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This conceptual study presents advanced radiative transfer computations of light
polarization originating from a snowpack consisting of nonspherical grains and variable
content of light-absorbing impurities, either embedded in the snowpack or (with the same
optical properties) lofted above it in the form of atmospheric aerosols. The results highlight
the importance of considering shapes other than spherical for the snow grains, which
otherwise can lead to non-negligible errors in the retrieval of snow albedo from remote
sensing observations. More importantly, it is found that polarimetric measurements
provide a means to partition light-absorbing impurities embedded in the snowpack
from absorbing aerosols aloft, a task traditionally prohibitive for sensors capable
exclusively of measurements of total reflectance. Heritage techniques to obtain snow
grain size from shortwave infrared observations of total reflectance are well established, as
are those that leverage polarimetric, multiangular observations across the entire optical
spectrum to characterize the optical and microphysical properties of atmospheric
aerosols. The polarization signatures of near-infrared (e.g., 864 nm) observations carry
critical information on snow grain shape. The prospected launch of space-borne
polarimeters with proven accuracy, therefore, advocates for the development of data
inversion schemes, to boost the accuracy of simultaneous retrievals of atmospheric and
surface parameters in the polar and snow-covered regions, critical to climate studies.
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1 INTRODUCTION

The scientific interest in quantifying the surface energy and mass balance (SEMB) of the ice sheets is
obvious when considering the potential impacts on global climate of variations in the brightness of
such regions (Hansen and Nazarenko, 2004; Fettweis et al., 2008; van den Broeke et al., 2011; Rae
et al., 2012; Van Angelen et al., 2012; Tedesco et al., 2013; Alexander et al., 2014; Colgan et al., 2014).
On the other hand, upper estimates of the projected sea level rise are still very uncertain because of
poor knowledge of ice sheet dynamics and the SEMB in the polar areas (Van Angelen et al., 2012),
which demand a better characterization of their albedo.

As the albedo of snow-covered regions depends on the microphysical and optical properties of the
constituent ice crystals (Wiscombe and Warren, 1980; Aoki et al., 2000; Bartelt and Lehning, 2002;
Flanner and Zender, 2006; Bougamont et al., 2007; Dang et al., 2016; He et al., 2018), and on the
content of light-absorbing impurities (LAIs) (Warren andWiscombe, 1980; Hansen and Nazarenko,
2004; Dumont et al., 2014), a better knowledge of such properties and their evolution is a high-
priority objective for the remote sensing of the cryosphere (Tedesco et al., 2013; Dumont et al., 2014).
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In developing techniques for the retrieval of these climatologically
relevant parameters (Krabill et al., 2004; Comiso, 2006; Zwally
and Giovinetto, 2011; Zatko et al., 2013), particular attention has
been given to the Greenland ice sheet (GrIS) (Hori et al., 2007;
Tedesco et al., 2011, 2013; Box et al., 2012), for which quantitative
explanations of the ascertained mass losses are still lacking
(Velicogna, 2009). Aerosol (especially black carbon) transport
(Dumont et al., 2014; Tedesco et al., 2016) and deposition
(Doherty et al., 2014), consolidation of LAIs (including black
and organic carbon, and dust) through melt and scavenging,
exposure of bare ice, and biogenic contributions cause large
variations in the albedo of the GrIS and deeply affect its
SEMB, especially in the topographically complex coastal region
known as the ablation zone (Alexander et al., 2014; Schmale et al.,
2021). A reduction in surface albedo can increase the likelihood of
wide swaths of melt, which can fundamentally change the
structure of the ice sheets, thus leading to further changes in
the albedo and meltwater retention. It is, therefore, essential to
understand these factors and how well these changes are captured
in the climate models used to simulate and project the GrIS
SEMB. Advanced Radiative Transfer (RT) algorithms have been
developed to extend the current knowledge to operational
products of climatological relevance (Nolin and Dozier, 2000;
Stamnes et al., 2007; Jin et al., 2008; Zege et al., 2008; Lyapustin
et al., 2009; Painter et al., 2009; Kokhanovsky et al., 2011; Stamnes
et al., 2011; Stroeve et al., 2013). For example, the retrieval of grain
size in conjunction with standard thermal infrared techniques to
infer surface temperature such as split-window algorithms (Key
and Haefliger, 1992), gives information on the snow age and
metamorphic state and, therefore, an indication of the onset of
melting. Many of the retrieval schemes have been applied to the
reflectance data from the MODerate resolution Imaging
Spectroradiometer (MODIS) onboard the Terra and Aqua
satellites, but the information content is often insufficient to
unambiguously resolve the vertical distribution of grain size,
nonsphericity, and LAI content (Warren, 2013) in the snow
medium, critical to accurately estimate the albedo and its
recent trends (Xie et al., 2006; Tedesco et al., 2013; Dumont
et al., 2014; Dang et al., 2016; Tedesco et al., 2016).

Poorly constrained by the correct optical properties, many
RT studies model snow as a collection of spherical grains. It is
now established that such an assumption biases the derived
albedo low by a few percent (Xie et al., 2006; Tedesco and
Kokhanovsky, 2007; Kokhanovsky et al., 2011; Libois et al.,
2013; Tedesco et al., 2013; Dumont et al., 2014; Dang et al.,
2016; Räisänen et al., 2017). Such biases can be largely amplified
by the feedback processes, measurably altering the modeled
forcing in polar regions. Furthermore, since the crystal habit
determines the asymmetry parameter, the assumption of
spherical grains also impacts grain size retrievals, with
additional inaccuracies in determining shortwave absorption.
In fact, errors in the albedo due to wrong assumptions on grain
shape can be offset by adjusting the grain size (Dang et al., 2016;
Räisänen et al., 2017).

Decoupling the competing contributions of grain size and
LAIs in determining absorption within the snowpack is an
unresolved issue of undoubted urgency (Dumont et al., 2014;

Tedesco et al., 2016), also affecting the altimetric measurements
(Kwok, R., priv. comm.). Differentiating LAIs in the snow from
atmospheric aerosols, of paramount climatological importance
(Hansen and Nazarenko, 2004; Dumont et al., 2014), has proven
to be very difficult (Warren, 2013).

2 METHODS AND SIMULATIONS

Amost striking feature of ice is the eightfold-order-of-magnitude
increase in absorption as the observational wavelength shifts from
the visible part of the spectrum toward the Near-InfraRed (NIR)
(Warren, 2019). For this reason, the total reflectance in the NIR is
virtually unaffected by the presence of extraneous LAIs
(Wiscombe and Warren, 1980), while in the visible even a
minimal amount of LAIs is sufficient to cause a drastic
reduction in the albedo. This phenomenon has received much
attention since the darkening of the snowpack increases the
absorption of radiation in the snow, potentially generating a
runaway feedback mechanism (Nolin and Frei, 2003; Hansen and
Nazarenko, 2004).

In terms of grain shape, the first natural approach to snow
modeling is that of assuming a collection of spheres. Due to the
lack of information about crystal shape, some authors (Stamnes et al.,
2007) have employed the Henyey–Greenstein phase function
(Henyey and Greenstein, 1941), after running Mie computations
on spheres of the desired effective radii to determine the asymmetry
parameter. The H–G phase function is an ad hoc way to mimic
particle roughness by eliminating the resonant structures (rainbow
and glory) associated with scattering from perfect spheres, not
observed in snow. A growing body of research points out the
limitations of using spherical shapes in the modeling of optical
properties of snow grains (Xie et al., 2006; Tedesco and
Kokhanovsky, 2007; Kokhanovsky et al., 2011; Libois et al., 2013;
Tedesco et al., 2013; Dang et al., 2016; Räisänen et al., 2017; He et al.,
2018). A database of ice crystal optical properties was therefore
constructed at the NASA Goddard Institute for Space Studies
(GISS), based on ray tracing and Geometric Optics (GO) (Macke
et al., 1996; van Diedenhoven et al., 2012). Although snow and ice
crystals can assume complex aggregated shapes, we used the fact that
hexagonal columns and plates have been shown to be adequate
radiative proxies for more elaborated structures (Fu, 2007; van
Diedenhoven et al., 2012, 2014a). The results for hexagonal
prisms were tabulated as a function of the ratio of their
dimensions (the Aspect Ratio, AR, with AR>1 for columns and
AR<1 for plates) and the microscale roughness of the crystal facets
(Macke et al., 1996; Yang et al., 2008). Analogous to the Cox and
Munk variance used for the water-wave slopes (Cox and Munk,
1956), the latter numerically represents the standard deviation of the
distribution of angles used to randomly perturb the orientation of a
crystal facet when the beam encounters it in the GO simulations. For
a given combination of aspect ratio and roughness, the asymmetry
parameter does not depend on the crystal size for the weakly
absorbing wavelengths (van Diedenhoven et al., 2014a, 2012) such
as 864 nm. This database yielded successful polarimetric retrievals for
parameters descriptive of the crystals forming ice clouds (van
Diedenhoven et al., 2014b).
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The implementation of these aspects into a retrieval scheme
addresses the long-standing challenges which limit the accurate
determination of the relationship between the snow grain size
and shape with the surface temperature, LAI content, location,
and season. Retrievals exploiting the GO database of nonspherical
ice crystals have been tested on airborne measurements over snow
surfaces collected with the NASA GISS Research Scanning
Polarimeter (RSP), and confirmed the superior capabilities of
polarimetry to retrieve the snow grain size, shape, and microscale
roughness (Ottaviani et al., 2015, 2012, hereafter referred to as O15
and O12). At the heart of such retrievals, and also used here, is a
forward RT model based on the general doubling-adding formalism
described by De Haan et al. (1987), which is capable to simulate the
stokes vector of the light field at any desired set of illumination and
viewing angles and altitude above the surface. Both the light field and
the partial derivatives with respect to the individual parameters can
be determined from a single run of the code without the additional
computational cost, should the linearization of the model be desired
in order to feed an inversion scheme (Rodgers, 2000). The code
includes a rigorous treatment of gaseous absorption and multiple
scattering processes bymolecules, aerosols, and clouds. Bimodal, log-
normal aerosol size distributions (Hansen and Travis, 1974) are
typically employed for aerosols. The code has been validated against
the benchmark results (see Appendix in De Haan et al. (1987)), and
is routinely used at GISS to model the RSP measurements over land
and ocean for the retrieval of aerosol, cloud, and surface properties
(e.g., Waquet et al. (2009); Knobelspiesse et al. (2011, 2012);
Ottaviani et al. (2019)).

In a preliminary study, we applied a root-mean-square-error
search through the GO database to the surface polarized
reflectance signal isolated after an accurate atmospheric
correction from the measurements acquired during a survey
of alpine snowfields in the Sierra Nevada range (O12). The
collection of these measurements, the first of its kind, was

personally designed during the Carbonaceous Aerosol and
Radiative Effects Study (CARES) mission. The results pointed
to snow composed of, or behaving as, a collection of ice crystals
with roughness values of ~0.3 and above, a range of quite
extreme aspect ratios, and correspondingly high asymmetry
parameters (g ~ 0.85). Subsequently, a dedicated science
flight over a dozen targets in Colorado and California was
designed during the POlarimeter Definition EXperiment
(PODEX) campaign, which served as a training activity for
the inter-agency Studies of Emissions and Atmospheric
Composition, Clouds, and Climate Coupling by Regional
Surveys (SEAC4RS) mission, with the RSP deployed on the
ER-2 aircraft. With 95% of the atmospheric mass residing below
the nominal cruising altitude, this stratospheric platform
provides a perspective close to that of a satellite. The analysis
(O15) replicated the results from the previous limited RSP
dataset, confirming the solidity of the method. Building on
the improved estimates of the asymmetry parameter, the
results were also augmented with grain size retrievals from
the RSP shortwave infrared measurements in a MODIS-like
fashion (Lyapustin et al., 2009).

The O12 and O15 studies did not include the basic plots
showing the sensitivity of the polarization signal to the crystal
habits spanned by the GO dataset. For this reason, Figure 1
presents the simulations of the radiances emerging from a 1 m-
thick, single-layer snowpack (density = 0.1 g/cm3, optically semi-
infinite), with an exponential distribution of hexagonal prism ice
grains of different ARs, and with effective radii of 50 μm typical of
fresh snow conditions. The roughness parameter was set to 0.3 as
retrieved from the real data (O15, O12). The upper and lower rows
correspond to the total reflectance and the polarized reflectance,
respectively, defined as Rp =

�������
Q2 + U2

√
, where Q and U are the

second and third components of the Stokes vector. The columns
correspond to different wavelengths in the visible and NIR (469,

FIGURE 1 | Top row: total reflectance (469, 864 and 1,589 nm) emerging from a snow layer observed along the principal plane, for SZA = 60°. Different colors
correspond to different grain shapes (reff = 50 μm) and microscale roughness equal to 0.30. Bottom row: the corresponding polarized reflectance, also showing
sensitivity.
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864 and 1,589 nm), which give similar results (with the obvious
exception of the total reflectance at the absorbing wavelength of
1,589 nm) because the scattering from ice crystals belongs to the
geometrical optics regime and the medium is optically semi-
infinite. These simulations are performed for an RSP-like-
instrument scanning along the principal plane of reflection, so
as to collect a wide range of scattering angles (top axis).

Since the intention of Figure 1 is to highlight the effects of
crystal shape on the surface contribution (i.e., on a signal that has
hypothetically been atmospherically corrected), no atmosphere is
included. The sensitivity to crystal shape emerging from these
simulations is an important result, given that the total reflectance

at absorbing wavelengths is used to estimate the grain size (in the
top layer of a centimeter or so depending on the specific
penetration depth), and demonstrates that the retrievals can be
improved by including polarization to achieve a better
determination of the grain shape. Albeit low, the magnitude of
the polarized reflectance does not cause detection problems given
the polarimetric accuracy and the signal-to-noise ratio of heritage
(POLDER (Fougnie et al., 2007; van Diedenhoven et al., 2012))
and upcoming polarimeters, such as those slated for launch
onboard the NASA Plankton, Aerosol, Ocean, and Ecosystem
(PACE) and the European MetOP-SG (Lang et al., 2019) satellite
missions. More importantly, the polarized signal carries specific

FIGURE 2 | The effect of growing concentrations of LAIs in a snowpack consisting of nonspherical grains (AR = 1, roughness = 0.3) on the radiances emerging at
the top of a standard atmosphere. The total reflectance (top row) experiences the well-known depression in the visible. The polarized reflectance (bottom row) is
essentially unaffected.

FIGURE 3 | As in Figure 2, but for increasing the loads of absorbing aerosols. The response of the TOA total reflectance is similar in the two figures, but now the
known polarized reflectance sensitivity to aerosols enables to distinguish them from the LAIs.
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angular signatures. A substantial variation in the behavior occurs
for crystal plates across the AR value of 0.5, mirrored by a jump in
the asymmetry parameter as large as 0.05. This situation is
replicated to a lesser extent by columns as the AR varies
across the reciprocal value (i.e., AR = 2).

To simulate the sensitivity of satellite observations to
impurities in or above the snow, a crystal habit with AR = 1
(blue curves in Figure 1) was used to model the bottom layer of a
model atmosphere. Contamination was added in the form of
plausible, increasing concentrations of 1) impurities embedded in
the snowpack (0, 0.01, 0.1, and 10 ppmw of soot as in Fig. 7 of
Warren and Wiscombe (1980)), with a refractive index n =
1.8–0.6i and density of 2 g/cm3) and 2) tropospheric aerosol
similar to the “Boreal Forest” smoke class by Dubovik et al.
(2002), with a refractive index n = 1.5–0.01i and the optical
depths at 555 nm equal to 0, 0.1, 0.4, 0.8, and 1.6. The impurities
in the snowpack are considered as externally mixed to the snow
grains, and their optical properties are calculated by Mie
calculations internal to the RT code, as done for the aerosols.
The results of these simulations are shown in Figures 2, 3, where
the columns pertain to the same wavelengths as in Figure 1. The
TOA polarized reflectance at 469 nm is dominated by Rayleigh
scattering. At all wavelengths, comparing the two figures, it is
evident that the model predicts very different TOA reflectances
depending on whether the contamination is embedded in the
snowpack or suspended above it (tropospheric aerosols), because
the overwhelming amount of multiple scattering in the snowpack
suppresses any polarization effect due to the small fraction of
LAIs. A complete sensitivity study on an extended set of
atmospheric aerosols is outside the scope of this article, and
does not invalidate the basic finding that the polarization
signatures of aerosols overwhelm those of the impurities,
which are de facto null.

We also modeled (not shown) the impurities embedded in the
snowpack with the optical properties typical of dust (n =
1.5–0.01i, r eff = 1 μm, v eff = 0.3, density = 2.6 g/cm3 and
concentrations of 1, 10, 100, 1,000 ppmw), obtaining the same
insensitivity of the polarized reflectance as obtained for soot.
These findings confirm that it is impossible to differentiate
between the two kinds of contaminants as long as their
refractive indices, although different, are taken as spectrally
invariant. To this regard, note that the recent efforts have
aimed at estimating the absorption properties of these
contaminants further into the UV region where dust
absorption increases dramatically (Müller et al., 2008;
Moosmüller et al., 2009; Wagner et al., 2012), since some of
the current space-borne sensors such as the Thermal And Near-
infrared Sensor for carbon Observation (TANSO), the Cloud and
Aerosol Imager (CAI) on GOSAT, and the JAXA Second-
generation GLobal Imager (SGLI) on GCOM-C1 have
moderate (1 km) resolution observations at 380 nm.

3 CONCLUSION AND OUTLOOK

The simulations presented in this study confirm the
importance of accounting for the grain shape in remote

sensing of snow properties, and illustrate the benefits of
polarimetry in correctly partitioning LAIs between the
snowpack and the atmosphere. For instruments equipped
with polarization and multiangular capabilities, they suggest
that a comprehensive database of ice crystals’ shapes can be
exploited within a simultaneous inversion scheme to largely
improve the description of both the surface and atmospheric
parameters, and avoid unphysical correlations stemming from
a lack of information content. After a tailored atmospheric
correction procedure applied to dedicated airborne
measurements collected by the RSP sensor and previously
published (O15 and O12), we are in the process of
constructing a general inversion scheme, and we prospect in
the near future to validate the model simulations presented
here starting from the augmentation of MODIS-like
observations with the data from the POLDER sensor,
insofar the only space-borne polarimeter with the sufficient
capabilities ever to furnish a reliable data record.

The snow grain shape retrievals hinge on the exploitation
of multi-angle, polarimetric measurements at NIR
wavelengths. Together with traditional, MODIS-like
techniques for the retrieval of grain size and impurity
content based on VIS and SWIR channels, the results are
therefore of special interest for the development of novel
algorithms to be applied to the next generation of
polarimeters planned for upcoming space missions, such as
PACE and those identified in the Decadal Survey Report, or
the European 3MI (Lang et al., 2019) sensor onboard MetOP-
SG. The results from polarimeters with limited angular
capabilities, such as JAXA’s SGLI sensor, are to be
evaluated with rigorous information content studies.
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