Cloud Case
Benchmark results for a homogeneous slab of optical thickness 5
consisting of a log-normal distribution of cloud particles with rg =
5 μm (mode size parameter of ~ 38 at 412 nm), and σg = 0.4 were
also provided by Kokhanovsky et al. (2010). The smallest and largest
particle radii were selected to be r1 = 0.005 μm and r2 = 100 μm, and
the refractive index was set tom= 1.339. These choices yield a single-
scattering albedo of 1.0, and an asymmetry factor g = 0.86114 for this

ensemble of cloud particles. Figures 9, 10 show that VDISORT
simulations with NSTR = 148 yield good agreement with the
benchmark results for all four Stokes parameters.

6.2 The Bidirectional Polarized Reflectance
Distribution Function (BPrDF)
The BPrDF is the vector equivalent that corresponds to the
Bidirectional Reflectance Distribution Function (BRDF) in
scalar radiative problems for which only the first component
of the Stokes vector, the radiance I, is considered. In this version
of VDISORT, BPrDFs for two surface types were implemented: a
Lambertian surface and a rough surface with a Gaussian
distribution of surface slopes, which is frequently used to
model scattering from wind-roughened water surfaces.

In general, both the diffuse light and the direct beam are
reflected by BPrDF shown as below:

Irefl τp, μ, ϕ( ) � ∫1

0
dμ′∫2π

0
dϕ′ μ′~R μ′, μ, ϕ − ϕ′( )Iinc τ*, μ′, ϕ′( )

+ μ0
4π

~R μ0, μ, ϕ − ϕ0( )Sbe−τ*/μ0
(145)

FIGURE 12 | The Stokes parameter I (τ, μ, ϕ) for the aerosol scattering case. Top row: Reflected light. Same as top row of Figure 6, but using NSTR = 16 (NSTR =
148 in Figure 6) andwith andwithout SSC. Bottom row: Transmitted light; same as bottom row of Figure 6, but using NSTR = 16 (NSTR = 148 in Figure 6) andwith and
without SSC.
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where μ and μ′ are cosines of the polar angles θ and θ′ and ϕ′
and ϕ are the corresponding azimuth angles. The downward
Stokes vector at the surface is denoted Iinc (τ*, μ′, ϕ′), and Sb �
[I0/2, I0/2, 0, 0]T is the TOA direct beam illumination assumed to
consist of unpolarized light of irradiance I0. The 4 × 4 reflection
matrix ~R depends on the surface properties. It is expanded into a
Fourier series to isolate the azimuth dependence and that
expansion is consistent with the expansion of the phase matrix.

A Lambertian surface is a special surface that, regardless of the
state of polarization of the incident radiation, gives rise to
reflected radiation that is uniform, i.e. isotropic over the
upward hemisphere, and unpolarized. Therefore, only the first
(m = 0) term in the Fourier expansion contributes. The reflection
matrix is given by

~R
m�0 � ρL

0.5 0.5 0 0
0.5 0.5 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (146)

where ρL is the surface albedo.
For a wind-roughened water surface, an explicit expression for

the reflectance matrix ~R is given by

~R μ′, μ, ϕ − ϕ′( ) � 1
4μ′ μ μ4n

p μn( ) · Cr
rs μ′, μ; ϕ′, ϕ( ) · S μ′, μ, σ( ).

(147)
In Eq. 147, the matrix Cr

rs is determined by the relative
refractive index m and is derived from the Fresnel
reflectance, with details described in Supplementary
Appendix A3 of Stamnes and Stamnes (2015). p (μn) is
the rough surface slope probability approximated by a
one-dimensional Gaussian distribution (Cox and Munk,
1954).

p μn( ) � 1
πσ2

exp −1 − μ2n
σ2μ2n

( ) (148)

μn �
μ + μ′"""""""""""

2 1 − cosΘ( )√ (149)

cosΘ � −μ′μ +
""""""
1 − μ′2

√ """""
1 − μ2

√
cos ϕ′ − ϕ( ) (150)

σ2 � 0.003 + 0.00512 · w. (151)
σ2 is the mean square surface slope determined by the water

surface wind speed w in m s−1. S (μ, μ′, σ) is the shadow term

FIGURE 13 | The Stokes parameterQ (τ, μ, ϕ) for the aerosol scattering case. Top row: Reflected light. Same as top row of Figure 7, but using NSTR = 16 (NSTR =
148 in Figure 7) andwith andwithout SSC. Bottom row: Transmitted light; same as bottom row of Figure 7, but using NSTR = 16 (NSTR = 148 in Figure 7) andwith and
without SSC.
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that is only important for the conditions of large wind speeds
and large viewing zenith angles (Tsang et al., 1985). To
demonstrate how the surface reflectance is applied, a simple
example of an atmospheric simulation is considered with a
layer of non-absorbing molecules of scattering optical
thickness 0.32 and a depolarization factor of 0.04 at 412 nm
(Bodhaine et al., 1999) overlying wind-roughened water
surfaces with different wind speeds (2, 5, 10 m s−1). The
solar zenith angle is set to 30°. Figure 11 shows the upward
I, Q, and U components at the top of atmosphere. A glint
pattern is clearly evident in the principal plane (Δϕ = (ϕ′ − ϕ) =
0°) for all wind speeds.

6.3 The Single-Scattering Correction
To demonstrate the efficiency and accuracy gained by use of
the single-scattering correction (SSC), we provide some
examples in this Section. For strongly forward-peaked
scattering occurring for particles that are large compared
to the light wavelength, use of the delta-M scaling
transformation is very useful. Also, use of the ISF method
discussed in Section 3.5 helps producing accurate results at
polar angles other than the quadrature angles. Figure 12

shows that accurate results for the total polarized radiance
(the I Stokes parameter) can be obtained with as little as 16
streams when the SSC is applied in addition to the delta-M
and ISF methods. Similar results for the Q and U Stokes
parameters are shown in Figures 13, 14.

6.4 Polarized Beam Incidence
So far we have assumed that the incident beam consisted of
natural (unpolarized) light (like sunlight). For some applications,
like laser (lidar) or lunar beam illumination, the source would be a
polarized beam. VDISORT is capable of handling also the general
case of an arbitrarily polarized incident beam source. To test the
performance of VDISORT for polarized beam incidence, a
polarized beam source term Iinc = [I,Q,U,V]T = π[1.0,−0.4.0.2.0.05]
T (corresponding to Iinc � [I‖, I⊥,U,V]T � π[0.3, 0.7, 0.2, 0.05]T)
was chosen as input for the so-called L = 13 case reported by Garcia
and Siewert (1989). In this test case the optical thickness of the slab
was assumed to be 1.0, the single-scattering albedo was taken to be
0.99, and the surface was assumed to be a Lambertian reflector with
albedo 0.1. We calculated the Stokes parameters I, Q, and U and the
degree of polarization (DOP) for this test case and reproduced
Figure 5 of Schulz et al. (1999) as shown in Figure 15. Schulz

FIGURE 14 | The Stokes parameterU (τ, μ, ϕ) for the aerosol scattering case. Top row: Reflected light. Same as top row of Figure 8, but using NSTR = 16 (NSTR =
148 in Figure 8) andwith andwithout SSC. Bottom row: Transmitted light; same as bottom row of Figure 8, but using NSTR = 16 (NSTR = 148 in Figure 8) andwith and
without SSC.
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et al. (1999) verified their results by comparing with output produced
by the accurate General Adding Program (GAP) described by De
Haan et al. (1987).

7 CONCLUDING REMARKS

A review is provided of the vector discrete ordinate (VDISORT)
method of solution to the radiative transfer equation pertinent for
polarized transfer of radiation in a vertically stratified medium.
Several new features are described and discussed including how to
1) deal with the complex solutions required to compute the V
component of the Stokes vector I = [I Q U V]T, 2) obtain
accurate radiances at any desired polar observation angles by use
of the ISFmethod, 3) deal with polarized beam incidence at the top of
the atmosphere as well as polarized reflectance by the lower
boundary, 4) use a pseudo-spherical treatment to correct for Earth
curvature effects, and 5) use the single-scattering correction to
enhance the efficiency of the method without sacrificing accuracy.
Comparisons with benchmark results are provided to demonstrate
the versatility of the VDISORT computer code to provide reliable
solutions for aerosol and cloud cases including non-spherical ice
cloud phase matrices. In particular, it has been shown that as few as
2N = 16 discrete-ordinate streams are sufficient to compute accurate

polarized radiances for phase matrices appropriate for ensembles of
aerosol particles. We encourage future users to help us improve this
freely available tool by 1) reporting on bugs found and how they were
fixed, 2) making suggestions for how this tool can be improved, and
3) help make it known to friends and co-workers in need of such a
resource that this tool is available.
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