
Spatial Variability of In Situ
Above-Water Reflectance in Coastal
Dynamic Waters: Implications for
Satellite Match-Up Analysis
Hussain J. Nasiha1*, Ziwei Wang1, Fernanda Giannini 2 and Maycira Costa1

1Department of Geography, University of Victoria, Victoria, BC, Canada, 2Institute of Oceanography, Federal University of Rio
Grande, Rio Grande, Brazil

The validation of ocean color satellite retrievals generally relies on analyzing match-ups
between in situmeasurements and satellite retrievals. These analyses focus on the quality of
the satellite data, however, of the same importance is the quality of the in situ data. Here, we
present the spatial variability of in situ above-water reflectance (Rrs(0+)) within the spatial
resolution of different ocean color satellites—300, 900, 1500, and 3000m spatial
resolutions, mimicking Sentinel 3 OLCI and MODIS-Aqua satellites, and possible 3 × 3
and 5 × 5 windows. Radiometric data was acquired with autonomous radiometric sensors
installed in the British Columbia Ferry Services Inc. vessel “Queen of Alberni” from May to
September 2019, crossing the optically dynamic waters of the Strait of Georgia, Canada.
The dataset followed optimal geometry of acquisition and processing, including corrections
for skylight radiance signals, ship superstructure, the non-isotropic distribution of the water-
leaving radiances, and quality control. A total of 33,073 spectra at full resolution,
corresponding to 10 days, were considered for the analysis presented here. The results
showed that, overall, the subpixel variability increased as the spatial resolution of the sensor
or the window size increased, mainly in a linear fashion. Specifically, spatial variability of
Rrs(0+) was the largest (~18% and 68% for 900 and 3000m pixel resolution, respectively) in
Near Field Plume Interface waters, followed by in the Ocean Water Interface (~28% and
35%, respectively), thus indicating spatial heterogeneity of interface waters. Further, we
found that the estuarine waters showed higher subpixel Rrs(0+) variability (~8% and 16% for
900 and 3000m, respectively) compared with plume and oceanic waters. We showed that
the high spatial variability in Rrs(0+) was primarily associated with the spatial dynamics of the
optical water constituents, thus limiting the use of these datasets as Fiducial Reference
Measurements and for validation of satellite-derived atmospherically corrected reflectance.
We suggest that spatial variability of the in situ Rrs(0+) should also be considered in the
selection criteria for good match-up data, especially for data acquired in coastal dynamic
systems. As a result, it will advocate for the exclusion of interface or transition water pixel
grids in order to avoid compromising the statistical result of satellite validation.
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1 INTRODUCTION

The coastal oceans are highly impacted by climate change
stressors, including sea-level rise, warming oceans, ocean
acidification, and human activities, leading to eutrophication
in coastal regions (Haines et al., 2006; He and Silliman, 2019).
In recent decades, the importance and requirement of coastal
ocean monitoring systems have been well recognized for the
understanding of coastal dynamics and management. Ocean
color satellite observations have allowed unparalleled synoptic
observations of the biogeochemical variability of the ocean,
allowing for a better understanding of ocean dynamics and
management (e.g., Boss et al., 2004; Boss et al., 2019; Woźniak
and Stramski, 2004; Loisel et al., 2006; Platt et al., 2008; Moore
et al., 2009; Dierssen and Randolph, 2013; Sathyendranath et al.,
2017; Dutkiewicz et al., 2019). However, the effectiveness of the
satellite-derived observations, especially for dynamic coastal
waters, requires validation of the different retrievals, including
atmospherically corrected reflectance values and reflectance-
based biogeochemical variables, such as chlorophyll
concentration (Chla) and total suspended matter (TSM) (e.g.,
Moore et al., 1999; Nechad et al., 2010; Blondeau-Patissier et al.,
2014; Shanmugam et al., 2018; Nasiha et al., 2019;
Balasubramanian et al., 2020; Giannini et al., 2021; Tilstone
et al., 2021). Coastal and estuarine waters are optically more
complex as a result of the additional influences of river discharge
rich in terrestrial suspended particulates, re-suspended
sediments, Colored Dissolved Organic Matter (CDOM), which
vary independently of the phytoplankton assemblage (IOCCG,
2000; Davis et al., 2007; Mélin et al., 2007; Loos and Costa, 2010;
Blondeau-Patissier et al., 2014; Loos et al., 2017; Phillips and
Costa, 2017).

Given this optical complexity, validation is the process of
determining the spatial and temporal error fields of a given
biological or geophysical data product (Bailey and Werdell,
2006). The satellite match-ups are essential for proper
vicarious calibration of sensors, atmospheric correction of
top of atmosphere measured radiance or reflectance, and,
consequently, accurate retrievals of biogeochemical products
(Zibordi et al., 2015a; Zibordi et al., 2015b; Tilstone et al.,
2021). In general, these analyses focus on the quality of satellite
data; however, the quality of the in situ data is equally
important (Tilstone et al., 2021). The quality of ocean color
products depends on many factors influenced by various
artifacts such as cloud shadows, terrestrial aerosols,
exceptional plankton blooms, shallow water with bottom
reflection (IOCCG, 2019). Similarly, in situ measurements
may have inherent uncertainties including spatial
variability, temporal mismatch of satellite overpass, the
impact of waves (Zaneveld et al., 2001; Zibordi et al., 2004;
D’Alimonte et al., 2013), sensor tilt and self-shading (Gordon
and Ding, 1992; Zibordi and Ferrari, 1995; Shang et al., 2017),
ship perturbations due to a deployment superstructure (Doyle
and Zibordi, 2002; Wang and Costa, 2018; Wang and Costa,
2022), and data processing considering bidirectional effects
[Bidirectional Reflectance Distribution Function (BRDF)] of
radiometric quantities as a function of illumination and

viewing geometries, among others (Park and Ruddick, 2005;
Lee et al., 2011; Wang and Costa, 2022).

In situ Rrs(0+) measurements are estimated from radiometric
parameters such as downwelling irradiance (Ed), sky radiance
(Li), and upward radiance (Lt) and followed by wind correction
(Mobley, 1999). For Rrs(0+) data satellite match-up analysis, Ed,
Li, and Lt measurements from in situ point stations, located
approximately at the centre of the satellite image pixel, are
used for validation. The lower temporal and spatial resolution
of the imagery acquisition may lead to mismatches between in
situ and satellite measured data, especially in coastal waters with
riverine inputs where spatial heterogeneity may happen at fine
spatial scales (Moses et al., 2016). The uncertainty sources linked
to in situ measurements are associated with the spatial
representativeness of the in situ observation within the spatial
resolution of the imagery (Mélin and Franz, 2014; Pahlevan et al.,
2016). For coastal waters, the spatial scales of the variability of the
in situ measurements and the variability within the pixel
resolution (or average window used) of the satellite imagery
have to be considered (Mahadevan and Campbell, 2002;
Moses et al., 2016; Barnes et al., 2019).

This paper aims at addressing the Rrs(0+) spatial variability of
coastal waters within the spatial resolution of different ocean
color satellites. Here we evaluate an in situ Rrs(0+) data set (N =
33073) acquired with an autonomous set of radiometers
(Satlantic Inc./Sea-Bird–Solar Tracker, SAS–ST) in the Strait of
Georgia (SoG) waters, Canada, at 300, 900, 1500, and 3000 m
spatial resolutions, mimicking Sentinel 3 OLCI and
MODIS—Aqua satellites, and possible 3 × 3 and 5 × 5
windows. We look at 1) the spatial variability of in situ
Rrs(0+) within transitional water boundaries and 2) the spatial
variability of Rrs(0+) of different water masses in SoG. Estimates
of spatial variability in transitional boundaries and water masses
provide quantitative guidance for defining the criterion for using
in situ Rrs(0+) for satellite data match-up analysis in ocean color
research. Our premise is that highly varying optical constituents
at transitional boundaries between river plume, salt wedge
estuary, and oceanic waters lead to larger spatial variability of
in situ Rrs(0+), contributing significantly to the differences
observed between satellite and field data. This may have
significant consequences on uncertainties of satellite match-up
analysis, which is used to validate atmospheric corrected Rrs(0+)
and vicarious calibration. Quantifying the uncertainty
contributions from spatial variability of coastal water
heterogeneity will assist in increasing the quality of data used
for satellite validation purposes.

2 METHODS

2.1 Study Area
The Strait of Georgia (SoG) is a constituent part of the Salish Sea,
between Vancouver Island and the extreme southwestern
mainland coast of British Columbia, Canada (Figure 1). It is a
narrow passage, measuring 222 km long and 28 km wide on
average, in the north-eastern Pacific Ocean (Harrison et al.,
1983; Masson and Peña, 2009). The average depth is 155 m,
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whereas the maximum depth is approximately 420 m. The Fraser
River is the primary freshwater input to the central basin of the
Strait, with a maximum discharge in June exceeding 11,000 m3/s
(Thomson, 1981), and the peak discharge period being from June
to July (Pawlowicz et al., 2017). Snow-melt constitutes about two-
thirds of the total runoff, with heavy terrestrial input, which leads
to density stratification in the basin region (Johannessen et al.,
2006; Loos and Costa, 2010; Halverson and Pawlowicz, 2011).
The river runoff creates an estuarine water circulation with strong
salinity entrainment in the region that produces a net transport of
salt from the saline ocean water to the overlying brackish layer.
The horizontal salinity distribution varies greatly depending on
the season and distance from the mouth of the Fraser River
(Halverson and Pawlowicz, 2011). The general outflows to the
Pacific happen through the Juan de Fuca Strait in the south and
the Johnstone Strait in the north (Figure 1).

The seasonality and spatial dynamics of the SoG waters are
largely influenced by the Fraser River discharge and ocean
productivity. Generally, the region has a mean primary
productivity of about 280 ± 20 g C m−2 yr−1 (Harrison et al.,
1983; Sutton et al., 2013; Johannessen et al., 2021). In the

frontal areas of the Fraser River plume, the productivity is still
higher due to the reloaded nutrients supplied by the river, and
high chlorophyll concentrations have been reported in the waters
closer to the Fraser River discharge (Loos and Costa, 2010;
Phillips and Costa, 2017). Seasonally, these waters show
chlorophyll-a concentrations typically ranging from
<1.0 mg m−3 in the winter to >15.0 mg m−3 during spring/
summer and fall blooms (Suchy et al., 2019; Esenkulova et al.,
2021).

Optically, the SoGwaters are also seasonally highly dynamic as
a result of the ocean productivity and high loads of fine inorganic
particles and dissolved organic matter discharged into the Strait
(Johannessen et al., 2006; Loos and Costa, 2010; Phillips and
Costa, 2017). The biogeochemistry of the riverine waters with
increasing turbidity levels results in wavelength dependent high
scattering in the visible wavelengths (Loos and Costa, 2010;
Phillips and Costa, 2017) and, consequently, high reflectance
in the longer wavelengths from 550 to 700 nm (Komick et al.,
2009; Wu et al., 2014; Carswell et al., 2017; Phillips and Costa,
2017; Giannini et al., 2021). The estuarine circulation causes the
mixing of the riverine and oceanic waters, resulting in more

FIGURE 1 | Study area map of the Strait of Georgia plotted from Sentinel-3a, 8-day average of 6–13 April 2020, showing Suspended Particulate Matter (SPM)
distribution in the strait. The dotted line shows the cruise transact of the Queen of Alberni between Duke Point (Vancouver Island) and Tsawwassen (Vancouver). Location
of meteorological stations: Entrance Island and Sands Head CS are indicated.
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optically variable waters with spectrally dependent scattering and
absorption (Loos and Costa, 2010; Phillips and Costa, 2017). As a
result, relative lower reflectance in the longer 550–700 nm
wavelengths is observed due to dominant light absorption. The
ocean water exhibits a seasonal dominance of light absorption
caused by CDOM and phytoplankton, resulting in the lowest
overall reflectance signal relative to riverine and estuarine waters
(Carswell et al., 2017; Phillips and Costa, 2017; Giannini et al.,
2021).

The cruise transect (Figure 1) includes oceanic water from the
Strait of Georgia and estuarine and plume waters resulting from
the Fraser River discharge (Halverson and Pawlowicz, 2011; Loos
et al., 2017; Pawlowicz et al., 2017; Travers-Smith et al., 2021).
The Fraser River discharge into the Strait forms a seaward extent
of freshwater plume mass, bounded by a zone of strong flow
convergence resulting in a salinity front. Hence, it develops a
brackish surface layer (termed as estuarine waters in this study)
between the freshwater plume region and oceanic waters of SoG
(Stronach 1977; Thomson 1981; McCabe et al., 2008; Halverson
and Pawlowicz, 2011). The estuarine water spread consists of a
near-field plume interface (NFPI) and an oceanic water interface
(OWI). Entrainment begins at NFPI, leading to significant
variability in salinity. The mixing occurs until the oceanic
water interface, where salinity variability is lesser than NFPI,
in general. These two interfaces explain the transitional water
boundaries (Poggioli and Horner-Devine, 2018; Ward et al.,
2020). These transitional waters are characterized by highly
dynamic bio-physical and hydro-morphologic conditions,
resulting in high sub-pixel variability of in situ Rrs(0+).

2.2 Data Acquisition and Processing
Radiometric data used for this study was acquired from shipborne
autonomous radiometric sensors aboard the British Columbia
Ferry Services Inc. vessel “Queen of Alberni” from May to
September 2019. The data collection was part of the research
program “Ferry Ocean Color Observation Systems” (FOCOS).
The ship sails at a speed of about 10 m/s from Duke Point
(Nanaimo) to Tsawwassen (Vancouver), over a transact length
of 45 km (Figure 1). A set of three hyperspectral radiometers
(SAS-ST) were installed on the BC ferry on a customized platform
designed by Ocean Networks Canada (ONC). The SAS-ST was
installed at 14 m above the water surface on the ferry platform
(Figure 2). The hyperspectral radiometers collect data in the
wavelength range of 350–798 nm, whereas the data analysis is
presented in the optical range of 400–700 nm. The spectral
resolution and spectral sampling interval are 1 nm. The above-
water measurements include total upwelling sea surface radiance
(Lt(λ)), sky radiance (Li(λ)), and downwelling irradiance (Ed(λ)).
Considering the speed of the ferry and the frequency of data
acquisition for the sensors, we estimated individual
measurements at a spatial resolution of 13 m. The sensors
were factory calibrated by the manufacturers (Seabird/
Satlantic, Inc.) before deployment, and bi-weekly cleaning of
the lenses was conducted.

As per the recommendations from Mobley (1999), the Li(λ)
sensor was aligned away from the sun to avoid direct sunglint.
The inbuilt motor base of SAS-ST enables the sensor unit to keep

at a viewing-sun azimuth, φv, of 120 ± 5° following Hooker and
Morel (2003). The Lt(λ) was kept at a viewing angle of 45°

(Satlantic, 2016). For the autonomous data collection, we fixed
the geometry and acquisition angles based on the ferry’s sailing
speed and direction (the ferry sails East), the ship heading, the
ship structure and shadowing, and the time of day (Giannini et al.,
2021).

The radiometric data was measured, stored on an onboard
computer, and transferred to the Oceans Networks Canada server
during each ferry sailing. Hence, the near real-time radiometric
data collected by SAS-ST can be downloaded fromONC’s Oceans
2.0 portal (https://data.oceannetworks.ca/DataSearch) with the
data collection date and time. The PySciDON (Python Scientific
Framework for Development of Ocean Network applications;
Satlantic, 2010; Vandenberg et al., 2017) framework was used to
process the data, including specific calibration files associated
with the raw data and flags, such as meteorological (cloudy/rainy
conditions), sensor rotator angle, and Sun azimuth angle.

The remote sensing reflectance Rrs(0+) was calculated
according to Mobley (1999):

Rrs(λ, 0+) � Lt(λ) − ρsLi(λ)
Ed(λ) (1)

where Lt(λ) is the total sea-surface radiance, which is measured
by the sea viewing sensor, Li(λ) is the sky radiance, and Ed(λ) is
the downwelling irradiance. Lt(λ) includes water-leaving
radiance (Lw) and a fraction of sky radiance. ρs is the
reflectance coefficient corresponding to the proportion of sky
radiance to the water leaving radiance. ρs depends on variable
illumination and sea surface roughness conditions (Mobley
1999). Since the sky glint (ρsLi(λ)) can have a similar
magnitude to Lw, the choice of ρs significantly influences the
accuracy of Rrs(0+) estimations (Mobley 1999). In the PySciDON
framework (Vandenberg et al., 2017), wind speed data is required
as an input to calculate ρs in the Rrs estimation. ρs was defined
considering the local wind speed measured format two Canadian
government meteorological stations: longitude from −123.80° to
−123.63° corresponding to Entrance Island, while −123.63° to
−123.25° corresponds to Sand Heads CS meteorological station
(https://climate.weather.gc.ca/historical_data/search_historic_
data_e.html) (Figure 1).

The framework also addresses ship superstructure influence
on Rrs(0+) calculation. The ship’s superstructure (ship wall)
influences the above-water radiometry by introducing signal to
the radiance field measured by the sea viewing sensor (Lt). The
adopted methods for ship superstructure signal contribution to
Rrs(0+) are fully explained in Giannini et al. (2021) andWang and
Costa (2022), following methods by Hooker and Morel (2003).
After the calibration, application of flags and correction factors,
the data is binned considering either time or latitude/longitude
resolutions.

2.2.1 Ferrybox Data
The salinity, turbidity, chlorophyll and CDOM datasets used
in this study were measured in situ by the “Ferrybox” system,
which was installed and maintained by Ocean Networks
Canada (ONC) (Travers-Smith et al., 2021; Owens et al.,
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2022). Salinity (PSU) was measured with a SeaBird SBE45
thermosalinograph, Chl-a concentration (mg m−3) with a
WET Labs ECO Triplet fluorometer, and CDOM
fluorescence (ppb) and turbidity (NTU) were acquired with
aWETLabs ECO Triplet BBFL2 sensor. The Ferrybox system is
located below the main deck, 10 m from the bow, and the
sampling depth was approximately 2 m (Halverson and
Pawlowicz, 2011; Wang and Costa, 2022).

The Ferrybox data, including turbidity, chlorophyll,
CDOM, and salinity, were implemented with ONC’s
comprehensive process-oriented quality assurance (QA) and
product-oriented data quality control (QC) models (Owens
et al., 2022). After the pre-deployment testing of
oceanographic instruments, automated quality testing was
carried out, including QA/QC-related checks, in real-time
or delayed, performed via automated quality control
procedures while the instrument was deployed. QC of
turbidity, chlorophyll and CDOM data includes automatic
delayed-mode testing and manual review. The QA/QC test
model supports spike detection and gradient steepness tests.
For the specific data considered in this study, chlorophyll,
CDOM, and salinity datasets were processed with QC flags 1,
or 2, representing “data passed all QC tests” and “data
probably good,” respectively. Among different QC flags,
turbidity data is listed with flag 8, which stands for
interpolated values, whereas interpolated data exclusively
uses clean data (all values have QC flag 1).

Surface current velocity data used in this study were also
acquired by ONC using CODAR systems installed at location the

Westshore Coal Terminal station (VCOL), Georgina
Point(VGPT), Iona (VION), Point Atkinson (VATK).

2.3 Data Quality Control
After data acquisition and processing, the entire 2019 dataset was
evaluated for quality. The total continuous deployment days of
SAS-ST installed on the Queen of Alberni ferry was 116, from
May to September 2019. The ferry runs from Duke Point to
Tsawwassen daily at local time, 7.45 a.m.–9.45 a.m.; 12.45
p.m.–2.45 p.m.; and 5.45 p.m.–7.45 p.m. The evening trip data
collection was excluded from further analysis due to the low sun
elevation angle (<30°), and the morning and noon trip data were
further evaluated based on the Ed and Lt data.

Figure 3 shows the Rrs(0+) for the morning and noon trips on
June 16, 2019, as an example along with the data acquisition
geometry of the SAS-ST sensor. As shown in Figure 3C for the
noon trip data on June 16, 2019 for a specific data point, the
rotator angle is at +30°, keeping the sensor plane at 120° from the
sun azimuth, whereas the ship’s heading is East at 303.5°

(Figure 3C). This geometry allows for excellent data quality
(Figure 3A). For the morning trip (Figure 3D), the rotator
plane is at −10° from home orientation, an extreme angle to
keep the sensor at 120° azimuth from the Sun. Since the sensor
plane could not go beyond the pre-defined backward limit (−10°),
the derived Rrs(0+) data was erroneous, as shown in Figure 3B,
likely measuring the ship structure. Beyond the issues related to
the acquisition geometry, the morning trips also exhibited issues
with low irradiance and radiance signals (Figure 4). The lower
downwelling irradiance (<92Wm−2 nm−1 at 480 nm)

FIGURE 2 | The autonomous radiometer SAS-Solar Tracker is installed on the deck of the ferry, Queen of Alberni. Downwelling irradiance (Ed), sky radiance (Li) and
total radiance (Lt) radiometric sensors are shown. θv = 50° is the sensor viewing zenith angle and θs = 30° is the low sun elevation angle (data acquisition occurs only
above θs value).
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(Figure 4B) and Lt (<18000Wm−2 nm−1 Sr−1) (Figure 4D) in the
morning data collection due to the lower sun elevation angle
(<30°) led to erroneous estimations in the derived Rrs(0+)
compared to the noon trip (Figures 4A,C). Given the lower
irradiance and radiance signal combined with the less optimal
acquisition geometry, data acquired on the morning trips was
filtered out, with only noon trip data from ~12.30 p.m. to 2.30
p.m. being adequate for further analysis.

We selected only days with clear sky conditions for the data
acquired during the noon trips. The data set was processed in
PySciDON (Section 2.2), and the correction factors were defined
as follows:

1) ρs factor to address skylight radiance signal contributions to
the above water signal (Mobley, 1999). ρs factors for the
selected days ranged between 0.0361 and 0.0636,
corresponding to a range of wind speed 4–13 m s−1,
derived from Canadian government meteorological stations:
longitude from −123.80° to −123.63° used wind speed from
Entrance Island (Environment and Climate Change Canada
2021a), while −123.63° to −123.25° used wind speed values
from Sands Head Island (Environment and Climate Change
Canada 2021b).

2) The ship’s superstructure signal contribution to Rrs(0+) was
defined according to Wang and Costa (2018) and Giannini
et al. (2021), following methods by Hooker and Morel (2003).
The ship superstructure correction factor for the Queen of
Alberni ferry was 0.00005 (Giannini et al., 2021).

After all the required corrections, the selected data was
checked for the tilt angles due to the ferry’s stability. The
standard deviation in the tilt of the ferry was ±4°, indicating
high-quality data. The low tilt angles (pitch and roll) are due to
the stable platform, influenced by the large size of the ferry and
environmental conditions of the SoG. The final dataset was
subjected to BRDF correction to minimize the non-isotropic
distribution of the water-leaving radiances in optically
complex waters. This followed methods by Lee et al. (2011)
and Talone et al. (2018) and was implemented with Python
code by Wang and Costa (2022).

2.4 Spatial Analysis of Rrs(0+) at Different
Spatial Grid Sizes
After data reduction for quality control and deriving Rrs(0+), the
spatial variability of Rrs(0+) was evaluated considering the
subpixel variability within the pixel resolution of two ocean
color satellites, Sentinel 3 OLCI and MODIS Aqua, and
commonly used pixel boxes for match-up validation analysis
(Mahadevan and Campbell, 2002; Werdell et al., 2007; Barnes
et al., 2019; Giannini et al., 2021). A pixel box is generally defined
to account for the spatial variability of the biogeochemical
information and because the satellite sensor navigation may
not be accurate to the pixel (Patt, 2002). As part of a match-
up analysis, the median or average (with additional statistical
rules, including thresholds for the coefficient of variance) of
satellite-derived Rrs(0+) (or biogeochemical retrieval) within a

FIGURE 3 |Rrs(0+) data quality assurance (QA) analysis results for the data measured by SAS-ST installed on ferry Queen of Alberni on 16 June 2019. Plot showing
Rrs(0+) data for (A) noon trip; (B) morning trip data collection, and corresponding geometry with angle of acquisition for, (C) noon trip and (D) morning trip.
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pixel box is calculated and evaluated against a co-located in situ
measurement of Rrs(0+) (or in situ biogeochemical
concentration) (e.g., Patt, 2002; Mahadevan and Campbell,
2002; Werdell et al., 2007; Moses et al., 2016; Giannini et al.,
2021). As recently highlighted by Barnes et al. (2019), the
uncertainties associated with the in situ data should be
considered in the validation approach. Here, we use in situ
Rrs(0+) continuously measured every 2 s from a ferry at a
speed of approximately 10 m/s to define the Rrs(0+) variability
within the pixel grid resolution (PGR) of 300 m (pixel resolution
of Sentinel 3 OLCI), 900 m (3 × 3 PGR and similar to MODIS
Aqua), 1500 m (5 × 5 PGR), and 3000 m (3 × 3 PGR, commonly
used for MODIS Aqua).

The radiometric SAS-ST data was used at full resolution
without binning during data processing. The cruise track of
~45 km was segmented into various PGRs based on the
distance between geocoordinates. Every PGR consists of a
number of spectra with respect to the pixel window size. For
instance, the number of spectra yielded into each PGR was on
average as follows: PGR 300, 900, 1500, and 3000 m yielded 15,
44, 73, and 140 individual spectra, respectively. For these PGRs,
and considering the length of the ferry run, the total number of

pixel windows was approximately 1605, 536, 321, and 161,
respectively. For the simulation of PGR, we considered a
fixed-width grid size, estimated from the distance between the
geographical coordinates of the ferry transact using the cosine-
haversine formula (Robusto, 1957). Note that the number of pixel
windows for the PGR slightly varies due to the occasional
inappropriate viewing geometry of the sensor. For example, on
2 September 2019, we found that no data were recorded for the
location between 49.216°; −123.81° to 49.216°; −123.808 due to
issues related to the rotator angle of the sensor plane. Given these
occasional issues, we excluded the pixel windows with less than
75% of the average number of spectra corresponding to the
pixel grid.

After defining the PGRs and individual spectrum associated
with each pixel window, the average and coefficient of variance
of Rrs(0+) for each pixel window were calculated. The
coefficient of variation within a PGR (CVΔ) was calculated
as follows:

CVΔ � 1
μ
⎡⎢⎢⎢⎢⎢⎢⎢⎣ �����������∑N

i�1(xi − μ)2
N

√ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ × 100 (2)

FIGURE 4 | Comparison of radiometric quantities—downwelling irradiance (Ed) (A,B), total sea surface radiance (Lt) (C,D), sky radiance (Li) (E,F) for morning trip
and noon trip data collection by SAS-ST installed on the ferry Queen of Alberni on 16 June 2019.
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where μ is mean of Rrs(0+) spectra within the pixel grid, σ =�������∑ (xi−μ)2
N

√
is the standard deviation from the mean, xi is the ith

data point within the pixel grid with the total number of data
points equal to N.

This study specifically analyzed the Rrs(0+) variability
associated with transitional water boundaries between the
Fraser River plume and estuarine waters and estuarine and
oceanic waters. We further extended the analysis to define the
spatial variability for different water masses: plume, estuarine,
and oceanic, to account for its contribution to the uncertainties
associated with in situ Rrs(0+) measurements.

2.5 Classification of Water Types in SoG
We classified the water masses along the cruise transect into three
types: oceanic, estuarine, and plume waters, following a regional
salinity-based criterion (Halverson and Pawlowicz, 2011;
Travers-Smith et al., 2021), as follows:

Sthresh � SRef − Soffset (3)
Soffset� 4.8 − (0.14pSRef ) (4)

Here SRef is the mean salinity calculated for every transect in the
region influenced mainly by oceanic waters (Travers-Smith et al.,
2021), this corresponds to a transect length of 5 km near
Vancouver Island. The estimated Sthresh for oceanic waters was
defined as above 25 psu, and waters with salinity lower than
Sthresh were classified as under riverine influence. The riverine
waters (Sthresh < 25 psu) were further classified into estuarine
waters with higher entrainment and mixing (15–24.9 psu), and
plume waters (<15 psu).

3 RESULTS AND DISCUSSION

This study demonstrates the spatial variability of in situ Rrs(0+) in
dynamic coastal waters, an important issue to be addressed for
match-up analysis aiming to validate, for instance, atmospheric
correction of satellite-derived Rrs(0+) (e.g., Mahadevan and
Campbell, 2002; Bissett et al., 2004; Mahadevan 2004; Bailey
andWerdell, 2006; Werdell et al., 2007; Aurin et al., 2013; Brando
et al., 2016; Carswell et al., 2017; Barnes et al., 2019; Cazzaniga
et al., 2021; Giannini et al., 2021; Tilstone et al., 2021; Zibordi
et al., 2021). The analysis is based on a dataset of Rrs(0+) acquired
aboard the BC ferry, Queen of Alberni, in 2019, in clear sky
conditions and with optimal geometry of acquisition and
processing protocols (Wang and Costa, 2018; Giannini et al.,
2021; Wang and Costa, 2022). The results are presented in two
sections: (1) Rrs(0+) variability along the cruise transect
considering transitional waters; and (2) Rrs(0+) variability for
different water masses: oceanic, estuarine, and plume waters.

3.1 Rrs(0+) Variability Along the Cruise
Transect: Transitional Waters
To illustrate the significant Rrs(0+) variability of the transitional
waters (NFPI and OWI), we show the variability of Rrs(0+),
associated with salinity and biogeochemical variables for 2 days, 2

September and 22 August 2019, but omitted the analysis for the
other 8 days of the dataset since the results were very similar. For
these 2 days, Figures 5, 6 show Rrs(0+) spatial variability
measured on an entire ferry run between Vancouver Island
(Duke Point) and the Vancouver mainland (Tsawwassen) at
Band 3, Band 5 and Band 6 of Sentinel OLCI. The central
wavelength of Sentinel OLCI sensor bands 3, 5, and 6 is 442.5,
510, and 560 nm, respectively. For 2 September 2019 (Figure 5),
in general, as PGR increased, so did the Rrs(0+) within pixel
variability, expressed as CVΔ, with the larger variability ranging
from about 30% to 70% for 300–3000 m, respectively. Specifically,
at 300 m PGR, the mean subpixel variability was about 3.58%,
3.29%, 3.52% (Band 3 (442.5 nm), Band 5 (510 nm) and Band 6
(560 nm) of Sentinel 3–OLCI), except for a few pixel grids. The
exceptional large variability was observed for higher PGR in
similar pixel locations (~49.066; −123.422 and 49.1692,
−123.598); the salinity data revealed the NFPI and OWI
waters at these locations, respectively (Figure 5B).

For NFPI, at 300 m PGR, the salinity variability was 36%, and
for higher PGRs, the salinity variability was estimated as 26% (for
900 m), 20% (for 1500 m), and 14% (for 3000 m) (Figure 5B).
This large variability in salinity values in NFPI waters indicates
the presence of different water masses within the PGR, that is,
high spatial heterogeneity, resulting in the highest Rrs(0+) CVΔ
(Bands 5) for each PGR, 33%, 18%, 56%, and 68%, for 300, 900,
1500, and 3000 m, respectively. For other locations along the
track with lower CVΔ, the subpixel salinity variability was
comparatively lower than 1%. For OWI, the salinity variability
is comparatively lower than that at NFPI, but still considerable.
For different PGR, salinity variability in OWI pixel was estimated
as 4% (for 300 m), 6% (for 900 m), 7% (for 1500 m), and 6% (for
3000 m). At 300 m PGR, the variability in Rrs(0+) for OWI PGR
was estimated as 20% (for Bands 3, 5, and 6), that is, slightly lower
than the CVΔ for the NFPI waters; for 900, 1500, and 3000 m,
Rrs(0+) varied by about 28%, 18%, and 35%, respectively.

In these transitional waters, the Rrs(0+) variability results from
the high spatial variability of the optical water constituents, which
increases as PGR increases. Chla, turbidity, and CDOM exhibited
greater variability than non-transitional waters (Figure 5A).

For instance, for the NFPI, turbidity, CDOM, and Chla varied
from 5.15 to 8.83 NTU, 1.34–3.35 ppb, 2.47–2.98 µg L−1,
respectively, and for OWI, 5.21–6.08 NTU, 1.45–2.23 ppb, and
2.49–2.72 µg L−1, respectively. The range of variability was more
pronounced for turbidity and CDOM at NFPI; this was expected
due to the entrainment of the plume and oceanic waters, which
have different optical properties (Loos and Costa, 2010; Phillips
and Costa, 2017: Doxaran et al., (2016)). For non-transitional
waters, the mean values of turbidity, CDOM, and Chla were
5.13 NTU, 1.41 ppb, and 2.28 µg L−1, with much lower variability
(~7.4%, 11.0 %, and 4.8% for turbidity, CDOM, and Chla,
respectively). According to the CODAR data, a high surface
current velocity of 80 cm s−1 was observed at the NFPI site on
2 September 2019.

Similar transitional waters and associated variability were
identified on August22, 2019 (Figure 6); however, their
locations varied due to tide, current, and river discharge
conditions. NFPI was identified at the pixel centered at
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coordinates 49.039° and −123.341° with a salinity variability of
about 11%, corresponding to a subpixel variability in Rrs(0+) of
approximately 27% (Band 3—442.5 nm), 16% (Band 5—510 nm),
and 32% (Band 6—560 nm) for 300 m resolution. For other
locations along the track with lower Rrs(0+) CVΔ, the subpixel
salinity variability was generally <1%, whereas the subpixel
salinity variability of the NFPI was as high as 18% (for 900 m
PGR), 17% (for 1500 m PGR), and 22% (for 3000 m PGR),
associated with Rrs(0+) variability of 21%, 29%, and 32%,
respectively, at Band 5. For these waters, similar to the NFPI
for 2 September, the optical constituent concentrations showed
large ranges; turbidity ranged from 3.23 to 8.30 NTU, CDOM
from 5.02 to 7.71 ppb, Chla from 2.82 to 0.852 µg L−1. For the
OWI waters, centered at coordinates 49.142° and −123.589°, the
lower turbidity (Figure 6A) indicated an oceanic dominated
water mass, which generally shows lower spatial Rrs(0+)
variability (see next section). At 300 m PGR, the salinity
variability was lower than 1% and associated with a lower
Rrs(0+) variability of 4%. Still, for this day, relatively higher

Rrs(0+) variability was observed for larger-scale resolutions; for
900, 1500, and 3000 m pixel grid resolution, the subpixel
variability was 8%, 11%, and 17%, respectively, for Band 5
(Figure 6D). Non-transitional waters generally showed similar
Rrs(0+) variability as OWI, which was associated with lower
variability of optical water constituents for each water mass.
For example, oceanic waters showed mean values of turbidity,
CDOM, and Chla of 2.71 NTU, 4.46 ppb, and 1.75 µg L−1,
respectively, whereas non-transitional waters showed values of
2.82 NTU, 4.69 ppb, and 2.07 µg L−1, respectively. The mean
surface current velocity at the NFPI site (49.039° and
−123.341°) on August 22, 2019 was 50 cm s−1, which is higher
than current velocities corresponding to other waters of the
measurement transact.

In summary, specifically for the Salish Sea but similar to many
coastal waters worldwide, the NFPI generally exhibited larger
Rrs(0+) variability than OWI. At 900 m (commonly used as a 3 ×
3 window for validations of OLCI; Zibordi et al., 2018; Mograne
et al., 2019; Kyryliuk and Kratzer, 2019; Giannini et al., 2021) and

FIGURE 5 | Spatial variability analysis plot for the SoG waters along cruise transact on 2 September 2019. (A) Optical component (OC) concentration–turbidity,
chlorophyll and CDOM; (B) corresponding salinity variability and salinity (psu). Salinity thresholds at 25 psu and 15 psu were indicated with dotted lines; Rrs(0+)
coefficient of variability [Rrs(0+) CVΔ (%)] at different PGR 300, 900, 1500, 3000 m for, (C) Band 3 (442.5 nm), (D) Band 5 (510 nm) and Band 6 (560 nm) (E) of Sentinel
3a, OLCI sensor. Rrs(0+) CVΔ threshold value, 15% is indicated in the subplot (D) as a dotted line.
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3000 mGPR (commonly used as a 3 × 3 window for validations of
MODIS-Aqua; Bailey and Werdell, 2006; Carswell et al., 2017;
Hilborn and Costa, 2018), the variability associated with the in
situ Rrs(0+) for NFPI can be higher than 30%. This higher Rrs(0+)
variability is especially true for the longer wavelengths, illustrated
here as Band 6 (of Sentinel 3–OLCI–560 nm), which tends to
show relatively higher differences between in situ and satellite-
derived Rrs(0+) when compared with longer visible wavelengths
(e.g., Barnes et al., 2019; Tilstone et al., 2021; Zibordi et al., 2021;
Giannini et al., 2021).

We suggest that the spatial variability of the in situ Rrs

should also be considered in the selection criteria for good
match-up data, especially for data acquired in coastal waters.
The spatial variability of in situ data within the pixel of the
satellite image is not considered in the present protocols
because the data is limited to the pixel size of the satellite
(e.g., 300 m × 300 m, 1000 m × 1000 m). Within these areas, we

show a large variability of Rrs, especially in the transitional and
estuarine waters.

In this study, the defined threshold of the coefficient of
variance in situ Rrs(0+) is 15%, which is within the range
suggested in the literature. Generally, the CV threshold values
are defined for the pixel box considering the variability of satellite
products within the pixel grid box size centered on the location of
the in situ measurement, the time difference between in situ and
satellite overpass, and the fraction of valid retrievals from the
satellite pixel grid box. Mélin and Franz (2014) defined a satellite-
derived Rrs CV threshold in the range of 15%–20%, which is
further recommended by IOCCG (2019). In principle, CV
thresholds should be considered for both satellite pixel data
and in situ data for an improved satellite validation process.
For instance, Bailey and Werdell (2006) have defined a Lwn(λ)
CV threshold of 15% for a 5 × 5 pixel grid box of Sea-Viewing
Wide Field-of View Sensor (SeaWiFS) imagery and a CV
threshold of 5% for the in situ Lwn(λ). Similarly, Zibordi et al.

FIGURE 6 | Spatial variability analysis plot for the SoG waters along a cruise transaction on 22 August 2019. (A) Optical component (OC) concentration–turbidity,
chlorophyll and CDOM; (B) corresponding salinity variability and salinity (psu). Salinity thresholds at 25 and 15 psu were indicated with dotted lines; Rrs(0+) coefficient of
variability [Rrs(0+) CVΔ (%)] at different PGR 300, 900, 1500, 3000 m for, (C) Band 3 (442.5 nm), (D) Band 5 (510 nm) and Band 6 (560 nm) (E) of Sentinel 3a, OLCI
sensor. Rrs(0+) CVΔ Rrs(0+) CVΔ threshold value, 15% is indicated in the subplot (D) as a dotted line.
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(2009), defined a Lwn(λ) CV threshold of 20% for a 3 × 3 pixel
grid box of satellite imagery data and, using temporal in situ
Lwn(λ) data from the AERONET-OC site (Acqua Alta
Oceanographic Tower - AAOT), the authors defined a CV
threshold between 5% and 8% for Lwn(λ) measurements. The
examples above define the CV thresholds for in situmeasurement
based only on the temporal variability of these measurements,
and do not consider the spatial variability.

In general, the spatial variability of geophysical products is
effectively considered for spaceborne remote sensors,
whereas the CV of the pixel box is evaluated (Bailey and
Werdell, 2006; Zibordi et al., 2009; IOCCG, 2019), while in
the case of in situ measurements, the spatial variability is not
adequately characterized. This is a result of often insufficient
spatially continuous Rrs in situ data in relation to the spatial
resolution or pixel box of the satellite imagery. This study
specifically evaluated the uncertainties associated with the
spatial variability of above-water in situ Rrs in a dynamic
coastal region. The adopted CV threshold value of 15% is in-
line with the values suggested in the literature for
uncertainties associated with temporal variability of in situ
data (Zibordi et al., 2009) and satellite pixel (or pixel box)
data (Bailey and Werdell, 2006). This present study is based
on high spatial resolution data, which allowed us to analyze
the in situ spatial variabilities of reflectance measurements.
Hence, this study recommendation will allow for enhanced
quality of satellite validation procedures. We recommend the
consideration of the spatial variability of in situ Rrs(0+)
measurements and excluding the measurements where the
spatial variability, represented by the CV, is greater than 15%
within the scale distance of the pixel grid considered for the
satellite validation match up analysis.

The inclusion of in situ Rrs(0+) for these interface waters may
lead to high uncertainties for satellite validation statistics. For
example, Giannini et al. (2021) highlighted issues related to the
quality of Rrs(0+) match-ups (in situ vs. Sentinel-3 OLCI) due to
the movement of water masses in this dynamic coastal system.
Therefore, for dynamic coastal regions, especially under the
influence of river discharge, it is recommended to consider, if
available, the spatial variability of salinity as a guideline to define
the acceptance of in situ Rrs(0+) as a match-up.

Given the difficulties in acquiring continuous Rrs in situ data,
we also recommend using the salinity threshold of >5% to
identify the water masses with potentially significant variability
in Rrs(0+), which are generally observed in transitional or
interface water regions. As expected, we observed that the
greater salinity variability in the transitional or interface
waters is proportionate to the greater variability in reflectance
of the same water mass. Hence, the salinity threshold can be used
as a proxy to identify the recommended CV threshold value for
Rrs(0+) in constructing the matchup data set.

Salinity data is readily available for our sampling strategy
because it is collected continuously with the Ferrybox system
(Travers-Smith et al., 2021). This is likely the situation with many
research cruise ships (e.g., Koponen et al., 2007; Slade et al., 2010;
Westberry et al., 2010; Tilstone et al., 2021). However, spatially
continuous salinity data may not always be available with other

forms of sampling strategy, for instance, Rrs(0+) data collected
from fixed platforms such as AERONET-OC (Zibordi et al.,
2021). We recommend that pixel grids with salinity variability
higher than 5% should be considered as a transitional water
interface pixel (NFPI or OWI) for our sampling conditions in the
Salish Sea. As such, in situ Rrs(0+) for these regions will be
excluded for satellite match-up analysis (for all considered PGR
300, 900, 1500, and 3000 m) to minimize uncertainties associated
with validation of satellite-derived atmospherically corrected
Rrs(0+).

3.2 Rrs(0+) Variability for the Different Water
Masses: Oceanic, Estuarine, and Plume
Waters
After defining the Rrs(0+) variability for the transitional waters,
NFPI and OWI, we evaluated the spectral homogeneity of the
different water masses. For each water type, we calculated the
average Rrs(0+) variability [denotes as CVΔ hereafter]
corresponding to 10 days from May to September (a total of
33073 spectra at full resolution, i.e., without spatial binning) for
four distinct pixel grid resolutions of 300, 900, 1500, and 3000 m
for Band 3 (442.5 nm), Band 5 (510 nm), and Band 6 (560 nm) of
Sentinel 3 OLCI (Figure 7). In general, the scale of the spatial
variability differed for each water type, thus showing the distinct
nature of these three water masses. Regardless of the pixel grid
resolution, the CVΔ values were generally higher for estuarine
waters than for oceanic and plume waters. For example, CVΔ was
4%, 9%, and 7% for plume, estuarine, and oceanic, respectively, at
1500 m PGR for Band 5. Similarly, at 3000 m PGR (3 × 3 of
MODIS Aqua), CVΔ for estuarine waters was 15%, whereas
oceanic and plume waters showed lower variability at Band 5,
9% and 6%, respectively.

The relationship between the different pixel ground
resolutions and the Rrs(0+) variability within each PGR,
defined by CVΔ for each water type was assessed based on the
rate of change, d CVΔ/dPGR (defined as Slope value—SL). SL was
consistently positive for the three water types, and the
relationships were generally linear (Figure 8). The SoG
estuarine waters showed the highest positive slope value (SL =
0.0036), whereas oceanic (SL = 0.0022 for Band 5 and 6, and
0.0034 for Band 3) and plume waters (SL = 0.0009) showed a
relatively lower rate of change, thus indicating that for these
waters, the PGR approximated the scale of the optical variability
of the water. Specifically, for these waters, at 300 m grid
resolution, the CVΔ was the lowest (<5% for the three
representative bands), but progressively increased with higher
PGR, especially for the oceanic waters (Figure 8A). Estuarine
waters showed slightly higher variability, with CVΔ about
2.5 times higher between 300 m (~6%) and 3000 m (~16%)
grid resolution. These findings are similar to Moses et al.
(2016), who showed a quasi-linear relationship (moderate
change in CVΔ) between pixel spatial resolution (>200 m) and
Rrs(0+) variability when comparing imagery acquired by different
sensors at different spatial resolutions for different types of
coastal waters. However, according to the authors, depending
on the local spatial scale of the bio-optical and optical
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constituents, the more pronounced changes in CVΔ happened for
PGR lower than 100 m (coastal waters) and 200 m (offshore
waters); still, the largest CVΔ were reported for pixel

resolution higher than 400 m. Here, we did not investigate the
Rrs(0+) variability for PGR lower than 300 m since no current
ocean color satellite presents finer resolution.

FIGURE 7 | Comparison of mean coefficient of variability in remote sensing reflectance Rrs(0+) (CVΔ) for oceanic, estuarine, and plume waters with regard to pixel
grid resolutions of (A) 300, (B) 900, (C) 1500, and (D) 3000 m for the SoG waters along the cruise track.

FIGURE 8 |Mean Rrs(0+) CVΔ versus pixel grid resolution from 300 to 3000 m for, (A) oceanic, (B) estuarine, and (C) plume waters for Band 3 (442.5 nm), Band 5
(510 nm), and Band 6 (560 nm) of the Sentinel 3a, OLCI sensor.
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The CVΔ depends on the spatial scale of the ocean dynamics
and the optical constituents’ concentration in the different waters
(e.g., Moses et al., 2016; Taylor and Kudela, 2021). Here, we show
the within-transect Rrs(0+) variability (CVΔ) along with the
corresponding variability in turbidity, CDOM, Chl-a, and
salinity acquired concurrently on 2 September 2019, as an
example of our dataset (Figure 10). For the same day, remote
sensing reflectance spectra are shown in Figure 9, for oceanic,
estuarine, and plume water types (full resolution data with no
spatial binning). On this day, CVΔ in turbidity was the lowest for
plume waters (13%) compared with estuarine waters (19%) but
similar to oceanic waters (13%); CDOM variability showed a
similar pattern with the lowest variability for plume waters (6%),
followed by higher variability in oceanic water (9%), and the
highest for estuarine (11%); Chl-a variability observed for the
plume, oceanic, and estuarine waters was 4%, 2%, and 5%,

respectively. Salinity variability observed for the plume,
oceanic, and estuarine waters was 6%, 1%, and 13%,
respectively, emphasizing the relatively larger variability of
estuarine waters. The combined influence of optical water
constituents resulted in the highest Rrs(0+) CVΔ of 36% for
estuarine water mass, whereas for oceanic and plume waters, it
was 8% and 8%, respectively (Figure 10).

The varying ranges of optical constituents were a result of the
seasonal dynamics of this region, where during the spring freshet,
the Fraser River plume is rich in particulate inorganic and
dissolved organic matter, and the dominant phytoplankton
bloom happens in the spring and summer seasons
(Johannessen et al., 2006; Loos and Costa, 2010; Allen and
Wolfe, 2013; Phillips and Costa, 2017; Suchy et al., 2019). It is
noticeable that the plume waters were well mixed, demonstrated
by the lower variability of the optical water constituents and
salinity (Figure 10). Further, specifically for the plume waters, the
high turbidity, which is generally associated with high inorganic
particulate scattering (Loos and Costa, 2010; Phillips and Costa,
2017; Giannini et al., 2021), resulted in the highest and least
variable Rrs(0+). Shelf circulation, the dilution rate of river-borne
materials, and transport processes within the plume lead to
stratified-shear mixing (Horner-Devine et al., 2015).
Horizontal advection, transport of buoyancy, and momentum
of Fraser River waters contribute to the well-mixed plume waters.
Previous studies reported highly intense turbulence mixing in the
near field region of the plume of the Fraser River (Moum et al.,
1995; MacDonald and Geyer, 2004). The turbulent kinetic energy
dissipation rate is observed to be as high as 10–4–10–3 m2 s−3

(MacDonald et al., 2007; McCabe et al., 2008; Kilcher et al., 2012;
Horner-Devine et al., 2015). Wind and wave forcing also have a
vital role in active mixing in the entire plume region (Houghton
et al., 2009). Houghton et al. (2009) have shown that the salt
fluxes vary from approximately 5 × 10–5 kg m s−1 during low

FIGURE 9 |Rrs(0+) spectra measured on 2 September 2019 for (A) oceanic waters (Min; Max; SD; Mean = 0.0019; 0.0029; 0.00017; 0.0021 Sr−1 (B) plumewaters
(0.0131; 0.0186; 0.0013; 0.0165 Sr−1, respectively) and (C) estuarine waters (0.0021; 0.0199; 0.0021; 0.0058 Sr−1, respectively). The descriptive statistics shown are
for Sentinel 3 OLCI Band 5 or 510 nm.

FIGURE 10 | Variability (CV) analysis of Rrs(0+) at Band 3 (442.5 nm),
Band 5 (510 nm) and Band 6 (560 nm), Turbidity, Chlorophyll, CDOM, and
salinity parameters for oceanic, estuarine, and plume waters on 2 September
2019 SoG waters. The analysis shown at 300 m high resolution PGR.
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wind conditions to 3 × 10–4 kg m s−1 for high winds (12 m s−1).
For our observation period (May to September, 2019), high wind
conditions (4–13 m s−1) dominated, causing well-mixing of the
plume of water. These plume waters form a strong vertical
stratification at around 5–7 m depth, depending on the tide
and season (Halverson and Pawlowicz, 2011), resulting in a
highly scattered and homogenous surface layer (Loos and
Costa, 2010). Hence, the homogenous surface layer of the
Fraser River plume waters caused lower variability in turbidity
or total suspended matter, which consequently resulted in lower
Rrs(0+) CVΔ. The oceanic waters in the transect were less
influenced by the river plume and resulted in lower Rrs(0+) CVΔ.

The estuarine waters showed the highest variability of the optical
constituents (Figure 10) due to salinity intrusion and, consequently,
the largest Rrs(0+) CVΔ. Since estuarine dynamics and circulation
contribute to the transport and dilution of fresh plume waters to
saline oceanic waters (Thomson, 1981; Kostaschuk and Atwood,
1990; Hickey et al., 1998), the optical constituents result from both
distinct water masses, with absorption and scattering playing a
quasi-equal role in light attenuation (Loos and Costa, 2010;
Phillips and Costa, 2017). This biogeochemical and, consequently,
optical spatial complexity contributed to the largest Rrs(0+) CVΔ at
any PGR, indicating that the spatial scale of dynamics is shorter than
the PGR.

The spatial variability of the in situ Rrs(0+) analysis presented
here has implications for the satellite data match-up analysis
commonly used to validate atmospherically corrected Rrs(0+). As
per the results obtained, irrespective of the spatial resolution or
window box used in the validation process, in situmeasurements
acquired in estuarine waters may produce high uncertainties for
satellite validation statistics.

4 CONCLUSION

This research provides a detailed and straightforward analysis of
the spatial variability of in situ Rrs(0+) based on 33,073
measurements from the Salish Sea, west coast of Canada,
taken aboard a BC ferry with autonomous radiometers (SAS-
ST). The present study brings awareness to the spatial variability
of Rrs in coastal waters for consideration when defining the
quality of in situ data for satellite validation. The comparison
of satellite-derived Rrs(0+) with the corresponding in situ data is
not the objective of this paper. However, our near-future work
will involve the detailed satellite validation match-up analysis
aspects of this study. The Salish Sea is a highly optically dynamic
water system with a strong influence from riverine and oceanic
waters, which is common in many coastal regions of the world.
This analysis provides a recommendation for accessing the
quality of in situ Rrs(0+) match-up data based on the spatial
variability as complementary to standard recommendations,
including the temporal match-up intervals, sensors
specifications and calibration, platform perturbation noise,
parameterization to address surface Fresnel reflection of the
sky radiance and corrections for the bidirectional effect, sky
conditions, and data processing methods (Mobley, 1999;
Hooker and Morel, 2003; Zibordi et al., 2012; Talone et al.,

2018; Vabson et al., 2019a, Vabson et al., 2019b; Ruddick
et al., 2019; Alikas et al., 2020; Tilstone et al., 2021; Wang and
Costa, 2022). For specific water masses, the spatial variability of in
situ Rrs(0+) within the pixel resolution of ocean color satellites or
commonly used pixel window sizes may significantly contribute
to the uncertainty budget in a match-up analysis. For the
simulation of PGR, we considered a fixed-width grid size of
300, 900, 1500, and 3000 m, whereas the distance between the
geographical coordinates of the in situmeasurement transact was
estimated using the cosine-haversine formula (Robusto, 1957).
We consider that including a 300 m PGR is sufficient to identify
and define the oceanographic features of the region, even with a
fixed width window. However, a moving window analysis could
contribute to our future studies of very high-resolution data, such
as the validation of MSI Sentinel-2, Landsat-8, etc.

Based on a large dataset covering a variety of optical water
masses, we found that the spatial variability of Rrs(0+)
measurements is the largest (~18% and 68% for 900 and
3000 m PGR, respectively) in NFPI waters, followed by in the
OWI (~28% and 35%, respectively), thus indicating the spatial
heterogeneity of interface waters. Further, the Rrs(0+) variability
was evaluated for specific water masses beyond the transitional
water—plume, estuarine, and oceanic waters—characterized
based on a salinity gradient criteria. Overall, the subpixel
variability increased as the spatial resolution of the sensor or
the window size increased, mainly in a linear fashion. Similar to
the findings for the NFPI waters, the estuarine waters showed
higher subpixel Rrs(0+) variability (~8% and 16% for 900 and
3000 m PGR, respectively) among the three water masses, again
indicating its inhomogeneous spatial nature. The high variability
in Rrs(0+) was primarily associated with the spatial dynamic of
the optical water constituents, thus limiting the use of these
datasets as Fiducial Reference Measurements (FRMs) and for
validation of satellite-derived atmospherically corrected Rrs(0+).
We suggest considering the spatial variability of in situ Rrs(0+)
measurement, which represents the small scale environmental
changes in coastal waters. Also, we recommend using, the salinity
threshold as a proxy to identify the recommended values of
Rrs(0+) CVΔ in the construction of the match-up data set.
Hence, the transitional water boundary pixels, especially those
representing NFPI and OWI, and estuarine water masses will be
excluded for satellite match-up analysis to avoid compromising
the statistical result of satellite validation.
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