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In presenting an irrigation detection methodology that leverages multiscale satellite
imagery of vegetation abundance, this paper introduces a process to supplement
limited ground-collected labels and ensure classifier applicability in an area of interest.
Spatiotemporal analysis of MODIS 250m enhanced vegetation index (EVI) timeseries
characterizes native vegetation phenologies at regional scale to provide the basis for a
continuous phenology map that guides supplementary label collection over irrigated and
non-irrigated agriculture. Subsequently, validated dry season greening and senescence
cycles observed in 10m Sentinel-2 imagery are used to train a suite of classifiers for
automated detection of potential smallholder irrigation. Strategies to improve model
robustness are demonstrated, including a method of data augmentation that randomly
shifts training samples; and an assessment of classifier types that produce the best
performance in withheld target regions. The methodology is applied to detect smallholder
irrigation in two states in the Ethiopian Highlands, Tigray and Amhara, where detection of
irrigated smallholder farm plots is crucial for energy infrastructure planning. Results show
that a transformer-based neural network architecture allows for the most robust prediction
performance in withheld regions, followed closely by a CatBoost model. Over withheld
ground-collection survey labels, the transformer-based model achieves 96.7% accuracy
over non-irrigated samples and 95.9% accuracy over irrigated samples. Over a larger set
of samples independently collected via the introduced method of label supplementation,
non-irrigated and irrigated labels are predicted with 98.3 and 95.5% accuracy,
respectively. The detection model is then deployed over Tigray and Amhara, revealing
crop rotation patterns and year-over-year irrigated area change. Predictions suggest that
irrigated area in these two states has decreased by approximately 40% from 2020 to 2021.
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1 INTRODUCTION

Between 1970 and 2008, global irrigated area increased from 170 million to 304 million hectares
(Vogels M. F. A. et al., 2019). In sub-Saharan Africa however, as little as 4–6% of cultivated area is
irrigated, given the lack of electric grid infrastructure and the high cost of diesel (Wiggins et al., 2021).
Locating isolated irrigation identifies areas that can support higher quality energy provision
services—e.g., a grid connection or minigrid installation—as these sites can sustain higher
energy demands and the attendant electricity costs (Conlon et al., 2020). Facilitated through
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informed planning, irrigation expansion has a direct impact on
poverty reduction: In Ethiopia, one study found that the average
income of irrigating households was double that of non-irrigating
households (Gebregziabher et al., 2009).

In data poor locations, satellite imagery provides a source of
detailed synoptic observations of irrigated agriculture (Pervez
et al., 2014). A previous irrigationmapping effort in Ethiopia used
three 1.5 m resolution SPOT6 images to distinguish between
large-scale and smallholder irrigation in the Ethiopian rift
(Vogels M. F. A. et al., 2019). This approach was then adapted
to intake timeseries of 10 m Sentinel-2 imagery to predict
irrigation presence across the horn of Africa (Vogels M. et al.,
2019). While both studies demonstrated high accuracies over
collected observations, limited labels precluded a more rigorous
performance assessment over the entire area of interest. Other
studies have used multiscale imagery to detect irrigation,
including one that fuses MODIS and Landsat imagery to
identify irrigated extent, frequency, and timing in
northwestern China (Chen et al., 2018). Here, unique
advantages of satellite imagery products at different resolutions
are exploited: 250 m MODIS imagery is valuable for
characterizing vegetation over large areas (Huete et al., 1999),
while decameter resolution imagery from Landsat or Sentinel-2
missions can better discern plot extent (Phiri et al., 2020).

Deep learning techniques have become widely used for land
process classification, as they uncover intricate structures in large,
complex datasets (Lecun et al., 2015); and provide a robust
method of handling phenological variability (Zhong et al.,
2019). However, despite increasing availability of remotely
sensed imagery, computing resources, and advanced
algorithms for information extraction, high-quality labels
remain scarce and expensive to acquire. Methods of
overcoming label scarcity generally fall into one of four
categories: 1) Using pretrained networks; 2) unsupervised and
self-supervised learning; 3) data augmentation; or 4) additional
label collection (Li et al., 2018). Even as pretrained networks like
ImageNet (Deng et al., 2009) are highly effective for true-color
image classification, these networks’ weights do not translate to
tasks that intake multispectral or hyperspectral imagery (Tao
et al., 2022). Unsupervised learning techniques, including those
that ensemble different clustering methods—e.g., Banerjee et al.
(2015)—have been shown to effectively organize unlabeled
imagery. Existing work has also demonstrated that training a
Generative Adversarial Network (GAN)—itself a type of
unsupervised learning—has allowed for improved change
detection performance on multispectral imagery, e.g., Saha
et al. (2019). For data augmentation, three techniques are
often implemented: Image translation, rotation, and flipping
(Yu et al., 2017; Stivaktakis et al., 2019); however, these
techniques do not have obvious analogues for pixel-based
classification.

In assessing the impact of training dataset size on land cover
classification performance, Ramezan et al. (2021) finds that
investigating multiple types of classifiers is recommended, as
the performance of specific classifiers is highly dependent on the
number of training samples. A number of other studies have
introduced methods for obtaining training samples, including

collection via hand-engineered rules (Abbasi et al., 2015);
normalized difference in vegetation index (NDVI)
thresholding (Bazzi et al., 2021); finding neighboring pixels
that are highly similar to labeled pixels (Naik and Kumar,
2021); and visual inspection of high-resolution (Vogels M.
et al., 2019) and decameter resolution (Wu and Chin, 2016)
imagery. Lastly, while larger training datasets generally yield
better model performance, condensing input samples via
dimensionality reduction has been demonstrated to increase
land cover classification accuracy (Stromann et al., 2020;
Sivaraj et al., 2022).

Another lingering issue in land process mapping is
determining the conditions under which a model can be
utilized in locations beyond where it was trained. Site-specific
methods may not be easily transferable to other places or climes
(Ozdogan et al., 2010; Bazzi et al., 2020), and the performance of
transferred models can often only be assessed after full
implementation in a novel setting (de Lima and Marfurt,
2020). Therefore, processes that yield insights about model
transferability before training and inference offer benefits to
researchers seeking to understand the maximum spatial
applicability of their approaches.

As current methods primarily focus on already well-
understood areas of interest with existing datasets, new
techniques and products need to be developed for parts of the
world lacking labeled data. In the realm of irrigation detection,
new methodologies and mapping products can help identify
locations for further energy system planning and investment,
as these areas contain latent energy demands that can make
higher quality energy services cost-effective and increase incomes.
To this end, the following paper presents a multiscale
methodology that leverages 250 m MODIS imagery for
regional phenological characterization and 10 m Sentinel-2
imagery for irrigation detection on smallholder plots. This
approach is then applied to the 205,000 km2 Ethiopian
Highlands, whereby it introduces a novel method of label
collection; an evaluation of different classifier architectures and
training strategies that ensure model applicability within the area
of interest; and an assessment of irrigated area in the Tigray and
Amhara states of Ethiopia for 2020 and 2021.

2 BACKGROUND

Identification of dry season greening as potentially irrigated
agriculture must take into account spatiotemporal variations in
native vegetation phenological cycles. The complex topography of
the Ethiopian Highlands and East African rift system, combined
with the latitudinal movement of the InterTropical Convergence
Zone (ITCZ) and seasonal upwelling of the Somali current in the
Arabian Sea produces a diversity of rainfall patterns that control
annual vegetation phenological cycles in the study area1. In order
to provide phenological context with which to identify anomalous
dry season greening, a regional vegetation phenology map is

1See Wakjira et al. (2021) for a fuller discussion of rainfall patterns in Ethiopia.
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derived from spatiotemporal analysis of timeseries of vegetation
abundance maps. Using the spatiotemporal characterization and
temporal mixture modeling approach given by (Small, 2012)
applied to timeseries of MODIS enhanced vegetation index
(EVI) maps, four temporal endmember (tEM) phenologies are
identified that bound the temporal feature space of all vegetation
phenology cycles observed on the East African Sahel. These four
tEM phenologies form the basis of a linear temporal mixture
model that can be inverted to provide tEM fraction estimates for
each pixel’s vegetation phenology. Figure 1 presents a
spatiotemporal phenological characterization for the country,
created from 16-day 250 m MODIS EVI imagery between 1
June 2011 and 1 June 2021.

The four tEMs extracted for Ethiopia are as follows: a single
cycle tEM, representing a single annual vegetation cycle per year
that peaks in September/October; an evergreen tEM, representing

perennial vegetation; a double cycle tEM, representing semiannual
vegetation cycles observed on the Somali peninsula; and a non-
vegetated tEM, representing barren or non-existent vegetation.
The ensuing phenology map in Figure 1 contains unmixing root
mean square (RMS) error less than 10% for 90% of the pixels;
additional unmixing error statistics and the locations of the
extracted tEMs in principal component (PC) feature space are
shown in Supplementary Figures S1, S2.

Figure 1 roughly divides into 4 quadrants. In the northeast
quadrant, Afar appears as dark green, indicating that none of the
4 tEMs contribute significantly to phenologies in this part of the
country: The vegetation that does exist in this mostly barren area
is represented by low levels of evergreen tEM abundances. In the
southeast quadrant, dominated by Somali and a portion of
Oromia, vegetation patterns cycle twice annually. This is an
area with bimodal rainfall but low total annual precipitation

FIGURE 1 | Continuous endmember fraction map derived from a temporal mixture model of 250 m MODIS enhanced vegetation index (EVI) timeseries. Smooth
gradients and abrupt transitions in phenology are primarily related to topography and variations in precipitation. Region names showing locations of labeled polygons are
italicized: The region containing ground collection (GC) labels is delineated in gold; the regions containing visual collection (VC) labels are delineated in blue.
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that results in the double cycle tEM containing peak vegetation
abundances lower than those of the single cycle and evergreen
tEMs. It follows that southeast Ethiopia is more pastoral with
sparser vegetation than other parts of the country.

The southwest quadrant—covering Southern Nations,
Nationalities, and Peoples’ (SNNP) Region, Sidama, and the
western portion of Oromia—contains significant amounts of
evergreen vegetation, as is demonstrated by its bright green
hue. Here, evergreen vegetation is supported by bimodal
rainfall with higher levels of annual precipitation than in
eastern Ethiopia. In contrast, the northwest quadrant of the
phenology map contains red-dominant color gradients,
indicating phenologies similar to the single cycle tEM. This
portion of the country, known as the Ethiopian Highlands and
comprising of Amhara and Tigray, is highly agricultural; the main
cropping season lasts from June to October and coincides with
the primary kiremt rains, with some secondary cropping
following the lighter belg rains from March to May.
Accordingly, cropping that occurs during the dry season
between November and March is likely to be irrigated.

In presenting a map of dominant vegetation phenologies in
Ethiopia, Figure 1 provides a guide for land cover classification
applicability within the country. For instance, a dry season
irrigation detector trained in Amhara will perform poorly in
SNNP, as phenological patterns differ significantly across these
states, and dry season crop cycles exhibit different vegetation
signatures. In contrast, a dry season irrigation detector developed
across Amhara can be transferred to Tigray or Benishangul-
Gamuz, due to regional phenological similarities.

The named, italicized outlines in Figure 1 represent the 8 areas
containing labels used in this paper, referred to as regions: The
yellow outline indicates a region where labels were collected via a
ground survey, and the purple outlines indicate regions where
labels were collected by means of visual interpretation and
timeseries inspection. Full information on the labeled data
collection process is presented in Section 3.

3 MATERIALS AND METHODS

The data collection portion of this paper’s methodology consists of
pairing Sentinel-2 imagerywith labeled polygons to train an irrigation
detector. Here, a pixel timeseries paired with a binary irrigation/non-
irrigation label constitutes a sample. Irrigation is defined as such: A
pixel is irrigated if its phenology includes at least one non-perennial
vegetation cycle during the dry season, 1 December to 1 April for the
Ethiopian Highlands. Conversely, a pixel is non-irrigated if its
phenology demonstrates only vegetation growth that can be
attributed to the area’s known rainy seasons. Irrigated areas are
only of interest if they contain dry season vegetation cycles; this strict
definition of irrigation excludes supplemental irrigation practices and
perennial crops that may be consistently irrigated throughout
the year.

3.1 Sentinel-2 Imagery Collection
The following analysis uses bottom-of-atmosphere corrected
(processing level L2A) Sentinel-2 temporal stacks—four

dimensional arrays created by stacking a set spatial extent of
imagery bands over multiple timesteps—using the Descartes Labs
(DL) platform, a commercial environment for planet-scale
geospatial analysis. Images are collected at a 10-day time
resolution. To focus on the 2020 and 2021 dry seasons, the
time period of interest is defined as between 1 June 2019, and
1 June 2021. Given the 10-day timestep, 72 image mosaics are
collected—36 per year. Additional information on the imagery
download process is available in the Supplementary Material.

3.2 Label Collection
Two types of labeled data are leveraged for irrigation mapping:
ground collection (GC) labels, acquired via an in-person survey;
and visual collection (VC) labels, acquired via visual identification
of dry season vegetation from Sentinel-2 imagery using the DL
platform and subsequent cleaning via timeseries clustering. The
locations of these GC and VC regions are shown in italics in
Figure 1, with all labels collected for the 2021 dry season. A
description of the ground collection survey is presented in the
Supplementary Material. As the GC labels constitute our highest
quality irrigation observations, verified by in situ visits to
individual plots, we do not use them for training during the
model sensitivity analysis, instead reserving them for validation of
classifier performance.

3.2.1 Visual Label Collection
To supplement the GC labels located in Tana, visually collected
labels are acquired for seven separate regions via a three-step
process of 1) visual inspection, 2) EVI timeseries confirmation,
and 3) cluster cleaning. Each of these steps is described in its
eponymous subsection below.

3.2.1.1 Visual Inspection
The first step in the VC labeling process involves drawing
polygons around locations that either: 1) Present as cropland
with visible vegetation growth (for the collection of irrigated
samples), or 2) present as cropland with no visible vegetation
growth (for the collection of non-irrigated samples), based on
dry-season, false-color Sentinel-2 imagery presented on the DL
platform. Sub-meter resolution commercial satellite imagery
from Google Earth Pro is also used to confirm the existence of
cropland in the viewing window. For the collection of non-
irrigated labels, polygons are restricted to areas that contain
non-perennial cropland; however, because only phenologies
that contain dry season vegetation cycles are considered
irrigated, non-irrigated polygons occasionally overlap other
types of land cover—e.g., perennial crops, fallow cropland, or
areas with human settlement—with any overlap likely to improve
training robustness.

3.2.1.2 Enhanced Vegetation Index Timeseries Confirmation
After drawing a polygon around a suspected irrigated or non-
irrigated area, the second step in the VC label acquisition process
entails inspection of the median Sentinel-2 EVI timeseries of all
pixels contained within the polygon; this step is shown in the plot
windows of Figure 2. Here, all available Sentinel-2 imagery with
less than 20% cloud cover between 1 June 2020, and 1 June 2021 is
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retrieved; a cubic spline is then fit to all available data to generate
continuous EVI timeseries. For potential irrigated polygons, if the
EVI timeseries shows a clear peak above 0.2 during the dry
season, it is confirmed as irrigated. Similarly, for potential non-
irrigated polygons, an EVI timeseries that demonstrates a single
vegetation cycle attributable to Ethiopia’s June to September rains
is taken as confirmation of a non-irrigated VC polygon. However,
if the EVI timeseries does not confirm the expected irrigated/non-
irrigated class, or if the plotted EVI error bars (representing ±one
standard deviation of the EVI values at that timestep) indicate a
level of signal noise within the polygon that prevents the
identification of a clear vegetation phenology, the polygon is
discarded.

Figure 2A demonstrates an example of irrigated VC label
collection in the Koga region—here, the double vegetation peak

present in the EVI timeseries confirms the purple polygon in the
center of the window as irrigated (blue polygons indicate areas
already saved as irrigated VC labels). Figure 2B demonstrates the
same process for non-irrigated VC labels, also in Koga: The single
EVI peak in October 2020 confirms the pink polygon in the top
left of the window as non-irrigated (red polygons indicate areas
already saved as non-irrigated VC labels).

3.2.1.3 Cluster Cleaning
The third step in the VC label acquisition process involves bulk
verification of the collected timeseries by means of cluster
cleaning. For each VC region, all pixels that reside within
labeled polygons are collected and split based on the irrigated/
non-irrigated class labels of the polygons. Fifteen-component
Gaussian mixture models are fit to each class’s data to extract the

FIGURE 2 | Example of the visual collection (VC) labeling process in Koga using the Descartes Labs platform. Blue polygons denote areas determined to be
irrigated; red polygons are determined to be non-irrigated. Background imagery is a false-color Sentinel-2 image taken in March 2021: Red, near-infrared, and blue
bands are presented in the RGB channels, respectively. In (A), the Sentinel-2 enhanced vegetation index (EVI) timeseries is shown for the drawn purple rectangle in the
middle of the window; in (B), the Sentinel-2 EVI timeseries is shown for the drawn pink, semi-octagonal polygon in the top left of the window. Both timeseries
present the median EVI values for all pixels contained within the drawn polygon; the error bars show one standard deviation of these values above and below the median.
In both figures, the drawn polygons are confirmed as VC labels, since they meet the definitions of irrigation/non-irrigation, respectively.
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dominant phenologies contained within the region’s samples; the
EVI timeseries representing the cluster centroids are then plotted,
with the plot legend displaying the number of samples per cluster.
Figure 3A presents the results of this initial clustering for the
Koga region.

From the initial cluster timeseries, an iterative process begins
to ensure that all cluster timeseries align with the specified class
label. For an irrigated cluster timeseries to be kept, it must contain
multiple successive EVI values above and below 0.2, and it must
contain a clear EVI peak above 0.2 during the dry season.
Analogously, non-irrigated cluster timeseries are discarded if
they display a clear dry-season EVI peak above 0.2. If these
conditions are not met—as is the case for Clusters 3, 6, and 13 of
the Koga irrigated samples, which do not contain a clear EVI peak
above 0.2 between 1 December 2020 and 1 April 2021 (Clusters 6
and 13) or do not senesce below an EVI threshold of 0.2 for
successive timesteps (Cluster 3)—all pixel timeseries associated

with that cluster are discarded from the labeled data. This process
is repeated until all 15 clusters for both classes demonstrate EVI
signals that meet the non-irrigated/irrigated class definitions. The
final, cleaned cluster timeseries for the Koga region are shown in
Figure 3B.

Cluster-cleaning is performed for all regions’ labeled data,
including labeled data collected from the GC region, Tana. For
increased visibility into the labeled data collected and used for
training, these regions’ clusters before and after cleaning are
included in Supplementary Appendix SA of the
Supplementary Material.

A summary of the number of collected polygons and cleaned
pixel timeseries samples in each region is shown in
Supplementary Tables S2, S3: In total, 1,207,233 non-
irrigated samples and 907,887 irrigated samples are used,
taken from 1702 to 750 labeled polygons, respectively. For
model training and evaluation, data are divided among

FIGURE 3 | Clustered enhanced vegetation index (EVI) timeseries before and after cluster cleaning for the Koga visual collection (VC) region. Before and after
cleaning, pixels are grouped into one of 15 randomly indexed clusters. In (A), Clusters 3, 6, and 13 of the irrigated samples are discarded due to either (6, 13) not
containing a clear EVI peak above 0.2 during the dry season (December 1st to April 1st); or (3) not containing successive EVI values below 0.2. All non-irrigated clusters
display a single vegetation peak aligned with the main rainy season, and the irrigated clusters after cleaning (B) all display a vegetation cycle during the dry season.
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training, validation, and test splits2. Here, polygons in each
labeled region are split according to a 70/15/15 training/
validation/test ratio; this method ensures that highly similar
pixels from within the same polygon do not exist across
training configurations, a division of data that would
artificially inflate model performance for the task of predicting
irrigation over pixel timeseries unseen by the model. All training,
validation, and testing is performed pixelwise (i.e., having
removed the spatial relationships of samples).

The Supplementary Material contain additional information
about the labeled data distributions, including a statistical
evaluation of the similarity of labeled samples across region
and class (Supplementary Tables S4, S5).

3.3 Prediction Admissibility Criteria
Given that irrigated phenologies exist over a small fraction of the
total land area of the Ethiopian Highlands, and that there are
many types of land cover that do not fall within this paper’s non-
irrigated/irrigated cropland dichotomy, a set of criteria are
imposed to exclude pixel phenologies that are not cropland or
are highly unlikely to be irrigated. Table 1 presents five criteria
that must all be met for a pixel timeseries to be potentially
irrigated and the motivation behind each.

These vegetation-specific criteria are informed by the EVI
distributions of labeled irrigated samples for all label collection
regions: Supplementary Figure S3 contains cumulative
distribution functions (CDFs) for the 10th and 90th EVI
timeseries percentiles, the 90th:10th EVI timeseries percentile
ratio, and the maximum EVI value during the dry season. CDFs
are presented for all regions’ irrigated samples, including for a set
of polygons collected over evergreen land cover areas.

The criteria in Table 1 are also used to create a reference
irrigation classifier that does not rely on machine learning. For
this reference classifier, if all 5 conditions are met, the sample is
deemed irrigated; if any of the conditions is not satisfied, the
sample is deemed non-irrigated.

3.4 Model Training
3.4.1 Model Architectures
Five separate classifier types are compared to determine the
model architecture with the most robust irrigation detection
performance across regions. The first two classifiers are
decision tree-based: A random forest with 1000 trees

(Breiman, 2001); and a CatBoost model that uses gradient
boosting on up to 1000 trees (Dorogush et al., 2017). The
other three classifiers are neural networks (NN): A baseline
network, a long short-term memory (LSTM)-based network,
and a transformer-based network. For comparability, these
three classifier architectures are designed to have similar
structures, based on the strong baseline model structure
proposed in (Wang et al., 2017); as seen in Figure 4, they
differ only in the type of encoding blocks used.

3.4.2 Model Training Strategy
The implemented model training strategy addresses two potential
pitfalls among training processes: 1) Imbalanced samples across
region and class; and 2) high similarity among samples within a
region that may not reflect the sample distributions across all
regions. Consistent with best practices in dealing with imbalanced

TABLE 1 | Prediction admissibility criteria. All criteria need to be satisfied for a prediction to be admitted as irrigated.

Admissibility Criteria Motivation

10th percentile of EVI timeseries < 0.2 Remove evergreen pixels
90th percentile of EVI timeseries > 0.2 Remove barren/non-vegetated pixels
Maximum of the EVI timeseries during the dry season (Dec. 1—Apr. 1) > 0.2 Remove pixels with no vegetation growth in the dry season
Ratio of the 90th:10th percentile of the EVI timeseries > 2 Remove evergreen pixels
Shuttle Radar Topography Mission slope measurement < 8% Remove pixels in highly sloped settings where cropping is impractical

FIGURE 4 | Neural network (NN) model architectures tested as irrigation
detection classifiers. Model architectures are consistent by design; only
encoding blocks differ across networks.

2In splitting the labeled data, the training/validation/testing terminology standard
in machine and deep learning literature is adopted.
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data, this first issue is addressed with 1) class balancing weights
specific to each region, based on the “balanced” heuristic inspired
by King and Zeng (2001); and 2) a region-specific weight equal to
the ratio of the maximum number of samples in any region to the
number of samples for the region in question. Both class-
balancing and region-balancing weights are used in all training
configurations.

To address potential redundancy and time-specificity among
samples within a region, random shifts are applied to all input
timeseries. The sizes of these random shifts vary between −3 and
+3 timesteps (corresponding to between −30 and +30 days), with
an equal probability of all 7 possible shifts occurring (including a
shift by 0 timesteps). Random shifts are applied to all samples in
the training and validation sets and differ for each sample every
time it is seen by the model. No shifts are applied to the samples in
the testing sets.

The primary metric for performance evaluation is the F1 score
on the test datasets of regions withheld from training.
Accordingly, performance is assessed in a manner that
prioritizes classifier robustness—i.e., performance in regions
unseen during training—and not in a manner that could be
inflated by close similarity of samples within a region. For
reference, the F1 score balances prediction precision and recall,
and is calculated per Eq. 1.

F1 � TP

TP + 1
2 FP + FN( ) (1)

The training strategy differs for the tree-based classifiers and
for the neural network-based classifiers. As training the tree-
based classifiers occurs across a single batch with no iteration
across epochs, there is no need for separate validation and testing
datasets: The training and validation datasets of all included
regions are therefore combined to create a single training
dataset. After training on this combined dataset, performance
is evaluated across the test datasets.

In contrast, training neural network-based models takes place
by batch across epochs, and a validation set is required to guide
the training process. For a given training step, one batch from
each region is concatenated, with the combined output shuffled
before model intake. After the epoch is finished, performance is
assessed on the validation set of each region included in training.
If the minimum F1 score among all regions’ validation sets has
increased from its previous maximum, the model weights are
saved; however, if the minimum F1 score has not increased from
its previous high point, the model weights are discarded.
Minimum F1 score across all validation regions is selected as
the weight update criteria to ensure model robustness: Consistent
performance across the entire area of interest is desired, not high
performance in one set of regions and poor performance in
another. Training concludes once the minimum validation
region F1 score has not improved for 10 training epochs, or
after 30 epochs have been completed. After training, model
weights are loaded from the epoch with the highest minimum
validation region F1 score; performance of this model on the test
datasets of all regions is then reported. For all training runs, a
binary cross-entropy loss, a learning rate of 1e-4, and an Adam

optimizer (Kingma and Ba, 2015) are specified. Inputs are
standardized to a mean of 0 and standard deviation of 1 using
statistics from the entire set of labeled samples.

4 RESULTS

4.1 Model Sensitivity
Figure 5 presents withheld VC region test dataset F1 scores for
three different types of model input—one that includes all
spectral bands for all timesteps; one that includes only the EVI
layer for all timesteps; and one that includes only the EVI layer for
all timesteps with the random sample shift applied. Here, the
performance of models trained on all combinations of VC regions
is evaluated; these results are organized along the x-axis by the
number of VC regions included during training. Each x-axis tick
label also includes in parentheses the number of withheld VC
region test dataset evaluations, n, for all models trained on x
included VC regions3. Mean and 10th percentile values of the n
performance evaluations are displayed for each x between 1 and 6.
All results are presented for the transformer model architecture;
however, these findings are agnostic to the classifier architecture
selected.

Figure 5 demonstrates that models trained on samples
containing only EVI timeseries outperform those that include
all spectral bands at all timesteps, both on average Figure 5A and
in low performing regions Figure 5B. The 10th percentile of
withheld regions’ F1 scores is shown in order to understand the
low-end of model performance without accounting for outliers.
For reference, classifier performance based on the prediction
admissibility criteria is also included. Figure 5 shows that
explicitly feeding classification models information about
samples’ vegetation content—i.e., feature engineering—allows
for better performance compared to models that intake the 10
Sentinel-2 L2A spectral bands containing ground information.
Introducing a random temporal shift to the EVI timeseries
further increases performance; by increasing the sample
variance seen by the model, randomly shifting the input
timeseries improves model transferability. Supplementary
Figure S4 provides additional evidence of the benefits of this
training strategy: A gradient class-activation map shows that a
classifier trained on randomly shifted timeseries better identifies
dry season vegetation as predictive of irrigation presence.

Taken together, randomly shifted EVI timeseries increase
withheld region F1 scores by an average of 0.22 when only 2
VC regions are included in the training data, compared to models
that use all spectral bands. As performance begins to plateau with
4 or more VC regions included in the training data, this gap
shrinks to an improvement of 0.10. Similar results can be seen in
Figure 5B for the low-end of performance: Extracting and

3An example helps explain the calculation of n values: Given x = 2 VC regions
included in training, there remain 5 VC regions unseen by the classifier. As there
are (72) � 21 ways to select 2 VC regions from the full set of 7, and each of these
combinations leaves 5 withheld VC regions for performance evaluation, n = 105
when x = 2.
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randomly shifting EVI timeseries increase the 10th percentile of
withheld region F1 scores by 0.40 when 2 VC regions are included
in the training data, a difference that shrinks to approximately
0.14 with 5 or more VC regions in the training data. Two
additional findings are gleaned from the results for the models
trained on randomly shifted EVI timeseries (i.e., the grey curve).
First, a classifier trained on data from 2 VC regions or more
outperforms the pixel filtering baseline. Second, increasing the
number of VC regions included in the training set improves
withheld region prediction performance up until 4 VC regions
before tapering off.

Figure 6 displays Figure 6A mean and Figure 6B 10th
percentile F1 score for all combinations of VC regions
included in training for the 5 classification models tested,
along with the reference classifier based on the prediction
admissibility criteria. Figure 6 demonstrates that the
transformer architecture is most robust for all
combinations of VC training regions, followed closely by
the CatBoost architecture for all training configurations
with 2 or more VC regions. Moreover, for models with 5
or 6 VC regions included in training, mean and low-end F1
scores for these two architectures are practically
indistinguishable at 0.97 and 0.92, respectively. The

Supplementary Material contain further comparisons
between Transformer and CatBoost performance (see
Supplementary Table S6), showing that when each model
is trained on all 7 VC regions’ training data, the two models
demonstrate an average regional prediction alignment of
98.9%. Moreover, an ablation study on training dataset size
finds that reducing the proportion of polygons in the training
set from 70 to 15% has minimal impact on prediction
performance (Supplementary Figure S5). Lastly, Figure 6
shows that the LSTM architecture does not noticeably
improve performance compared to the baseline neural
network, and that the trained Random Forest models yield
the worst performance in withheld regions.

Next, prediction performance over the unseen ground-
collected samples in Tana is assessed. As the transformer
model demonstrates the most robust performance over
withheld regions’ samples, it is selected for prediction,
achieving 96.7% accuracy over irrigated samples (88,128/
91,898) and 95.9% accuracy over non-irrigated samples
(33,954/35,121) for an F1 score of 0.932. It is again worth
noting that these high accuracies are achieved over the GC
samples without the classification model seeing any labeled
data from the Tana region during training.

FIGURE 5 | Withheld region test dataset performance for different types of model input, organized along the x-axis by the number of regions included during
training. (A) presents mean F1 score over the withheld regions; (B) presents the 10th percentile F1 score over the withheld regions. Results indicate that model inputs of
randomly shifted enhanced vegetation index (EVI) timeseries yield the best classifier performance. F1 scores from classification based on the prediction admissibility
criteria are presented for reference.
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4.2 Model Inference
For model inference, the transformer architecture is trained on
the randomly shifted EVI timeseries of the labeled data from the 7
VC and 1 GC regions. The trained model is then deployed over
Tigray and Amhara for the 2020 and 2021 dry seasons (using
imagery collected between 1 June 2019 and 1 June 2020; and
between 1 June 2020 and 1 June 2021, respectively). Two post-
processing steps are then taken: 1) The prediction admissibility
criteria are applied, and 2) contiguous groups of predicted
irrigated pixels smaller than 0.1 Ha are removed in order to
ignore isolated, outlier predictions.

During inference, another step is taken to verify the
accuracy of irrigation predictions. Here, five additional
enumerators collect 1601 labeled polygons for the 2020 and
2021 dry seasons—1082 non-irrigated polygons covering
3,807 Ha and 519 irrigated polygons covering
582 Ha—across the extent of Amhara via the same labeling
methodology used to collect the training, validation, and
testing data. The locations of these independently labeled
polygons are shown in Supplementary Figure S6. After
cluster cleaning and applying the prediction admissibility
criteria, these polygons yield 361,451 non-irrigated samples
and 48,465 irrigated samples. An F1 score of 0.917 is achieved

over these samples—98.3% accuracy over non-irrigated
samples and 95.5% accuracy over irrigated
samples—performance that remains in line with the
reported test dataset metrics from Figure 6 and accuracies
over the withheld Tana ground-collected labels.

Due to text constraints, Figures 7, 8 present bitemporal
irrigation maps at a resolution far coarser than their native
10 m. The full resolution, georeferenced irrigation maps are
available from the corresponding author upon request.

4.2.1 Tigray
Figure 7 presents predicted irrigated areas in Tigray for 2020 and
2021, with 2020 irrigation predictions in red and 2021 irrigation
predictions in cyan. To better understand the nature of changing
vegetation phenologies across this time period, the inset of
Figure 7 contains example timeseries that produced an
irrigation prediction in one of 2020 or 2021. These example
timeseries show that a second crop cycle with vegetation growth
peaking in January is associated with a positive irrigation
prediction; in contrast, the non-existence of this cycle is
associated with non-irrigated prediction. Table 2 displays the
total predicted irrigated area for Tigray for 2020 and 2021, along
with the total land area, organized by zone. Between 2020 and

FIGURE 6 |Withheld region test dataset performance for different classifier models, organized along the x-axis by the number of regions included during training.
(A) presents mean F1 score over the withheld regions; (B) presents the 10th percentile F1 score over the withheld regions. Results indicate that the transformer based
classifier yields the best performance, followed closely by the CatBoost model. F1 scores from classification based on the prediction admissibility criteria are presented
for reference.
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2021, Table 2 quantifies a 39.8% decline in irrigated area in
Tigray.

4.2.2 Amhara
Figure 8 presents a bitemporal irrigation map for Amhara, also
with 2020 irrigation predictions in red and 2021 irrigation
predictions in cyan. This map contains large clusters of
irrigated predictions around Lake Tana in the zones of Central
Gondar, South Gondar, and West Gojjam, an intuitive finding
given the availability of water from Lake Tana and the rivers that
extend off it. Irrigation is also detected in the portions of
Amhara’s easternmost zones that fall within the Main
Ethiopian Rift (MER); as the valley formed by the MER
extends north into Tigray, irrigation predictions in the North
Wello, Oromia, and North Shewa zones align with irrigation
predictions in the Southern zone of Tigray shown in Figure 7.
Table 3 displays the total predicted irrigated area for Amhara for
2020 and 2021, along with the total land area, organized by zone.
From 2020 to 2021, Table 3 quantifies a 41.6% decline in irrigated
area in Amhara.

The inset of Figure 8 presents interannual irrigated cropping
patterns for an area southwest of Choke Mountain. Interlocking
red and cyan plots indicate the spatial rotation of irrigated crops
from 2020 to 2021; no white plots are observed, which would
signify dry season crop growth in both years.

5 DISCUSSION

This paper makes a set of contributions to the literature for
learning from limited labels. First, it demonstrates a process of
collecting training data to supplement ground-collected labels
that improves on previous methods of sample collection—such as
using imagery from a single timestep or simple vegetation content
heuristics—as it verifies the existence or non-existence of full
vegetation cycles during the dry season. Second, an evaluation of
inputs, classifier architectures, and training strategies is presented
for achieving irrigation classifier applicability to a larger area.
Results indicate that enhanced vegetation index (EVI) timeseries
outperform a full set of spectral bands as inputs; that randomly
shifting input timeseries prevents classifier models from
overfitting to region-specific input features; and that a
transformer-based neural network produces the highest
prediction accuracies in unseen target regions. Due to the
close similarity of performance metrics and alignment of
predictions, the faster training, more easily interpretable
CatBoost architecture is also shown as a suitable alternative
for irrigation mapping efforts.

Prediction results indicate strong classifier performance over
sample timeseries from regions not seen during training. On data
from withheld target regions, transformer-based classifiers
achieve mean F1 scores above 0.95 when four or more regions’

FIGURE 7 | Bitemporal irrigation map for Tigray. Figure inset contains example EVI timeseries predicted as irrigated in either 2020 or 2021. A predominance of red
indicates that many parts of Tigray contain irrigation detected in 2020 but not in 2021.
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FIGURE 8 | Bitemporal irrigation map for Amhara. Figure inset contains example predictions around Choke Mountain displaying interannual irrigation patterns. A
predominance of red indicates that many parts of Amhara contain irrigation detected in 2020 but not in 2021.

TABLE 2 | Predicted irrigated area statistics in Tigray for 2020 and 2021, organized by zone.

Zone Irrigated Ha.,
2020

Irrigated Ha.
2021

Total Ha. Percent Change,
2020 to 2021

Percent Change as Fraction
of Total Area, 2020 to 2021

Central 3,710 3,554 954,616 −4.2% 0.0%
Eastern 3,068 2,863 635,670 −6.7% 0.0%
Mekelle 556 397 52,313 −28.5% −0.3%
North Western 7,439 2,062 1,246,715 −72.3% −0.4%
South Eastern 2,658 2,301 533,334 −13.4% −0.1%
Southern 16,474 8,064 506,151 −51.1% −1.7%
Western 2,278 2,557 1,331,652 12.3% 0.0%
Total 36,181 21,799 5,260,451 −39.8% −0.3%
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data are included during training; using labels from all 7 visual
collection (VC) regions, the transformer-based classifier achieves
an F1 score of 0.932 on the ground collection (GC) labels around
Lake Tana. Over an independently collected set of more than
400,000 samples collected for performance assessment, the same
classifier achieves 98.3% accuracy over non-irrigated samples and
95.5% accuracy over irrigated samples, demonstrating strong
performance throughout the entire Ethiopian Highlands.

Deploying a transformer-based classifier trained on samples
from all 8 label collection regions yields insight into changing
irrigation patterns. Results suggest that from 2020 to 2021,
irrigation in Tigray and Amhara decreased by 40%. In Tigray,
this decline was most precipitous in the Northwest and Southern
zones, which saw percent changes in irrigated area of −72.3% and
−51.1%, respectively. The Western zone of Tigray was the only
zone to see an increase in irrigated area from 2020 to 2021; even
so, this increase amounted to 279 Ha in a zone with a total area of
1,331,652 Ha. Amhara is predicted to have had similar decreases
in irrigated area: Apart from the Wag Hamra zone, which was
predicted to have less than 0.08% of its area irrigated in 2020 or
2021, all zones in Amhara experienced a change in irrigated area
between −25.0% and -82.3%. The largest declines by area
occurred in North Shewa (−41,572 Ha), South Gondar
(−29,636 Ha), and West Gojjam (−26,154 Ha). Combined,
results for Tigray and Amhara predict severe reductions in dry
season crop growth from 2020 to 2021, findings that align with
recent reports of food insecurity following the eruption of civil
conflict in Ethiopia in late 2020.

Despite presented performance metrics indicating high levels
of prediction accuracy, there are a few limitations to the proposed
methodology that are important to mention. First, the study area
is limited to the Ethiopian Highlands, a highly agricultural,
climatologically consistent area that is dominated by rainfed
cropped phenologies. As the irrigation classifiers are only
trained to separate dry season crop cycles from rainfed
vegetation cycles—associating identified dry-season cropping

with irrigation presence—they will perform poorly in settings
with different rainfall and phenological patterns. Relatedly, the
trained irrigation classifiers do not identify irrigation used to
supplement rainy season precipitation, irrigation of perennial tree
crops, evergreen vegetation in riparian areas, or irrigation that
supports continuous cropping, as the phenological signatures of
these types of vegetation are difficult to distinguish from
evergreen, non-cropped signatures. This discrimination task is
left for future work. Lastly, classifiers are trained only on cropped
phenologies, which constitute a portion of the vegetation
signatures that exist in the area of interest. To manage the
other phenologies present at model inference, prediction
admissibility criteria are implemented. Nevertheless, these
criteria are imperfect: There are surely irrigated pixels which
have been mistakenly assigned a non-irrigated class label, along
with non-cropped pixels which have evaded the admissibility
criteria.

While the presented methodology is applied only for the task
of irrigation identification in the Ethiopian Highlands, the
strategy of regional phenological characterization to provide
context for geographically informed selection of training
samples and model applicability can be transferred more
broadly to a range of land process mapping objectives. The
suitability of this approach in the field of machine learning
with limited labels is supported by results comparing classifier
architectures and hyperparameter choice to assess the question of
result uniqueness that overshadows all land cover classifications.
As discussed by Small (2021), what is presented as the map is
often just a map—one of many different products that can be
obtained from the same set of inputs with different classifiers and
hyperparameter settings. By assessing multiple classifier
architectures and quantifying prediction sensitivity, this
approach demonstrates consistency in results and indicates the
uncertainty that can be expected of the resulting irrigation maps;
as such, it provides a process for building robust classifiers in
settings with scarce labeled data.

TABLE 3 | Predicted irrigated area statistics in Amhara for 2020 and 2021, organized by zone.

Zone Irrigated Ha.,
2020

Irrigated Ha.
2021

Total Ha. Percent Change,
2020 to
2021

Percent Change
as Fraction
of Total

Area, 2020
to 2021

Awi 27,443 20,547 906,682 −25.1% −0.8%
Central Gondar 73,450 50,954 2,095,018 −30.6% −1.1%
East Gojjam 44,975 33,888 1,405,689 −24.7% −0.8%
North Gondar 7,381 3,367 684,247 −54.4% −0.6%
North Shewa (AM) 62,933 21,362 1,622,197 −66.1% −2.6%
North Wello 21,367 8,250 1,110,856 −61.4% −1.2%
Oromia 30,875 5,285 380,773 −82.9% −6.7%
South Gondar 72,682 43,046 1,406,698 −40.8% −2.1%
South Wello 28,215 16,302 1,849,812 −42.2% −0.6%
Wag Hamra 447 698 890,004 56.4% 0.0%
West Gojjam 97,206 71,052 1,348,157 −26.9% −1.9%
West Gondar 6,180 1342 1,529,197 −78.3% −0.3%
Total 473,155 276,093 15,229,329 −41.6% −1.3%

Frontiers in Remote Sensing | www.frontiersin.org April 2022 | Volume 3 | Article 87194213

Conlon et al. Multiscale Spatiotemporal Irrigation Detection

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

TC and VM conceived of the study, which was led by VM. TC
developed and implemented the methodology, analyzed the
results, and produced the data visualizations. CS introduced
the concept of multiscale phenological context and devised the
spatiotemporal mixture model. VM consulted in all steps of these
processes. TC is the primary author of the paper, which was
prepared with editorial assistance from CS and VM.

FUNDING

Partial support for this effort was provided by the National
Science Foundation (INFEWS Award Number 1639214),
Columbia World Projects, Rockefeller Foundation (eGuide

Grant 2018POW004), OPML United Kingdom (DFID) and
Technoserve (BMGF).

ACKNOWLEDGMENTS

The authors are grateful to Jack Bott, Yinbo Hu, Hasan Siddiqui, and
Yuezi Wu for their assistance in labeling. The authors would like to
thank Gunther Bensch (RWI), Andrej Kveder (OPML), Abiy
Tamerat (EthioResource Group), Yifru Tadesse (ATA Ethiopia),
and Esther Kim (Technoserve) for their assistance with field data
collection efforts; Rose Rustowicz for guidance in using of Descartes
Labs platform; and colleagues Jay Taneja (UMass Amherst), Markus
Walsh (AfSIS), and Edwin Adkins (Columbia) for their continued
stimulating discussions and guidance.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frsen.2022.871942/
full#supplementary-material

REFERENCES

Abbasi, B., Arefi, H., Bigdeli, B., and Roessner, S. (2015). Automatic Generation of
Training Data for Hyperspectral Image Classification Using Support Vector
Machine. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-7/W3 (7W3),
575–580. doi:10.5194/isprsarchives-XL-7-W3-575-2015

Banerjee, B., Bovolo, F., Bhattacharya, A., Bruzzone, L., Chaudhuri, S., and Mohan,
B. K. (2015). A New Self-Training-Based Unsupervised Satellite Image
Classification Technique Using Cluster Ensemble Strategy. IEEE Geosci.
Remote Sensing Lett. 12 (4), 741–745. doi:10.1109/LGRS.2014.2360833

Bazzi, H., Baghdadi, N., Amin, G., Fayad, I., Zribi, M., Demarez, V., et al. (2021).
An Operational Framework for Mapping Irrigated Areas at Plot Scale Using
sentinel-1 and sentinel-2 Data. Remote Sensing 13 (13), 2584–2612. doi:10.
3390/rs13132584

Bazzi, H., Baghdadi, N., Fayad, I., Zribi, M., Belhouchette, H., and Demarez, V.
(2020). Near Real-Time Irrigation Detection at Plot Scale Using sentinel-1 Data.
Remote Sensing 12 (9), 1456. ISSN 20724292. doi:10.3390/RS12091456

Breiman, L. (2001). Random Forests. Machine Learning, 1–28. doi:10.1201/
9780429469275-8

Chen, Y., Lu, D., Luo, L., Pokhrel, Y., Deb, K., Huang, J., et al. (2018). Detecting Irrigation
Extent, Frequency, and Timing in a Heterogeneous Arid Agricultural Region Using
MODIS Time Series, Landsat Imagery, and Ancillary Data. Remote Sensing Environ.
204 (2017), 197–211. ISSN 00344257. doi:10.1016/j.rse.2017.10.030

Conlon, T., Wu, Y., Small, C., Siddiqui, H., Adkins, E., and Modi, V. (2020). “A
Novel Method of Irrigation Detection and Estimation of the Effects of
Productive Electricity Demands on Energy System Planning,” in AGU Fall
Meeting Abstracts (IEEE), GC034–08.

Deng, J., Dong, W., Socher, R., Li, L-J., Li, K., and Fei-Fei, L. (2009). “ImageNet: A
Large-Scale Hierarchical Image Database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition (Miami, FL, USA: IEEE),
248–255. doi:10.1109/cvprw.2009.5206848

Dorogush, A. V., Gulin, A., Gusev, G., Kazeev, N., Prokhorenkova, L. O., and
Vorobev, A. (2017). Fighting Biases with Dynamic Boosting. Computing
Research Repository, abs/1706.09516. http://arxiv.org/abs/1706.09516.

Gebregziabher, G., Namara, R. E., and Holden, S. (2009). Poverty Reduction with
Irrigation Investment: An Empirical Case Study from Tigray, Ethiopia. Agric.
Water Manag. 96 (12), 1837–1843. ISSN 03783774. doi:10.1016/j.agwat.2009.
08.004

Huete, A., Justice, C., and Van Leeuwen, W. (1999). MODIS Vegetation Index
(MOD13) Algorithm Theoretical Basis Document. Earth Observing Syst. 3
(213), 295–309.

King, G., and Zeng, L. (2001). Logistic Regression in Rare Events Data. Polit. Anal.
9 (2), 137–163. ISSN 15487660. doi:10.1093/oxfordjournals.pan.a004868

Kingma, D. P., and Ba, J. L. (2015). “Adam: A Method for Stochastic
Optimization,” in 3rd International Conference on Learning
Representations, ICLR 2015-Conference Track Proceedings (IEEE), 1–15.

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep Learning. Nature 521 (7553),
436–444. ISSN 14764687. doi:10.1038/nature14539

Li, Y., Zhang, H., Xue, X., Jiang, Y., and Shen, Q. (2018). Deep Learning for Remote
Sensing Image Classification: A Survey.Wires Data Mining Knowl Discov. 8 (6),
1–17. ISSN 19424795. doi:10.1002/widm.1264

Liew Soo Chin, Y., and Chin, L. S. (2016). “A Simplified Training Data Collection
Method for Sequential Remote Sensing Image Classification,” in 4th
International Workshop on Earth Observation and Remote Sensing
Applications, EORSA 2016-Proceedings (IEEE), 329–332. doi:10.1109/
EORSA.2016.7552823

Naik, P., and Kumar, A. (2021). A Stochastic Approach for Automatic Collection of
Precise Training Data for a Soft Machine Learning Algorithm Using Remote
Sensing Images. Singapore: Springer, 285–297. doi:10.1007/978-981-16-
2712-5_24

Ozdogan, M., Yang, Y., Allez, G., and Cervantes, C. (2010). Remote Sensing of
Irrigated Agriculture: Opportunities and Challenges. Remote Sensing 2 (9),
2274–2304. ISSN 20724292. doi:10.3390/rs2092274

Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V., Murayama, Y., and Ranagalage,
M. (2020). Sentinel-2 Data for Land Cover/use Mapping: A Review. Remote
Sensing 12 (14), 2291. ISSN 2072-4292. doi:10.3390/rs12142291

Pires de Lima, R., and Marfurt, K. (2020). Convolutional Neural Network for
Remote-Sensing Scene Classification: Transfer Learning Analysis. Remote
Sensing 12 (1), 86. ISSN 20724292. doi:10.3390/rs12010086

Ramezan, C. A., Warner, T. A., Maxwell, A. E., and Price, B. S. (2021). Effects of
Training Set Size on Supervised Machine-Learning Land-Cover Classification
of Large-Area High-Resolution Remotely Sensed Data. Remote Sensing 13 (3),
368–395. doi:10.3390/rs13030368

Saha, S., Solano-Correa, Y. T., Bovolo, F., and Bruzzone, L. (2019). “Unsupervised
Deep Learning Based Change Detection in Sentinel-2 Images,” in 2019 10th
International Workshop on the Analysis of Multitemporal Remote Sensing
Images, MultiTemp (IEEE), 0–3. doi:10.1109/Multi-Temp.2019.8866899

Frontiers in Remote Sensing | www.frontiersin.org April 2022 | Volume 3 | Article 87194214

Conlon et al. Multiscale Spatiotemporal Irrigation Detection

https://www.frontiersin.org/articles/10.3389/frsen.2022.871942/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frsen.2022.871942/full#supplementary-material
https://doi.org/10.5194/isprsarchives-XL-7-W3-575-2015
https://doi.org/10.1109/LGRS.2014.2360833
https://doi.org/10.3390/rs13132584
https://doi.org/10.3390/rs13132584
https://doi.org/10.3390/RS12091456
https://doi.org/10.1201/9780429469275-8
https://doi.org/10.1201/9780429469275-8
https://doi.org/10.1016/j.rse.2017.10.030
https://doi.org/10.1109/cvprw.2009.5206848
http://arxiv.org/abs/1706.09516
https://doi.org/10.1016/j.agwat.2009.08.004
https://doi.org/10.1016/j.agwat.2009.08.004
https://doi.org/10.1093/oxfordjournals.pan.a004868
https://doi.org/10.1038/nature14539
https://doi.org/10.1002/widm.1264
https://doi.org/10.1109/EORSA.2016.7552823
https://doi.org/10.1109/EORSA.2016.7552823
https://doi.org/10.1007/978-981-16-2712-5_24
https://doi.org/10.1007/978-981-16-2712-5_24
https://doi.org/10.3390/rs2092274
https://doi.org/10.3390/rs12142291
https://doi.org/10.3390/rs12010086
https://doi.org/10.3390/rs13030368
https://doi.org/10.1109/Multi-Temp.2019.8866899
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


Shahriar Pervez, M., Budde, M., and Rowland, J. (2014). Mapping Irrigated
Areas in Afghanistan over the Past Decade Using MODIS NDVI. Remote
Sensing Environ. 149, 155–165. ISSN 0034-4257. doi:10.1016/J.RSE.2014.
04.008

Sivaraj, P., Kumar, A., Koti, S. R., and Naik, P. (2022). Effects of Training Parameter
Concept and Sample Size in Possibilistic C-Means Classifier for Pigeon Pea
Specific Crop Mapping. Geomatics 2 (1), 107–124. doi:10.3390/
geomatics2010007

Small, C. (2021). Grand Challenges in Remote Sensing Image Analysis and
Classification. Front. Remote Sens. 1 (4), 1–4. doi:10.3389/frsen.2020.605220

Small, C. (2012). Spatiotemporal Dimensionality and Time-Space Characterization of
Multitemporal Imagery. Remote Sensing Environ. 124, 793–809. ISSN 00344257.
doi:10.1016/j.rse.2012.05.031

Stivaktakis, R., Tsagkatakis, G., and Tsakalides, P. (2019). Deep Learning for Multilabel
Land Cover Scene Categorization Using Data Augmentation. IEEE Geosci. Remote
Sensing Lett. 16 (7), 1031–1035. ISSN 15580571. doi:10.1109/LGRS.2019.2893306

Stromann, O., Nascetti, A., Yousif, O., and Ban, Y. (2020). Dimensionality
Reduction and Feature Selection for Object-Based Land Cover Classification
Based on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine.
Remote Sensing 12 (1), 76. doi:10.3390/RS12010076

Tao, C., Qi, J., Lu, W., Wang, H., and Li, H. (2022). Remote Sensing Image Scene
Classification with Self-Supervised Paradigm under Limited Labeled Samples.
IEEE Geosci. Remote Sen. Lett. 19, 1–5. doi:10.1109/LGRS.2020.3038420

Vogels, M., de Jong, S., Sterk, G., Douma, H., and Addink, E. (2019b). Spatio-
temporal Patterns of Smallholder Irrigated Agriculture in the Horn of Africa
Using GEOBIA and Sentinel-2 Imagery. Remote Sensing 11 (2), 143. ISSN
20724292. doi:10.3390/rs11020143

Vogels, M. F. A., de Jong, S. M., Sterk, G., and Addink, E. A. (2019a). Mapping
Irrigated Agriculture in Complex Landscapes Using SPOT6 Imagery and
Object-Based Image Analysis - A Case Study in the Central Rift Valley,
Ethiopia -. Int. J. Appl. Earth Observation Geoinformation 75 (2018),
118–129. ISSN 1872826X. doi:10.1016/j.jag.2018.07.019

Wakjira, M. T., Peleg, N., Anghileri, D., Molnar, D., Alamirew, T., Six, J., et al.
(2021). Rainfall Seasonality and Timing: Implications for Cereal Crop

Production in Ethiopia. Agric. For. Meteorology 310, 108633. ISSN
01681923. doi:10.1016/j.agrformet.2021.108633

Wang, Z., Yan, W., and Oates, T. (2017). Time Series Classification from Scratch
with Deep Neural Networks: A strong Baseline. Proc. Int. Jt. Conf. Neural
Networks 2017, 1578–1585. doi:10.1109/IJCNN.2017.7966039

Wiggins, S., Glover, D., and Dorgan, A. (2021).
Agricultural Innovation for Smallholders in Sub-saharan Africa.
London, United Kingdom: Technical Report.

Yu, X., Wu, X., Luo, C., and Ren, P. (2017). Deep Learning in Remote Sensing
Scene Classification: a Data Augmentation Enhanced
Convolutional Neural Network Framework. GIScience & Remote
Sensing 54 (5), 741–758. ISSN 15481603. doi:10.1080/15481603.2017.
1323377

Zhong, L., Hu, L., Zhou, H., and Tao, X. (2019). Deep Learning Based winter
Wheat Mapping Using Statistical Data as Ground References in Kansas
and Northern Texas, US. Remote Sensing Environ. 233, 111411. ISSN
0034-4257. doi:10.1016/J.RSE.2019.111411

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Conlon, Small and Modi. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Remote Sensing | www.frontiersin.org April 2022 | Volume 3 | Article 87194215

Conlon et al. Multiscale Spatiotemporal Irrigation Detection

https://doi.org/10.1016/J.RSE.2014.04.008
https://doi.org/10.1016/J.RSE.2014.04.008
https://doi.org/10.3390/geomatics2010007
https://doi.org/10.3390/geomatics2010007
https://doi.org/10.3389/frsen.2020.605220
https://doi.org/10.1016/j.rse.2012.05.031
https://doi.org/10.1109/LGRS.2019.2893306
https://doi.org/10.3390/RS12010076
https://doi.org/10.1109/LGRS.2020.3038420
https://doi.org/10.3390/rs11020143
https://doi.org/10.1016/j.jag.2018.07.019
https://doi.org/10.1016/j.agrformet.2021.108633
https://doi.org/10.1109/IJCNN.2017.7966039
https://doi.org/10.1080/15481603.2017.1323377
https://doi.org/10.1080/15481603.2017.1323377
https://doi.org/10.1016/J.RSE.2019.111411
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles

	A Multiscale Spatiotemporal Approach for Smallholder Irrigation Detection
	1 Introduction
	2 Background
	3 Materials and Methods
	3.1 Sentinel-2 Imagery Collection
	3.2 Label Collection
	3.2.1.1 Visual Inspection
	3.2.1.2 Enhanced Vegetation Index Timeseries Confirmation
	3.2.1.3 Cluster Cleaning

	3.3 Prediction Admissibility Criteria
	3.4 Model Training
	3.4.1 Model Architectures
	3.4.2 Model Training Strategy


	4 Results
	4.1 Model Sensitivity
	4.2 Model Inference
	4.2.1 Tigray
	4.2.2 Amhara


	5 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


