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Many current and proposed programs of satellite remote sensing of the Earth and other
celestial bodies rely upon measurements of the intensity and polarization of light scattered
by these bodies. These measurement data are interpreted by searching for the best fits to
light-scattering characteristics precalculated with some theoretical models. For regolith-
like surfaces, i.e., discrete densely packed random media, the light-scattering models are
still under development and they work under different approaches. Here, to estimate the
difference between the reflectance characteristics yielded by these procedures, we
compare the results of simulations performed according to five frequently used
approximate models of a semi-infinite particulate medium. Special attention is paid to
taking into account the weak-localization effect. The models differ by the scattering
matrixes of a volume element and the dependence of the imaginary part of the
effective refractive index on the filling factor. The volume element is an individual
spherical particle or a randomly oriented cluster of particles. The cases of modifying
the scattering matrix by the static structure factor correction or by subtracting the
contribution of the mean field are also considered. The values for the size parameter of
particles or monomers in the clusters and the refractive index were assumed at 1.76 and
1.50 + i0.0001, respectively; and two values for the filling factor (defined as a volume
fraction occupied by particles in the medium), 20 and 10%, were considered. Our analysis
shows that the angular dependences of the intensity and the linear polarization degree
obtained with the considered models are rather close to each other. Moreover, they agree
with the corresponding characteristics for a large cloud of particles (N is equal to or
exceeds 106) with the filling factor up to 20%, which were obtained by approximate
methods but well follow the trends found in rigorous simulations for smaller ensembles of
particles (Penttilä et al., J. Quant. Spectrosc. Radiat. Transfer, 2021, 262, 107524). Hence,
these approximate models are equally acceptable to the interpretation of the results of
observations.
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1 INTRODUCTION

To gain insight into the nature, origin, and evolution of various
bodies in the Solar System, including the Earth, photometric and
polarimetric data obtained in space-borne and ground-based
observations are widely used. From the perspective of the
present analysis of the light-scattering properties of regolith-
like surfaces, it is worth mentioning, for example, the
Cassini–Huygens space mission, which acquired a huge data
amount while orbiting Saturn and studying the planet and its
system for 13 years. To continue research of satellites of the giant
planets, the Jupiter Icy Moons Explorer mission (JUICE) is
planned to be implemented in the nearest future. However, for
many celestial bodies, the surfaces of which are covered with a
regolith—a powder-like material composed of grains of different
sizes and packing density—the interpretation of the results of
observations in terms of the sizes, refractive index, and packing
density of regolith particles requires the use of an adequate model
to determine the characteristics of electromagnetic radiation
reflected from a densely packed discrete random medium.

To calculate the light scattering characteristics of a densely
packed discrete random medium is an extremely complex
problem that cannot currently be solved at the theoretical
level. The difficulty in the theoretical consideration of this
problem is mainly connected with peculiarities of the light
scattering in the near field (Mishchenko et al., 2011;
Tishkovets et al., 2013). The matter is that, as distinct from
sparse media, densely packed media exhibit the effects, which
cannot be described only by contributions of the ladder and cyclic
diagrams to the scattered radiation, since these effects are caused
by the interference of inhomogeneous waves of different
scattering orders. The interference of this kind manifests itself
in the mutual shadowing and may considerably influence the
opposition effects (Tishkovets et al., 2013). While the description
of the light scattering by densely packed media in terms of the
ladder and cyclic diagrams has been considerably improved in
recent years [see (Tishkovets et al., 2011; Doicu and Mishchenko,
2019b; Doicu and Mishchenko, 2019c) and references therein],
the contribution of the diagrams corresponding to the
interference of waves of different scattering orders has not
been taken into account yet.

At the same time, as has been noted above, there is a pressing
need for models that correctly describe the light scattering
characteristics of densely packed media. Because of this,
attempts are being made to develop such models on the base
of the well-elaborated theory of light scattering by sparse media
[see (Mishchenko, 1994; Barrowes et al., 2000; Tishkovets and
Mishchenko, 2004; Mishchenko et al., 2006; Mishchenko et al.,
2013; Tishkovets and Petrova, 2013; Muinonen et al., 2017; Ito
et al., 2018; Muinonen et al., 2018; Tishkovets and Petrova, 2020;
Penttilä et al., 2021) and references therein].

For sparse media, it is assumed that the waves propagating
between scatterers in the medium are spherical, which essentially
simplifies the theoretical analysis. Moreover, in this case, it is
relatively easy to obtain the ensemble-averaged reflection matrix
analytically for a plane-parallel medium (Tishkovets and
Mishchenko, 2004; Mishchenko et al., 2006; Tishkovets et al.,

2011; Tishkovets and Petrova, 2013; Doicu and Mishchenko,
2019b; Doicu and Mishchenko, 2019c; Tishkovets and Petrova,
2020) or numerically with the Monte-Carlo technique for a
spherical volume (Muinonen et al., 2017; Muinonen et al.,
2018; Penttilä et al., 2021). To adapt these models to the
problems of light scattering by densely packed media, the
scattering characteristics of “a volume element” are modified.
Specifically, it is suggested that the mean (coherent) field should
be excluded [see (Barrowes et al., 2000; Muinonen et al., 2017;
Muinonen et al., 2018; Penttilä et al., 2021) and the references
therein], or the static structure factor correction should be made
(Mishchenko, 1994; Mishchenko et al., 2013; Ito et al., 2018), or
the scattering characteristics of randomly oriented clusters of
particles should be considered as those of a volume element
(Tishkovets and Petrova, 2013; Ito et al., 2018).

Unfortunately, the limits of applicability of the above specified
models are unknown, since the data on the light-scattering
characteristics measured in laboratory for the samples with
thoroughly controlled parameters are still very rare
(Mishchenko et al., 2013). Particularly, in the paper by
Mishchenko et al. (2013), the solution of the vector radiative
transfer equation was verified by the well-controlled experiment
with a medium of monodisperse spherical particles suspended in
water. It was found that, for the filling factor values below 0.1, all
of the reflection matrix elements calculated with the static
structure correction of a volume element very neatly fit the
laboratory data. Some differences are observed only for the
element R44.

Given the laboratory data limitation, the quality of the model
may be estimated with the methods that allow the scattering
characteristics to be rigorously calculated for some cases. Such an
attempt was recently made by Penttilä et al. (2021). They
considered clusters composed of 103 to 105 spherical particles
and compared their light-scattering characteristics obtained with
the rigorous numerical method and with the model, according to
which the mean field contribution was excluded (Muinonen et al.,
2017; Muinonen et al., 2018; Penttilä et al., 2021). The
calculations were performed for the backscattering domain,
where the weak-localization effect reveals itself. For this
relatively small clusters, the results of the rigorous simulations
and the model approximation well agreed. For the clusters
containing much more particles (from 106 to 109), the light-
scattering characteristics were calculated within the frames of the
assumed model approximation. It was found that, with growing
the number of particles in a cluster, the intensity and the
polarization of scattered light asymptotically tend to some
limit that seems to be achieved when the number of particles
in a cluster is 109. In the opinion of Penttilä et al. (2021), the
backward-scattered properties of this cluster represent the
properties of a macroscopic, almost infinite system. Because of
this, it would be interesting to compare the results reported by
Penttilä et al. (2021) to the intensity and the linear polarization
degree of light reflected by a semi-infinite discrete medium, the
calculation technique for which is well-developed and does not
require large computational resources (Tishkovets and Petrova,
2020). This comparison would allow us to estimate the
applicability of the model (Tishkovets and Petrova, 2020) to
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densely packed media, the parameters of which are at least close
to those used by Penttilä et al. (2021).

The purpose of this paper is to determine whether the
differences between the reflectance characteristics yielded by
different approximate procedures are substantial. For this, we
compare the light-scattering characteristics in the back-scattering
domain calculated by the models of a semi-infinite discrete
medium with different versions of a volume element to each
other and to the results reported by Penttilä et al. (2021). The
parameters of all of the models considered below are assumed to
be the same as those considered by Penttilä et al. (2021): the
medium are composed of monodisperse spherical particles with
the size parameter x = 1.76 (x ≡ 2πa/λ, where λ is the wavelength
and a is the particle radius) and the refractive index m = 1.50 +
i0.0001. As regards the filling factor (or the packing density) in
the medium, which is a volume fraction occupied by particles in
the medium, two values, ξ = 20 and 10%, were considered. The
first value of ξ was used by Penttilä et al. (2021) for calculating the
weak-localization contribution, while the second one, by
Mishchenko et al. (2013) for verifying the applicability of the
vector radiative transfer equation to densely packed media. (It is
worth noting that Mishchenko et al. (2013) considered the other
parameters of particles and the oblique radiation incidence). The
simulations performed with two values of the parameter ξ will
make it possible to follow the influence of the concentration of
particles on the manifestation of the weak-localization effect in
the models with different versions of a volume element of the
medium.

2 MODELS OF A MEDIUM

In this paper we consider five models of a discrete random
densely-packed medium (from A to E below), which differ by
both the scattering characteristics of a volume element and the
behavior of the extinction in a medium. The medium is
considered as a semi-infinite layer, and the incident radiation
is assumed to propagate perpendicularly to its boundary, since
the theory for a more general case of the obliquely incident
radiation is still at an early stage of development [see, e.g.,
(Tishkovets et al., 2011; Doicu and Mishchenko, 2019a)]. We
compare the results of these models to each other and to the
simulation results reported by Penttilä et al. (2021). To
calculate the intensity and the linear polarization degree of
light reflected by a semi-infinite discrete medium, we use the
procedure and the fast algorithm described by Tishkovets
and Petrova (2020). This procedure allows us to consider
both the diffuse and coherent-backscattering components of
the reflected light.

2.1 Model A
This model is simplest. The scattering matrix of a volume element
in this model medium is equal to the scattering matrix of an
individual particle of the medium. The size parameter and the
refractive index of these particles were specified above (see the
Introduction). To describe the propagation of radiation in a
discrete random medium, a concept of the so-called complex

effective refractive index meff is used [see, e.g., (Tishkovets et al.,
2011; Doicu andMishchenko, 2019a), and the references therein].
Its imaginary part Im(meff ) is directly related to the extinction
coefficient of the medium, and this dependence differs for sparse
and densely packed media. Within model A, it is assumed that
Im(meff ) linearly depends on the concentration (or the number
density) of particles in the medium η, analogously to that in a
sparse medium model (Bohren and Huffman, 1983; Mishchenko
et al., 2006; Tishkovets et al., 2011; Doicu and Mishchenko,
2019a):

Im(meff) � η

2k0
Cext � 3ξ

8πx3
k20Cext � 3ξ

4x3
∑
l

(2l + 1)Re(al + bl).

(1)
Here, k0 � 2π/λ, Cext is the extinction cross-section of a particle,
and al and bl are the Mie coefficients (Bohren and Huffman,
1983), while ξ � 4πηa3/3 is the filling factor. The single-scattering
albedo is determined as usual, ω � Csca/Cext, where Csca is the
scattering cross-section of a particle.

2.2 Model B
This model differs from model A only by the behavior of the
extinction in dependence on the concentration of scatterers.
In a densely packed medium, this dependence is nonlinear. If
this medium is composed of identical spherical particles,
Im(meff ) can be determined from the following system of
equations, which stems from the analysis of the mean field in a
medium [see, e.g., (Tishkovets et al., 2011) and the references
therein]

X(pn)
Ln + 3ξ

2x3
∑
q

(al + pqbl)∑
l

(2l + 1)X(qn)
ln F(q)Lln � 0. (2)

Here, p, q � ± 1; n can take one of the values, ± 1;

FIGURE 1 | The imaginary part of the effective refractive index of a
medium composed of identical spherical particles with x = 1.76 andm = 1.50
+ i0.0001 in dependence on the filling factor of particles according to Eqs 1, 2
for sparse (dashed line) and densely packed (solid line) media,
respectively.
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F(q)LlM � ∑
s

Cs0
LMl−MC

s0
Lql−qfs,

where the quantities C with indexes are the Clebsch–Gordan
coefficients (Varshalovich et al., 1988);

fl � ∫
∞

ρ

(g(y) − 1)hl(y)jl(ymeff )y2dy

− ρ2

1 −m2
eff

[meffhl(ρ)j′l(ρmeff ) − h′l(ρ)jl(ρmeff )]
where ρ = 2x, the j and h designations are for the Bessel and
Hankel spherical functions and their derivatives, respectively,
g(y) is the pair correlation function for the system of identical
solid spheres (Balescu, 1975).

The linear homogeneous system of Eq. 2 has a non-trivial
solution if its determinant is equal to zero. This condition allows
us to determine the effective refractive indexmeff , which depends
on the properties of the medium: the shape, sizes, refractive index,
and filling factor of the particles. The dependences of Im(meff ) on
the filling factor of particles ξ calculated according to Eqs 1, 2 for
the particles’ parameters specified above are shown inFigure 1.

As is seen from the figure, when the concentration of particles
is high, Im(meff ) of a densely packed medium may be
substantially lower than the values predicted by Eq. 1 that is
valid for the sparse media approximation. For example, for a case
of ξ = 20% and the particle parameters considered here, the value
of Im(meff ) in model A is more than twice that in model B: 0.0534
versus 0.0229.

2.3 Model C
In this model, the scattering matrix of a volume element of the
medium coincides with that of a randomly oriented cluster of
spherical particles. According to Tishkovets and Petrova (2013),
when the number of particles in clusters is large, the intensity and
the degree of linear polarization of light reflected by a semi-
infinite medium composed of such clusters becomes almost
independent on the further increase of this number. The
imaginary part of the effective refractive index of the medium
is assumed to be determined as

Im(meff ) � η1
2k0

Cext, (3)

where η1 and Cext are the concentration of clusters in the medium
and the extinction cross-section of the clusters, respectively. The
filling factor of particles (not clusters) in the medium is defined as

ξ � 4
3
πη1a

3
v, (4)

where av is the radius of a volume-equivalent sphere of the cluster
(a3v � Na3, where N is the number of particles with radii a in the
cluster). The single scattering albedo is determined analogously to
that in model A.

Earlier, model C was successfully applied to the media with
relatively low values of the filling factor of particles in a medium
(ξ ≤ 4%) (Tishkovets and Petrova, 2013).

2.4 Model D
This model is analogous to that considered by Mishchenko
(1994), Mishchenko et al. (2013), and Ito et al. (2018); i.e., the
scattering characteristics of a volume element of the medium are
corrected with accounting for the so-called static structure factor.
According to the Percus−Yevick approximation (Balescu, 1975),
the structure factor is given by (Balescu, 1975; Mishchenko, 1994;
Ito et al., 2018)

S(ϑ) � 1
1 − C(u),

where u � 4x sin ϑ
2, ϑ is the scattering angle, and

C(u) � 24ξ W(u).
If u ≠ 0,

W(u) � α + β + δ

u2 cos u − α + 2β + 4δ

u3 sin u − 2(β + 6δ)
u4 cos u+

+2β
u4 +

24δ

u5 sin u + 24δ

u6 (cos u − 1).

If u = 0,

W(0) � −(α
3
+ β

4
+ δ

6
).

The coefficients α, β, δ are

α � (1 + 2ξ)2
(1 − ξ)4 ,

β � −6ξ (1 + ξ/2)2
(1 − ξ)4 ,

δ � αξ/2.
Then, with accounting for the structure factor, the normalized

scattering matrix of a particle in the medium F(ϑ) is connected
with the matrix of an individual isolated particle Z(ϑ) by the
following relationship (Ito et al., 2018)

F(ϑ) � 4π
k20C

s
sca

Z(ϑ)S(ϑ), (5)
where

k20C
s
sca � ∫

4π

Z11(ϑ)S(ϑ)dΩ � 2π∫
π

0

Z11(ϑ)S(ϑ) sin ϑdϑ. (6)

The imaginary part of the effective refractive index of the
medium is determined as

Im(meff ) � η

2k0
(Cs

sca + Cabs) � 3ξ
8πx3

k20(Cs
sca + Cabs), (7)

where Cabs is the absorption cross-section of a particle calculated
according to the Mie theory, while the scattering cross-section
Cs
sca is obtained from Eq. 6, which takes into account the structure

factor. The single-scattering albedo of particles in this model is
determined as
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ω � Cs
sca

Cs
sca + Cabs

. (8)

The results of this modeling for the noncoherent part of the
reflected radiation, which is determined by the radiative transfer
equation, were compared to those of laboratory measurements.
This comparison showed that, for the concentrations up to 10%,
all of the elements of the reflectance matrix of the medium (except
R44) well agree with the measurement results (Mishchenko et al.,
2013).

2.5 Model E
This model corresponds to that developed by the researchers
from the University of Helsinki [see (Muinonen et al., 2017;
Muinonen et al., 2018; Penttilä et al., 2021) and references
therein]. In this model, the contribution of the coherent (or
mean) field is subtracted from the scattering characteristics of a
volume element. The field scattered by some volume containing
particles (a cluster of particles) in the medium E(s) is represented
by a sum of the incoherent E(in) and coherent E(c) parts [see, e.g.,
(Barrowes et al., 2000; Muinonen et al., 2017; Muinonen et al.,
2018; Penttilä et al., 2021), and the references therein]

E(s) � E(in) + E(c).

Since the locations of scatterers in the medium are random, the
equality < E(in) > � 0 should be fulfilled. Here the angle brackets
mean the ensemble-averaging over a large number of volume-
element realizations. Then, the average of the second moment of
the field E(in) is determined by the relationship

<
∣∣∣∣E(in)∣∣∣∣2 > � <

∣∣∣∣E(s)∣∣∣∣2 > − <
∣∣∣∣E(c)∣∣∣∣2 > . (9)

The terms in the right part of Eq. 9 can be averaged
numerically by generating clusters with sufficiently large
number of particles with the concentration and parameters of
particles required. In this averaging procedure, some function
H(ϑ) is derived; by multiplying this function by the scattering
matrix of an individual particle, the scattering matrix of a volume
element is obtained. The whole technique is described at length
by Muinonen et al. (2017). The procedure of calculating the
scattering characteristics, which are required to find the
reflectance matrix of a medium (or a cluster containing a large
number of particles), is the same as that for relationships Eqs 5–8
in the previous model. The only difference is that the normalized
function H(ϑ) should be used instead of the structure factor.

This model yields the results that rather well agree with
those of rigorous calculations of the intensity and the degree of
linear polarization of light scattered by clusters of spherical
particles, the number of which is N ≤ 105 (note that the clusters
were generated by filling a spherical volume by small
constituents with the packing density specified) (Penttilä
et al., 2021).

3 RESULTS AND DISCUSSION

To solve the radiative transfer and weak localization equations,
the scattering matrix of a volume element of the medium is

usually presented as a series expansion in generalized spherical
functions (Mishchenko et al., 2006). The algorithms and codes to
solve these equations by using these expansions are available on
the web-sites https://www.giss.nasa.gov/staff/mmishchenko/brf/
and http://rian.kharkov.ua/index.php/en/software-en,
respectively. Here we use these codes to calculate the
normalized intensity and the degree of linear polarization of
radiation reflected by a semi-infinite medium.

The simulations according to model C required that clusters
with the assumed filling factor should be constructed. For this, we
randomly placed N identical non-overlapping spherical particles
of the specified size into a spherical volume, the size of which
provides the required filling factor ξ for a given value of N. To
calculate the single-scattering matrix of clusters, we used the
publicly available FORTRAN code (MSTM) (Mackowski and
Mishchenko, 2011), which is based on the superposition T-matrix
method, one of the most versatile and efficient direct computer
solvers of the macroscopic Maxwell equations for an arbitrary
multi-sphere configuration in random or fixed orientation. The
parameters of clusters’ constituents and the filling factor are the
same as those considered by Penttilä et al. (2021): x = 1.76, m =
1.50 + i0.0001, and ξ = 20%. The values of Im(meff ) were derived
according to Eqs 3, 4; and they are 0.0798, 0.0771, and 0.0720 for
N = 20, 40, and 80, respectively.

In Figure 2, as an illustration of the results of model C, we
present the intensity normalized to a value at opposition (the
scattering angle is ϑ = 180°) I/I0 and the degree of linear
polarization P of light reflected from a medium composed of
randomly oriented clusters. These quantities are shown in
dependence on the scattering angle, and the curves for
different numbers of particles in the clusters are compared.
For each of the assumed values of N, we actually generated
several configurations of the clusters, but the angular
dependences of I/I0 and P obtained for the medium composed
of these clusters turned out to be very close under a given N.
Consequently, we show here the phase curves only for one of the
configurations for a specified N. Moreover, as it became clear
from the model calculations, the growth of N to the values
exceeding ~50 does not influence much the angular behavior
of the considered quantities (Figure 2).

Let us turn to comparison of the results of different models.
The normalized intensity and the linear polarization degree
calculated by the above described models A−D for the packing
density of the medium ξ = 10% are shown in Figure 3 in
dependence on the scattering angle ϑ. To avoid overloading
the diagrams, we present here models C only by the results for
clusters with 40 constituents. The reason is that, as has been noted
above, the further growth of the clusters induces only very weak
changes in the angular dependences of the intensity and the linear
polarization degree of light scattered by a medium composed of
these clusters (Figure 2). As is seen from Figure 3, all of the
models with the packing density ξ = 10% yield rather close results.
It should be reminded that, when verifying the applicability of the
radiative transfer equation to a densely packed medium, model D
perfectly fitted the phase curves measured in the laboratory
(Mishchenko et al., 2013). Since the weak-localization equation
was derived under the same conditions as the classic radiative
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transfer equation (Tishkovets et al., 2011), a good agreement
between models A–D in Figure 3 suggests that all of themmay be
used to estimate the parameters of a medium at least in the cases,
when the properties of particles in a medium are close to those
specified here and the packing density of particles is less
than 10%.

Let us consider the results of simulations with the packing
density ξ = 20% according to all of the models, including model E,
in more detail. The obtained phase curves of the normalized
intensity and the linear polarization degree are shown in Figure 4.

The values of Im(meff ) in each of the models and the
parameters of the phase curves of the normalized intensity I/I0
and the polarization P are listed in Table 1. These parameters are
the angular halfwidth of the intensity peakΔϑ at a level of 0.8 of its

maximum, the inversion angle ϑinv, at which the linear
polarization changes its sign, the polarization value Pmin at the
minimum of the so-called negative branch observed at high
scattering angles (or low phase angles φ = 180° − ϑ), and the
angular position of this minimum ϑmin.

There are two characteristic features in the phase curves of the
characteristics of radiation reflected by a medium, which are
reproduced by each of the considered models. They are a narrow
interference peak in the intensity, which is rigorously centered at
the backscattering direction, and a branch of negative
polarization, the minimum of which is close to the opposition.
The dependence of these features on the properties of a scattering
medium was analyzed at length in many papers [see, e.g.
(Tishkovets et al., 2011; Tishkovets and Petrova, 2013), and

FIGURE 2 | The intensity normalized to a value at ϑ = 180° I/I0 and the degree of linear polarization P of light reflected by a semi-infinite medium composed of
clusters in dependence on the scattering angle. The curves for different numbers of particles in the clusters (model C) are compared to each other and those for individual
particles in a medium (model A) with ξ = 20%. The values of x, m, and Im (meff) are specified in the text.

FIGURE 3 | The normalized intensity I/I0 and the degree of linear polarization P of light reflected by a discrete random medium in dependence on the scattering
angle, which were obtained with models A−D and ξ = 10%. The values of x and m are specified in the text.
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references therein]. Specifically, it was shown that the halfwidth
of the interference peak and the phase angle at the polarization
minimum (φmin = 180° – ϑmin) under nonzero polarization of the
noncoherent component are in direct proportion to the
concentration of scatterers (or the filling factor ξ). When the
concentration of particles decreases, the angular range, within
which the weak-localization effect manifests itself, also decreases,
while the inversion scattering angle ϑinv grows (compare Figures
3, 4). As might be expected, with increasing the packing density,
the difference between the model curves becomes more
noticeable, though all of them exhibit qualitatively the same
behavior. Moreover, the models C, D, and E well agree in terms
of the inversion angle of polarization and the position of the
polarization minimum.

As is also seen from Figure 4 and Table 1, the decrease in the
value of Im(meff ) in model B relative to that in model A (0.0229
versus 0.0534) results in narrowing the intensity peak (Δϑ
becomes ~0.9° instead of ~2°) and in moving the polarization
minimum to opposition (ϑmin becomes ~178° instead of ~175°).
This is explained by the fact that the decrease in the imaginary
part of the effective refractive index Im(meff ) under the same
characteristics of a volume element (an individual spherical
particle) of a medium yields the equivalent decrease (by a factor
of ~2.3) in the concentration of scatterers. According to the
above mentioned studies, more porous media should exhibit

narrower opposition features due to the weak-localization
effect.

Unfortunately, since the experimental data on the scattering by
discrete random densely-packed media with thoroughly controlled
parameters (the sizes and shape of particles, the packing density, and
the other parameters of a medium) are limited, it is currently
impossible to determine unambiguously which of these models
more correctly describes the light scattering by a densely packed
particulate media. Because of this, we compare the results of these
models to those reported by Penttilä et al. (2021). They describe the
simulations for the intensity and the linear polarization degree of
light scattered by a large spherical volume randomly filled with
spherical particles, the sizes, the refractive index, and the filling factor
(or the packing density) of which are equal to the parameters
considered here. In the cited paper, the number of particles N in
the volume was varied within 103–109. For ensembles containing
more than 105 particles, the calculations were performed with an
approximate method under the assumption that the waves
propagating between scatterers in the medium are spherical,
while numerically rigorous methods were used for smaller
ensembles. In addition, in the approximate method, the
contribution of the mean field to the scattering matrix of a
volume element and the imaginary part of the effective refractive
index was removed (Muinonen et al., 2017; Muinonen et al., 2018;
Penttilä et al., 2021). The results of the approximate and exact
calculations for N < 105 turned out to be in satisfactory agreement.

To facilitate the comparison of our models (Figure 4) with the
results of Penttilä et al. (2021), we show them together in
Figure 5. To avoid overloading the diagrams, only the data for
the particles’ number N = 105, 106, and 109 from Penttilä et al.
(2021) are given in Figure 5.

When analyzing the phase curves in Figure 5, it is important
to have in mind that the geometry of the light-scattering
simulations for a spherical cloud of particles and a semi-
infinite layer differs, i.e., the scattering media are different in
shape. Because of this, the agreement between the angular profiles for

FIGURE 4 | The normalized intensity I/I0 and the degree of linear polarization P of light reflected by a discrete random medium in dependence on the scattering
angle, which were obtained with models A−E and ξ = 20%. The values of x and m are specified in the text.

TABLE 1 | The values of Im (meff) in models A−E and the parameters of the phase
curves of the normalized intensity and the linear polarization degree for
ξ = 20%.

Model Im (meff) Δϑ [°] ϑinv [°] Pmin [%] ϑmin [°]

A 0.0534 ~2 ~154 −2.38 ~175
B 0.0229 ~0.9 ~161 −2.37 ~178
C 0.0771 (N = 40) ~1.7 ~155 −2.04 ~176
D 0.0237 ~1.4 ~153 −2.69 ~177
E 0.0252 ~1.5 ~156 −3.42 ~176
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model E and a cloud of 109 particles (Penttilä et al., 2021), for which
the light-scattering characteristics of a volume element are the same,
is worse than it could be expected. In addition, an assumption on the
exponential decrease of the intensity with depth in a medium, which
was made when deriving the weak localization equations for a
semi-infinite layer (Tishkovets and Petrova, 2020), may play a
certain role in this discrepancy. Consequently, the fact that,
among models A–E, model B appears to agree best of all with the
data for a cloud of 109 particles should not be considered as a decisive
factor in favor of using this model in the interpretation of
measurements. Most likely, this agreement resulted from a
particular combination of the parameters of particles and might
not be relevant to the other parameters’ values.

The comparison of the phase curves of polarization
produced by models C–E and those for a large cloud of
particles suggests that the angular position of the
polarization minimum ϑmin turns out to be almost
independent of the model type. This circumstance makes
this parameter most reliable for the interpretation of the
measured phase curves of polarization.

4 CONCLUSION

At present, it is a challenge to describe theoretically the light
scattering process for densely packed random media, where
particles are not in far zones of each other, as in sparse media.
Because of this, to estimate the light scattering properties of
densely packed media, researchers turn to approximate methods
and models that stem from the light-scattering theory for sparse
media. However, it is not clear yet whether the results of this
approximate modeling are correct, since the experimental data
for the samples with thoroughly controlled parameters are
limited so far.

To estimate the difference between the results yielded by the
approximate procedures, we considered five approximate models,
which are most frequently used to calculate the reflection matrix

of a densely packed semi-infinite medium, and compared their
results to each other and to those of the rigorous and approximate
simulations for a large spherical cloud of particles (Penttilä et al.,
2021). In our models, the incident radiation is assumed to
propagate perpendicularly to its boundary. The parameters of
particles were chosen according to those assumed by Penttilä et al.
(2021). The input parameters of our models differ by the
scattering matrix of a volume element of the medium and the
dependence of the extinction on the concentration of particles.
For our computations, we used the fast algorithm proposed by
Tishkovets and Petrova (2020).

It was found that the reflectance characteristics obtained with
different models for a semi-infinite medium (Figure 4)
qualitatively agree with each other and with those for a cloud
containing 106 and more particles (Penttilä et al., 2021; Figure 5).
Hence, these approximate models are equally acceptable to the
interpretation of the results of measurements. It should also be
noted that the approximate simulations performed both in this
study and by Penttilä et al. (2021) are based on the same
assumption that the waves propagating between scatterers in
the medium are spherical. Consequently, the qualitative
agreement between their results could be expected. However,
the difference between the intensity and linear polarization
profiles obtained here and by Penttilä et al. (2021) may be
caused by different shapes of the media considered.

One of the purposes of developing the reflectance models for
densely packed particulate media with accounting for the weak-
localization effect is to apply them to the interpretation of different
measurement results, in particular, numerous observations of
atmosphereless bodies of the Solar System. Consequently, the
used model should allow a lot of parameters’ cases to be tested
rather quickly. For example, even in the simplest model A, there are
four input parameters (the size of particles, the real and imaginary
parts of their refractive index, and the filling factor) that should be
varied when fitting the experimental data with themodel. Because of
this, together with the reliability and effectiveness of the model, the
time required to calculate the reflectance matrix of a medium

FIGURE 5 | The same as in Figure 4 but compared to the specified models for a cloud of particles considered by Penttilä et al. (2021).
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becomes one of the key parameters. In this regard and given the
results of the present analysis, the model and the fast algorithm
presented by Tishkovets and Petrova (2020) are particularly
appealing for the use in interpretation of the data concerning the
media composed, at least, of weakly absorbing particles comparable
to the wavelength in size with the filling factor less than 20%.

It is worth noting that, as any approximate model, the above
models may be used only within some particular ranges of the
parameters describing the properties of a medium. However, at
present, to determine these ranges is impossible, since laboratory
measurements of samples with thoroughly controlled characteristics,
which could serve as a reference, are still severely lacking. We may
expect that the present models will naturally work correctly for
rather loosely packed media (i.e., for ξ < 20%), while their
applicability to denser media or those containing particles with
the other parameters should additionally be verified. We are
planning to estimate the discrepancy between the parameters of
the observed objects resulted from fitting their light-scattering
characteristics with different models in our future studies.
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