
Exploring Ecoacoustic Trajectories in
a Giant Sequoia Forest After Wildfire
Erik Meyer1*, Kurt Fristrup2, Anthony C. Caprio1, L. Don Seale1†, Carlos Linares3 and
Megan F. McKenna2

1Sequoia and Kings Canyon National Parks, National Park Service, Three Rivers, CA, United States, 2Natural Sounds and Night
Skies Division, National Park Service, Fort Collins, CO, United States, 3Department of Biological Science, Boise State University,
Boise, ID, United States

Forest management strategies that create spatially diverse fire-caused disturbance
outcomes, consistent with historic fire regimes, are a desired condition for fire adapted
western United States forests. In this context, the temporal dynamics of forest response to
fire can inform the tempo and scale of forest management, including prescribed burning.
Here, we investigated the use of ecoacoustic methods to assess ecological condition in a
four-year period (2016–2019) after wildfire in a giant sequoia forest landscape within Kings
Canyon National Park, California, United States. Audio recorders at nine sites were
deployed soon after the 2015 Rough Fire subsided. The monitoring sites were located
in regions with different fire histories, representing five fire history categories. We used the
Acoustic Complexity Index (ACI) to document biotic chorus complexity. This previously
tested ecoacoustic index provided a daily indicator of biotic sound activity in frequencies
dominated by avian calls. Patterns in ACI were evaluated using generalized additive mixed
models to understand the relationship with time-since-fire and covariates that accounted
for season, fire history category, and weather conditions. We showed that time-since fire
and fire-history influenced patterns in ACI after accounting for season and air temperature
effects. Monitoring sites where prescribed fire preceded the Rough Fire showed the
highest predicted ACI and evidence for a relatively consistent seasonal pattern in
ecoacoustic activity across subsequent seasons. Sites without prescribed fire and
burned by the Rough Fire exhibited the most pronounced successive decreases in
ACI in the first and second years after the fire. The daily temporal resolution of the
ecoacoustic index also revealed phenological shifts related to time-since-fire and fire
history. Sites unburned by the Rough Fire offered some context for how fire changed
ecoacoustic activity post-wildfire, however evidence suggested they were also impacted
by the presence of the nearby Rough Fire. The patterns in the ecoacoustic index when
combined with vegetation surveys offered complementary insights into ecological
dynamics of regeneration after fire. Our exploratory analysis showed that using
ecoacoustic methods in wildfire monitoring offers a scalable approach to remote
sensing of ecological trends. Archived recordings from the monitoring effort afford
future opportunities for new or more detailed insights.
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INTRODUCTION

Megafires, large wildfires with serious economic and ecological
consequences, are increasingly common worldwide and a new
reality for land managers (Adams, 2013). In California
(United States), the interaction of climate change, drought,
and altered historical fire regimes have led to increased
frequency and severity of fires across the state’s diverse biomes
(Steel et al., 2015; Schweizer et al., 2020; Stephens et al., 2020).
Since 2000, California has experienced 18 of its 20 largest
wildfires in recorded history, each burning over
65,000 hectares (CalFire, 2021). In 2020 and 2021, five of the
six largest wildfires occurred, eclipsing 800,000 total hectares
burned. Though fire is an essential part of many ecosystems in
California, the impact of megafires can be catastrophic in forests
where fire has been routinely suppressed, resulting in
homogenous, high-severity burns (Coop et al., 2020; Stephens
et al., 2020).

Public land management agencies, such as the U.S. National
Park Service, are often the areas impacted by high-severity
megafires. Tasked with protecting and managing natural
resources at landscape scales, national parks confront threats
that are amplified by rapidly changing environmental conditions
(Westerling, 2016). The history of fire exclusion extending back
to Euroamerican settlement has greatly altered ecosystem
susceptibility to fire. Increased forest density and greater fuel
accumulations resulted in fires of greater severity and increased
connectivity over the landscape (Meyer et al., 2019). Within giant
sequoia (Sequoiadendron giganteum) groves, lower severity fires
burned approximately every 5–25 years prior to Euroamerican
settlement, with frequency influenced by climate conditions
(Swetnam, 1993; Swetnam et al., 2009).

Forest management strategies that create spatially diverse fire-
caused disturbance outcomes, consistent with historic fire
regimes, are a desired condition for fire adapted western U.S.
forests (NPS, 2003; Fontaine and Kennedy, 2012; Simonson et al.,
2014; DellaSala et al., 2017). This strategy, termed
“pyrodiversity”, provides for ecosystem integrity and function
across varied taxa such as bats, birds, and small mammals, while
reducing fuel loads, forest density, and the probability of future
high-severity fires (Tingley et al., 2016; Steel et al., 2019).
Prescribed burning has been implemented at various scales
using more frequent, low-intensity fires, which are similar to
historical burning by Indigenous peoples and natural, lightning-
ignited fires (Kilgore and Taylor, 1979; vanMantgem et al., 2016).
Landscape scale prescribed burns are one method fire managers
use to promote integrity of the ecosystems and safety of nearby
communities. Yet these actions are often limited by funding,
human health and safety, diverse jurisdictions, and air quality
concerns (DellaSala et al., 2017; Stephens et al., 2020). Monitoring
ecological systems after prescribed burns or wildlife to assess
pyrodiversity outcomes requires innovative approaches that
sample over large spatial and temporal scales and captures
diverse features of the biological community.

The conditions of the forest after fire, both prescribed and
wild, are typically measured through vegetation sampling using
indicators such as tree species composition and condition,

understory regrowth, and burn severity (Mutch and Swetnam,
1995; Knapp et al., 2005; Nesmith et al., 2011; Meyer et al., 2019).
Whenmeasuring animal response to fire, studies are often limited
to a single species (e.g., Black-backed Woodpecker, Picoides
arcticus; California spotted owl, Strix occidentalis occidentalis)
(Jones et al., 2016; Stillman et al., 2019; Kramer et al., 2021) or are
limited to small study areas (Kilgore, 1971). Integrated studies of
responses over the broader ecological community are limited.
One challenge to studying fire response relationships across
diverse taxa is the difficulty in capturing the spatial-temporal
component of communities, which are strongly tied to the time
since disturbance, local climate, seasonality, natural history, local
or global migrations, and diel behavioral patterns (Leech and
Crick, 2007; Lindenmayer et al., 2016). When multi-species
studies do account for seasonal and other long-term wildlife
trends, widespread coverage is unlikely because most survey
methods are labor intensive, costly, and require specialized
skills (Driscoll et al., 2010; Bagne and Purcell, 2011). Despite
these challenges a few studies have garnered insight on these
dynamics (e.g., Tingley et al., 2016; Steel et al., 2019). Building on
these studies, more comprehensive ecological methods for
understanding the ecosystem response to fires and fire
management are desirable in the context of increasing risk of
megafires.

The emerging field of ecoacoustics offers rapid analysis tools
for passive acoustic monitoring (PAM) data to quantify aspects of
the acoustically active biological community (Sueur and Farina,
2015; Grant and Samways, 2016; Stowell and Sueur, 2020). This
relatively low-cost, data-rich technology requires the deployment
of autonomous acoustic recording units (ARUs), which are
placed at study locations to record the acoustic environment
within a specified frequency range. Community ecoacoustic
indices are calculated as summaries of the acoustic patterns
generated by all sounds in a recording (Sueur and Farina,
2015; Buxton et al., 2018; Bradfer-Lawrence et al., 2019;
Darras et al., 2019). Over 70 indices have been extracted from
PAM datasets with differing time and frequency parameters
related to study objectives (Buxton et al., 2018). Successful
applications of these indices have addressed temporal patterns
of terrestrial wildlife activity, response to ecological disturbance
(Gasc et al., 2018; Lee et al., 2017), biodiversity assessments, and
their respective dependencies on site characteristics and habitat
structure (Buxton et al., 2018). These ecoacoustic indices offer
simple computational recipes to document temporal trends with
high resolution on broad spatial scales, yet they present
limitations. Just as with other indices of biodiversity, the
compression of complex data into a single numeric summary
to represent a dynamic ecosystem yields useful information only
if researchers carefully examine the relationship between the
index and the underlying process of interest (Gasc et al., 2013;
Fuller et al., 2015). The index used in this study (Acoustic
Complexity Index) is particularly apt at detecting patterns in
terrestrial avian activity, especially during dawn chorus (Pieretti
et al., 2011; Buxton et al., 2016; Eldridge et al., 2016; Lee et al.,
2017; Ross et al., 2018).

We completed a nearly continuous four-year PAM
effort to understand ecological dynamics following the
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2015 Rough Fire in a giant sequoia (Sequoiadendron
giganteum) forest in Sequoia and Kings Canyon
National Parks (SEKI), California, United States.
Acoustic and environmental monitoring was
maintained at nine sites grouped in five different fire
history categories arising from the 2015 Rough Fire,
prescribed burning, and history of logging. Ecological
conditions were evaluated using an ecoacoustic index
(Acoustic Complexity Index, ACI) that represented the
variety of biological sounds in frequencies dominated by
the avian calls. Daily measurements of ACI enabled us to
parse the effects of weather and seasonal phenology to
reduce their capacity to obscure or confound the effects
of fire history. The results were combined with post-fire
vegetation surveys to gauge benefits of incorporating
PAM into post-fire monitoring efforts as a
complimentary ecological index.

MATERIALS AND METHODS

Background on Study Region
This study took place in the Grant Grove Peninsula (GGP), a
roughly 6,177-hectare region of Sequoia and Kings Canyon
National Parks (SEKI), California, United States ranging from
1,000 to 2,350 m in elevation (Figure 1). In addition to burned
areas from the 2015 Rough fire, this region of the southern Sierra
Nevada has a rich history of prescribed fire used to manage the
forested landscape for habitat structure and resource protection
(Swetnam et al., 2009; NPS, 2020).

From 2012 to 2016, California experienced the most severe
drought in at least the last century (Griffin and Anchukaitis,
2014), resulting in the death of an estimated 129 million trees in
the state (Moore et al., 2018). Large, protected areas, like SEKI,
were not spared from these conditions. By 2016, an estimated
20% of all living trees had died in SEKI lower elevation mixed

FIGURE 1 |Map of the study region in the Grant Grove region of Sequoia and Kings Canyon National Parks, California (A), including study sites, prior fire history,
and the 2015 Rough Fire perimeter and fire severity indices. (B) The greater study area, with the Rough Fire perimeter and fire severity indices shown. The Composite
Burn Index (CBI) is a standardized fire severity rating based on a composite of effects to the understory vegetation (grass, shrub layers), midstory trees and overstory
trees. Raster data were acquired from Forest Service data repository (USFS, 2015). (C) Photographs of two of the nine acoustic monitoring sites in May 2016 (six
mounts after Rough Fire was contained). Acoustic recorders (SongMeter 3, Wildlife Acoustic Inc.) were attached to the trees with microphones extending 0.5 m from the
recorder. RF1 = Rough Fire without prior prescribed burns. RF1 + Rx = Rough Fire with prior prescribed burns (Table 1 for descriptions).
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conifer forests (Stephenson et al., 2019), with the magnitude of
the effect decreasing with increasing elevation (Paz-Kagan et al.,
2017). Much of the mortality was exacerbated by bark beetles,
with differential effects depending on the tree and bark beetle
species. Large pines suffered particularly high mortality, with
50–70 percent of larger pines dying in some areas (Stephenson
et al., 2019). Drought induced tree mortality were effectively
moderated by prior burn treatments that reduced tree densities
(Restaino et al., 2019; van Mantgem et al., 2016; van Mantgem
et al., 2021).

The Rough Fire struck the region at the height of these
conditions in 2015. On 31 July 2015, a lightning strike north of
Kings Canyon National Park ignited the Rough Fire, ultimately
burning 61,324 hectares (613 km2) over 4 months with 3,810
hectares within the park. To assess the severity of the 2015
Rough Fire on the entire study area, multi-spectral satellite
imagery from 14 October 2014 (pre-fire) and 9 October 2015
(post-fire) were compared using the satellite image-based
summary of RAVG Composite Burn Index (NPS, 2003;
USFS, 2015). The Composite Burn Index (CBI) is a
standardized fire severity rating based on a composite of
effects to the understory vegetation (grass, shrub layers),
midstory trees and overstory trees and conveys the degree of
burn severity through a comparison with satellite-driven burn
severity data (USFS, 2015). Burn severity categories of CBI
range from 0 (unchanged/not detected) to 3 (highest
severity) (Table 1). In the burned landscape for the Rough
Fire high-severity fire accounted for an estimated 31%
(Figure 1). The fast growing megafire reached the giant
sequoia forests of the GGP on 11 September 2015. While
low-severity fire impacts were present in a large portion of
the sequoia forest within GGP (73%), several patches of high-
severity fire impacts (4%) existed in areas without previous
prescribed fires (Figure 1). The most significant impacts to the

GGP were on portions of the grove outside the park and not
directly part of the study area.

Study Sites
Nine sites were selected within the GGP representing five
different fire history categories (Table 1, Supplementary
Figure S1): two sites in old growth forest burned by the
Rough Fire without a history of prescribed fire (RF1); two
sites in old growth forest burned by the Rough Fire with prior
prescribed fire (RF1 + Rx); two sites in old growth forest
unburned by the Rough Fire but with prior prescribed fire
(UB1 + Rx); one site in old growth sequoia forest with no
recorded fire history (UB1); and two sites in a second growth
sequoia forest with no recorded fire history (UB2).

All nine sites were within giant sequoia-mixed conifer
forests, which also included white fir (Abies concolor), red
fir (Abies magnifica), sugar pine (Pinus lambertiana),
ponderosa pine (Pinus ponderosa), jeffery pine (Pinus
jeffreyi), and incense cedar (Calocedrus decurrens) (Haultain
et al., 2020). Only the UB2 sites were within a logged area with
second-growth giant sequoia trees approximately 100 years
old, all other sites were within late succession old growth
forests with mature, giant sequoia trees typically more than
1,500 years old.

Acoustic Monitoring
We placed one SM3 Songmeter (Wildlife Acoustic, Inc.) acoustic
recording unit (ARU) at each of the nine study sites (Figure 1,
Supplementary Figure S1). Locations for each ARU were
determined via random point generation in ArcGIS software
(ESRI, Inc.) within each respective fire history categories. Criteria
for site selection included within sequoia tree vegetation, 60 m
from fire history boundary, at least 25 m from a hiking trail, 40 m
from a service road, and 100 m from a meadow or stream and

TABLE 1 | Fire history conditions and recording days at each acoustic monitoring site (N = 9).

Fire
history
code

Fire management history
category

Site
codes

2015
rough
fire

Composite burn index (% in each
burn severity category)a

Years with
fires since

1921b

# Prescribed
fires

since 1960c

Total
recording

daysUn-
changed

Low Moderate High

RF1 Rough Fire (RF) without
prescribed fire in old growth (1)

60, 70 Yes 0 12.9 60.0 27.1 No Record 0 Site 60:710
Site 70:718

RF1 + Rx Rough Fire (RF) with prescribed
fire (Rx) Fire in old growth
forest (1)

80, 90 Yes 0 88.3 10.9 0.8 Site 80: 1992
and 2005

2 or 3 Site 80:687

Site 90: 1979,
1993, 2004

Site 90:741

UB1 + Rx No Rough (UB) with prescribed
burn (Rx) in old growth forest (1)

10, 20 No 100 0 0 0 1990, 2004 2 Site 10:721
Site 20:796

UB1 No Rough Fire or prescribed fire
(UB) in old growth forest (1)

30 No 100 0 0 0 No record 0 Site 30:756

UB2 No Rough Fire or prescribed fire
(UB) in second generation
forest (2)

40, 50 No 100 0 0 0 No record 0 Site 40:777
Site 50:690

aSatellite image-based summary of Composite Burn Index (CBI: USFS, 2015) was extracted from the total area of each fire history category within sequoia forest of GGP. The percentage
represents the total cells, a proxy for area, within each respective burn severity category. Burn Severity Categories of CBI range from 0 (unchanged/not detected) to 3 (highest severity)
(NPS, 2003; USFS, 2015).
bThe time periods of recorded prescribed fires within the respective treatment areas prior to the Rough Fire. Fire history records in SEKI dates back to 1921.
cThe number of times a site was treated with prescribed burns prior to the Rough Fire. The prescribed fire program started in the 1960s.
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245 m from another recorder location. The spatial separation of
at least 245 m from another site ensured spatial independence for
biological sounds.

Each ARU was affixed approximately 2 m above ground to a
standing, high-canopied tree (Figure 1C, Supplementary
Figure S1). An external A2 acoustic microphone (sensitivity
of −4 ± 3dB (0 dB = 1 V/Pa @1 kHz) and dynamic range of
14–94 dB sound pressure level at 0 dB gain) was mounted to a
1 m rod that extended horizontally from the unit (Figure 1C).
The ARUs were programmed to record each day for 5.5 h.
In the morning, the ARUs recorded for 4 h, starting 1 h
before sunrise. In the evening, they recorded 1.5 h before
sunset. During Daylight Savings Time (approximately
March–November), the ARUs recorded this schedule every
day. At other times of the year, we scheduled ARUs to record
every other day to extend the recording period in winter
months when access to the sites was more difficult. Each
recording was saved in an uncompressed WAV audio file
format with the following audio settings: gain of 35 dB and
sampling rate at 48 kHz.

From the spring through fall, each site was visited weekly to
check memory cards, battery life, and equipment damage. In the
winter months, site visits were less frequent, ranging from every
2 weeks to once each month depending on snow conditions.
Recordings were collected from June 2016 through November
2019 with some variation in total recording days across sites
(Table 1).

All audio data were converted to calibrated 1-s one-third
octave band sound pressure levels (SPL) with nominal
frequencies of 12.5–8,000 Hz using the technical specifications
of the ARUs to provide absolute measures of SPL (Merchant et al.,
2015) within one-third octave bands. This time-frequency
representation has been used effectively in several ecological
studies (Buxton et al., 2016; Buxton et al., 2018) and is the
standard resolution used in National Park Service standard
acoustic monitoring (Lynch et al., 2011). Using previously
described methods (Buxton et al., 2018), from the SPLs we
calculated the acoustic complexity index (ACI) and a measure
of background sound levels in 10-min intervals (R code available:
https://irma.nps.gov/DataStore/Reference/Profile/2293158). We
used 1.6–8 kHz nominal third-octave frequency bands to
represent biological sounds, a frequency range dominated by
avian calls. To represent low-frequency background sound
(anthropogenic and weather sounds), we used nominal one-
third octave bands between 0.315–1.25 kHz. We ultimately
used a single index, ACI, rather than a suite of indices because
it has shown to be a suitable index to describe ecological
conditions, particularly avian diversity (Pieretti et al., 2011;
Farina et al., 2015; Buxton et al., 2016; Ross et al., 2018). At
each site, all 10-min ACI values were summarized into a
daily mean.

The automated data processing routine allowed for
rapid processing of audio data when SD cards were
retrieved on a weekly basis. The rapid processing allowed
us to diagnose data quality issues and provide near real-time
assessments of equipment performance and acoustic
conditions.

Environmental Data
We included weather (temperature and rain) conditions in our
analyses to improve interpretations of ACI. At each study site,
temperature dataloggers (iButtons; Thermochron iButton,
Maxim Integrated, Inc.) were affixed to trees in the forest
understory. Each iButton was placed within 2 m of the ARU
at approximately the same height above ground. They recorded
temperature throughout the day at 30-min intervals. iButtons
were retrieved and replaced approximately every 6 weeks, except
in 2019 when conditions were too hazardous to visit the sites due
to risk of falling branches and trees.

The occurrence of daily rain events was obtained from the
Park Ridge weather station located approximately 3 km from the
study area (RAWS, 2021). Hourly rain depth was summed for
each day and converted to a binary variable indicating presence or
absence of rain. We also used this data source for a daily regional
air temperature measure.

Statistical Approach
Daily ACI, transformed by the base 10 logarithm, was the
response variable in the models because we were interested in
what explanatory variables influenced observed patterns in ACI.
This transformation expressed the premise that explanatory
variables had multiplicative effects on ACI, so the log
transformation resulted in an additive model framework. Fire
effects were represented by two explanatory variables: Fire
History category (FH, Table 1 for descriptions) and Days
Since Rough Fire (dayRF) was contained (06 November 2015).
Additional variables were incorporated to explore effects on ACI:
seasonal and interannual conditions were represented as Julian
day and weather effects were represented by regional air
temperature and a binary variable for measurable rainfall on
that day. Although we found evidence for site specific
temperature improving model fit, we did not include the
variable in the final models because iButton (iButtonLink,
LLC) data was not collected during the last year of ARU
deployments due to unsafe conditions. In some cases, presence
of abiotic sounds can influence ACI, so we included a variable for
background sound levels below the frequencies of the biotic
sounds we sought to measure.

We fitted 192 models we considered to express plausible
relationships between these explanatory variables and ACI.
Generalized Additive Mixed Models (GAMM) provided the
structure for each model, fitted using package mgcv (Core
Team, 2017; Wood, 2017). GAMM enabled us to investigate
potentially nonlinear relationships between the explanatory
variables and ACI, which seemed certain for seasonality and
plausible for other factors. Additionally, GAMM framework
enabled us to account for temporally autocorrelated data.

The first, simplest model used Site as a random effect. Two
more models were generated by adding Days Since Rough Fire as
a separate smooth term for each fire history (common to both)
plus alternative representations for Julian Day: a simple smooth
or distinct smooths for each fire history category. These three
options were doubled to six by adding a set of models that
included fire history as a factorial variable. These six options
were quadrupled to 24 by adding three options to express the
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effects of air temperature: a shared smooth, distinct smooths by
fire history, and distinct smooths by site. These 24 options were
quadrupled to 96 by adding three options to express the effects of
background noise level: a shared smooth, distinct smooths by fire
history, and distinct smooths by site. The final doubling of model
formulae was realized by adding a set of models that included the
categorical Rain variable. Temporal autocorrelation of daily ACI
was represented by the corCAR1 function on date nested within
site variables. All models assumed Gaussian errors in fitting the
dependent variable (an identity link function was used). Further,
we investigated collinearity of explanatory variables a priori and
found low correlation among variables.

Multimodel inference in the R statistical environment was
used to evaluate which model provided the lowest AICc values:
the best mix of prediction accuracy and concision (Burnham
et al., 2011; MuMIn v1.43.17; Core Team, 2017). The best-
performing model was then used to interpret the patterns in
ACI. Partial conditional dependence plots (e.g., Figure 2)
affirmed that residual errors were generally unimodal and
symmetric about the predicted values.

Using the predicted ACI values from the best performing
model, we compared patterns across all fire history categories,
between sites burned by Rough Fire, and within the seasonal peak
in ACI.

Vegetation Surveys
To understand changes in vegetation and habitat structure
post-fire, vegetation surveys were conducted at each site in the
beginning of the study (June 2016) and repeated at the end of
the study (June 2019). Two or three randomly located plots
were sampled near each acoustic recorder site to measure
features of the vegetation, including ground and canopy
cover and fuel load (Table 3). Plot locations were
determined through random point generation in ArcGIS
software (ESRI, Inc.), under the conditions that each plot
was within a 150 m buffer of the study site ARU. Area
sampled was based on the nearest 20 large trees [trees
≥10 cm diameter at breast height (DBH)] and nearest 20
small trees (<10 cm DBH) to the plot center. Cover of bare
ground, herbaceous plants, and shrubs were determined using
three 15 m point-intersect transects run at random directions
from the marked plot center. Overstory canopy cover was
determined at plot center using a spherical densiometer with
four subsamples collected at each cardinal compass direction
and then averaged together. Fuel loads, consisting of litter,
duff, and coarse woody debris were measured along the three
15 m transects using Brown’s Inventory methods (Brown,
1974).

RESULTS

Acoustic data were collected from June 2016 through November
2019 at all nine sites within a giant sequoia forest in California,
United States resulting in a total of 6,598 recording days. Total
recordings days at each site varied slightly (Table 1,
Supplementary Figure S2).

FIGURE 2 | Predicted relationships between ACI and days since Rough
Fire was extinguished across fire history sites over the four-year monitoring
period. Plots are partial conditional dependence plots of the logarithm of
predicted Acoustic Complexity Index, log10(ACI) and days since Rough
Fire was extinguished. Vertical dashed lines reference 1st June across all
years for reference to typical seasonal increase in ACI related to spring
ecoacoustics activity dominated by avian calling.
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Variation in Ecoacoustic Index
Our statistical analysis exploring the relationship between
ecoacoustic index (ACI) and a suite of plausible explanatory
variables revealed strong evidence for variation explained by
time-since-fire and fire history (Figure 2) while controlling for
effects of season and air temperature. The best performing
statistical model using multimodel inference method
(Supplementary Table S1) showed a delta AIC of 12 from the
next best performing model and therefore this model was used to
interpret the relationships between the explanatory variables and
ACI (Burnham et al., 2011). The best performing model
explained 69% (adjusted r-sq = 0.69) of the observed variation
in ACI and included four explanatory variables: day since Rough
Fire was conditioned on fire history category, air temperature,
season (Julian Day), and site as random effect (Table 2).

Evidence for the influence of fire onACIwas expressed as distinct
smooth terms for days since Rough Fire for each fire history category
(Table 2; Figure 2). While ACI was similar across all sites in the first
spring post fire (~day 200, Figure 2), the patterns began to deviate in
the second spring post fire (~day 600, Figure 2), with a pronounced
decrease at the RF1 category. The RF1 + Rx category showed some
variation in ACI after the Rough Fire with lower ACI in the second
spring after the fire but then less pronounced fluctuations
throughout the remainder of the study (Figure 2). At the sites
unburned by Rough Fire, UB1+Rx had lowACI values in the second

spring after the fire (~day 600, Figure 2) and UB1 showed similar,
but less pronounced seasonal patterns in ACI throughout the study
period (Figure 2) and the only smooth functionwith low evidence of
effect on ACI from days since fire in this fire history category
(Table 2). The patterns in UB2 sites showed the strongest seasonal
variation expressed by maximum ACI values in early summer and
minimum ACI values in mid-winter before a sharp decline
beginning around day 1,200 (Figure 2). The UB2 peaks in ACI
also occurred earlier in the spring season compared to the other fire
history categories (Figure 2).

We found strong evidence that season, modeled as Julian day,
was a significant predictor of ACI with higher predicted ACI in late
springmonths (Table 2;Figure 3A). A comparison of predictedACI
values within the month of June showed differences in magnitude
across the fire history categories (Figure 3B). The first June (2016)
after the fire had the highest predicted ACI across all sites with a
decrease in second season (2017) and evidence for an increase in
third season (2018). The predicted ACI in the second spring after the
fire (2017) had the greatest differences between fire history
categories, especially the RF1 compared to RF1 + Rx (Figure 3).
UB1 + Rx also showed a similar decrease in ACI the second spring
post fire, similar to RF1. These sites are relatively close to the edge of
the Rough Fire (Figure 1). The differences between predicted ACI
narrowed in June 2018 and were most similar across all fire history
categories. All fire history categories showed lower predicted ACI in
June 2019 compared to 2018 (Figure 3), suggesting a regional effect
related to drought conditions during the study period, although this
was not directly tested. This effect was less pronounced at RF1 + Rx
and UB1 fire history categories. Regional air temperature also
showed evidence for an effect on AIC (Table 2). AIC was
predicted to be lower at high and lower temperatures.

Comparison of Sites Burned by Rough Fire
We compared the predicted acoustic complexity at sites burned
by the 2015 Rough Fire (RF1 and RF1 + Rx) to evaluate
differences in ACI related to prescribed burning prior to
wildfire. Across all years, monthly median predicted ACI was
higher at the sites with prescribed burning occurring prior to the
Rough Fire (RF1 + Rx, Figure 4). The differences in ACI were
greatest in the second season after the fire (2017), then the
difference between these fire history categories decreased in
2018 and 2019 (Figure 4).

Using the predicted daily ACI in June across all years, we
observed evidence for a shift in the seasonal timing peak
ACI between RF1 and RF1 + Rx (Table 4). In the first June
after the fire (2016) peak day was similar across all sites, but AIC
was greater at RF1 + Rx sites. In second and third spring after
Rough Fire (2017, 2018) peak day was earlier at RF1 + Rx sites and
largest difference in ACI values was in the second spring post fire.
In fourth season, peak ACI shifted back to late-June for the RF1 +
Rx sites similar to the RF1 sites.

Changes in Vegetation and Habitat
Structure
We observed changes in vegetation and habitat structure from the
post fire vegetation surveys conducted in spring 2016 and 2019

TABLE 2 | Summary of best performing generalized additive mixed model
(GAMM) assessing the relationship of Acoustic Complexity Index (ACI) to fire
history, seasonality, and weather (regional temperature and rain). SE = standard
error; dayRF = days since Rough Fire extinguished; jDay = Julian day; air_c = air
temperature; FH = fire history category (Table 1); site = monitoring site
number; REML = restricted maximum likelihood smoothing parameter.

Model formula

log10(ACI)~GAMM(s(dayRF, by = FH) + s(jDay) + s(air_c) + random = list(Site = ~1)
+ correlation = corCAR1(value = 0.87), method = “REML”)

Parametric coefficients Estimate (SE) P
Intercept −0.58 (0.03) 2.00E-16

Approximate significance of smooth terms

— EDF P
s(dayRF):FH-RF1 7.147 2.00E-16
s(dayRF):FH-RF1+Rx 7.645 3.24E-08
s(dayRF):FH-UB1 4.983 0.0044
s(dayRF):FH-UB1+Rx 6.97 2.00E-16
s(dayRF):FH-UB2 8.738 2.00E-16
s(jDay) 8.158 2.00E-16
s(air_c) 7.544 2.00E-16

TABLE 3 | Summary of peak day and predicted ACI (pACI) in June across all years
of monitoring at sites burned by the Rough Fire.

Year RF1 RF1 + Rx Difference

Peak day pACI Peak day pACI Days ACI

2016 17 June −0.38 17 June −0.16 0 0.22
2017 29 June −0.72 11 June −0.32 18 0.4
2018 29 June −0.41 18 June −0.28 11 0.13
2019 30 June −0.51 29 June −0.36 1 0.15
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(Table 4, Supplementary Figure S1) and the changes differed
across fire history categories. In general, the vegetation structure
on the ground changed to a greater degree at the sites with Rough
Fire (RF1 and RF1 + Rx). For example, bare ground was reduced
by 50–100% at Rough Fire sites from the growth of shrubs and
herbaceous plants, compared to little change or increase at the
non-Rough Fire sites (UB1 + Rx, UB1, UB2). Differences in
canopy cover varied across sites, yet patterns related to fire history
category were less obvious. Canopy decreased by 4% at RF1 and
increased at UB2 by 7%. Total fuel load increased at all fire
histories plots with the greatest increase at RF1 and the least
change at UB2.

DISCUSSION

Monitoring ecological systems after disturbance using
methods that represent broad ecological features and
sample over large temporal and spatial scales can provide a
comprehensive picture of system response. Passive acoustic

monitoring offers these benefits with emerging scalable
technologies and analytical methodologies. Our exploratory
study using four-years of nearly continuous passive acoustic
monitoring (PAM) data collected at nine sites with five
different fire histories demonstrated the potential to
employ ecoacoustic methods to study ecosystem response
to wildfire on landscape scales. We found distinct patterns
in ecoacoustic index related to time-since-fire, fire history
category, season, and air temperature. Vegetation surveys
evaluating habitat structure conducted at the beginning and
end of the study (Table 4) documented changes in the habitat
expected post fire and complimented interpretation of
observed changes an ecoacoustic index collected at finer
temporal resolution.

Post-Fire Avian Response Using
Ecoacoustics
Previous studies on avian response trajectories to fire provide
important context for interpreting observed changes in ACI

FIGURE 3 | Seasonal effects on Acoustic Complexity Index. (A) Predicted relationship between ACI and Julian day across all sites and years showing increase in
ACI in the month of June. (B) Comparison of predicted ACI in the month of June—the peak period in avian ecoacoustic activity—across all years and within each fire
history category. RF1 = burned by the Rough Fire without a prescribed fire history in old growth forest; RF1 + Rx = burned by the Rough Fire with prior prescribed fire in
old growth forest; UB1 + Rx = unburned by the Rough Fire but with prior prescribed fire in old growth forest; UB1 = no recorded fire history in an old growth sequoia
forest; UB2 = no recorded fire history in a second-generation sequoia forest.
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related to time-since-fire and fire history. Species abundance is
known to increase immediately after low-severity fire (Hutto and
Patterson, 2016). In our study, we found strong evidence that the
highest ACI occurred in the first spring after the fire and to the
greatest degree at the study sites impacted by the Rough Fire with
prior prescribed burning (RF1 + Rx, Figure 2), indicating that low-
severity burned areas increases ecoacoustic activity. Further, the
relatively stable post-fire ACI relationship across the subsequent
seasons at RF1 + Rx sites suggested that resident and migratory
bird species may have ultimately benefited from low-severity fire;
an outcome that has been documented in nearby mixed conifer
Sierra Nevada forests (Bagne & Purcell, 2011). The vegetation
surveys at the low-severity burned sites (RF1 + Rx) also showed
that habitat structure changes likely resulted in increased habitat
heterogeneity by reducing forest fuel while maintaining a green,
uncharred forest canopy with understory structure (Table 4).

In the absence of prior prescribed fire, the Rough Fire burned
at moderate to high-severity at the RF1 sites (Figure 1; Table 1)
and we did not see the same response trajectory in ACI
compared to the low-severity burned sites (RF1 + Rx). The
ACI response pattern at RF1 sites exhibited the most
pronounced successive decreases in the first and second years
after the fire (Figures 2, 3). By the third year of monitoring

(2018) the ACI response pattern at RF1 rebounded and
predicted ACI values were most similar to the RF1 + Rx sites
(Figure 3), indicating habitat conditions at the moderate to
high-severity burned sites improved by the third season.
Vegetative surveys in the fourth year (2019) showed a
dramatic increase in shrub cover compared to the first season
after the fire (Table 4). However, canopy cover was reduced by
4% which may have shifted the bird community compositions to
early succession bark foragers and cavity nesting avian species
(Stephens et al., 2015). While this study did not investigate shifts
in species composition related to post fire conditions, future
analysis of the archived acoustic data may further elucidate
these observed shifts in ecoacoustic activity in relation to species
present near these sites.

Consideration of Landscape-Scale
Changes Related to Fire
The sites unburned by the Rough Fire (UB1 + Rx, UB1, and UB2)
offered some context for how fire changed ecoacoustic activity
post-wildfire. ACI similarities between RF1 + Rx and UB1 + Rx
suggested that overall lower sustained ACImeasured at RF1 could
be avoided with increased and active prescribed fire management

FIGURE 4 | Difference in predicted Acoustic Complexity Index between sites burned by the Rough Fire with prior prescribed burn (RF1 + Rx) compared to sites
without prior prescribed burn (RF1). Positive values indicated ACI or ecoacoustic activity was higher at sites with prescribed burn prior to Rough Fire. Gray shaded bars
are median differences for the specific month, colored by month. Light gray bars behind are the 75th and 25th quartiles for the monthly differences.

TABLE 4 | Summary of vegetation surveys post Rough Fire at sites in the different fire history treatments. Values were averaged across all plots and sites within the different
fire history categories.

Fire
history
(# of plots)

Vegetation survey metric

% Bare ground cover % Herbaceous cover % Shrub cover % Canopy cover Total fuel load (kg/m2)

2016 2019 % Δ 2016 2019 % Δ 2016 2019 % Δ 2016 2019 % Δ 2016 2019 % Δ

RF1 (6 plots) 56.2 1.3 −97.7 5.2 42.2 711.5 1.5 30.8 1953.3 89.9 86.4 -3.9 4.1 8.5 107.3
RF1 + Rx (6 plots) 43.7 20 −54.2 5.3 34.2 545.3 18.3 30 63.9 77.8 80.9 4.0 5.5 7.7 40.0
UB1 + Rx (5 plots) 1.6 2.4 50.0 5.2 8.4 61.5 16.2 19 17.3 90.5 91.1 0.7 10.2 19.7 93.1
UB1 (4 plots) 0 0 0.0 25.5 25.5 0.0 1 10 900.0 96.1 97.5 1.5 39.4 43.8 11.2
UB2 (2 plots) 1.5 1.3 −13.3 8.3 9.3 12.0 13 13.8 6.2 91.1 97.3 6.8 28.7 29.1 1.4

Frontiers in Remote Sensing | www.frontiersin.org April 2022 | Volume 3 | Article 8378669

Meyer et al. Ecoacoustic Methods and Wildfires

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


program. However, the unburned sites are all relatively close to
where the Rough Fire burned (Figure 1) and our results suggest
these sites were impacted by the presence of the nearby Rough
Fire, therefore not considered true control sites. Specifically, while
the UB1 + Rx had consistent and sustained higher predicted ACI,
similar to RF1 + Rx, the response trajectory post-fire was more
similar to that of RF1 (Figure 2) with a second spring season
post-fire reduction in ecoacoustic activity (Figure 3). These
results indicated that wildfire likely changed ecological
conditions in nearby unburned forests, even if habitat
structure did not change (Table 4).

Prior to the Rough Fire, the fire history at the RF1 sites was like
that of the UB1 site (Table 1), both late succession giant sequoia
forest. Thus, comparing the RF1 and UB1 response trajectories
likely reflected the effect of high-severity fire in late succession
forests when fire has been excluded from the system. Compared
to RF1, UB1 exhibited higher overall predicted ACI, yet less
seasonal ACI variation (Figure 2). The lower ACI variation
across season likely related to a lack of early successional bird
communities and may even indicate lower species diversity and
density, as has been found in other late successional forests in
Oregon, United States (Cushman and McGarigal, 2003). Even
with reduced habitat structure and ecoacoustic activity at
moderate to high-severity burn sites (RF1) when compared to
RF1 + Rx, the Rough Fire may have increased species diversity in
an otherwise late succession giant sequoia forest when compared
to UB1.

Within the Grant Grove peninsula, it was difficult to find late
succession sequoia forests that were not previously burned to
compare to RF1. The only other options besides one site within
UB1 for representing fire suppressed sequoia forests was to
include sites in previously logged second generation forests
(UB2), which were geographically appropriate but dissimilar in
habitat structure (Figure 1; Table 4). Most giant sequoia logging
in this area took place in the late 1800 s, and after an early
successional herbaceous stage, the logged forests rapidly
transitioned to dense thickets of second-generation giant
sequoias with very little understory diversity and structure
(Biswell et al., 1966). In the absence of disturbance, this
condition persisted at UB2, and the resulting ACI suggested
strong and consistent seasonal patterns with a pronounced
negative response towards the end of the study. The sharp
decline in ACI at UB2 towards the end of the study might
indicate local movement away from the fire-suppressed, early
successional UB2 forests toward the nearby newly recovering
areas of the Rough Fire. Further evaluation of species
composition across all years is necessary to understand how
shifts in ecoacoustic activity may be connected based on
responses across the region.

Drought conditions across all monitoring sites likely influenced
the observed decrease in ACI in the final year of monitoring (2019,
Figure 2, 3) but was not explicitly evaluated in this study. Other
studies have documented Sierra Nevada avian population declines
from drought and climate change (Roberts et al., 2019). Assessment
of multiple and interacting threats to this forest system complicated
the observed relationships to fire history presented in this study yet
provided some evidence that could be investigated in future studies.

To further understand these interacting disturbance regimes on
ecological conditions, longer term acoustic monitoring to compare
to measures of disturbance is needed.

The daily temporal resolution of the ecoacoustic index
showed evidence for phenological shifts in ecoacoustic
activity related to fire history category. Daily predicted
ACI increased to a local maximum in June in all years at
most sites (Figure 3), yet we found that peak activity in June
differed between the RF1 and RF1 + Rx sites (Table 3). Later
peaks at RF1 sites in 2017 and 2018 suggested that birds may
utilize less disturbed habitats before moving to more
disturbed habitats across this forest landscape. These
changes in phenology through ACI further elucidated post-
fire effects across habitats by signaling the onset, magnitude,
and timing of seasonal ecoacoustic activity and how these
interactions maybe related in a pyrodiverse giant sequoia
forest landscape.

Expanding Ecoacoustic Methods for
Ecological Insight
Although we documented evidence for acoustic patterns that
correspond to ecological changes known to have occurred in the
first four years after a fire, longer term studies could address
additional suites of questions, such as succession, ecological
stability, and fire regime shifts (Fontaine and Kennedy, 2012),
as well as interactions with broader regional pattern such as
drought. The longer-term ecosystem responses to fire that have
been documented (Stephens et al., 2015; Tingley et al., 2016)
likely have concomitant ecoacoustic expressions. The modest cost
of sustaining a passive acoustic monitoring network and near-real
time index of ecoacoustic activity encourages integration into
long-term research programs, yet integration into fire
management strategies remains challenged by established
protocols, budgets, and perceptions of the value added.

Future research that adopts ecoacoustic indices can benefit
from the pragmatic lessons presented here. First, co-locating
acoustic recorders with other environmental sensors would
improve predictions by controlling for micro-climate drivers
in ecoacoustic activity. Second, we obtained informative results
from a single ecoacoustic index, ACI; however, a multivariate
response model employing a suite of ecoacoustic indices may
reveal more detailed patterns of the ecological community. The
elevated complexity of these analyses will be increasingly justified
as the diversity of sampled ecosystems and acoustically active
communities increases (Buxton et al., 2018). Specific detectors
that identify bird species and call types can merge behavioral
information into ecoacoustic trends, enhancing opportunities to
identify mechanisms and drivers of observed patterns, like the
fire-history related reductions and phenological shifts.
Automated techniques for extraction and classification of
species-specific acoustic signals are rapidly improving (Balantic
and Donovan, 2020; de Oliveira et al., 2020; Knight et al., 2020).
Lastly, periodic communication of acoustical summaries and
near-real time alerts to anomalous events like biological
invasions have the potential to inform resource management
decisions and actions as events unfold (Wood et al., 2019). The
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capacity to archive acoustic data generates future opportunities to
extract more detailed information from these data.

Adopting Ecoacoustic Methods Into Fire
Management Strategies
Understanding environmental conditions often relies on indices
derived from remote sensing to provide simplified trends in
conditions. For example, satellite derived drought indices are
relied upon for monitoring and evaluating drought severity across
landscapes (Lydersen et al., 2016). Climate indices are used to
characterize an aspect of ocean circulation pattern (Schwing et al.,
2002). The public, government, and researchers routinely utilize
these indices as benchmarks to inform their decisions about the
status of conditions. The strength of these indices is a simple
diagnostic quantity captured over broad spatial and temporal
scales; the limitations are the simplification of complex dynamics
represented in a single index.

While ecoacoustic indices are known to represent features of the
biological community (Bradfer-Lawrence et al., 2019; Metcalf et al.,
2020; Stowell and Sueur, 2020), adoption of these methods into
larger scale assessments is limited. These acoustic monitoring sites
sit within a broader regional landscape, where management
agencies routinely use remote sensing indices to better
understand conditions. We argue that this predicted ecoacoustic
index, when collected at daily resolution and processed nearly in
real-time, offers a scalable remote sensing index to monitor
ecological condition after wildfire and complements vegetation
surveys and burn severity indices. While only evaluated in a giant
sequoia forest landscape, other forest types may show similar
ecoacoustic trajectories after wildfires.

CONCLUSION

This research explored the use of ecoacoustic methods to
represent ecological conditions after wildfire in iconic giant
sequoia forests of the western United States. Remaining giant
sequoia stands are threatened by increases in size and
occurrence of catastrophic wildfires. We present a timely
study exploring sequoia forest condition using remote
acoustic sensing as a complement to traditional forest
health metrics. Passive acoustic monitoring was sustained
almost continuously for four years at nine sites. The
monitoring sites represented five fire histories which
expressed distinct and persistent patterns in time series of
an ecoacoustic index computed from the recordings. The
analyses also revealed which times of year exhibited the
greatest contrasts in the ecoacoustic index and possible
landscape-scale effects related to wildfire. Using ecoacoustic
indices in wildfire monitoring may provide a scalable remote
sensing benchmark of ecological condition. For example, these
methods could be applied after prescribed burns to quantify
the temporal dynamics of recovery to inform the scheduling
and spatial scale of such burns to realize management
objectives for resource conservation and restoration of
sustainable fire regimes.
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Supplementary Figure S1 | Photographs of study sites in across five different fire
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second generation forest (UB2) in (I) May 2016 and (J) November 2019.

Supplementary Figure S2 | Summary of recording days in each month across all
years of monitoring.

Supplementary Table S1 | Summary of 10 best performing models evaluated
using model selection procedure (ACIc). All model structures also included the
following components: temporal correlation for day and REML method. Model
terms: logACI=log of acoustic complexity index, FH=fire history category,
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