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In most coastal waters, riverine inputs of suspended particulate matter (SPM) and colored
dissolved organic matter (CDOM) are the primary optically active constituents. Moderate-
and high-resolution satellite optical sensors, such as the Operational Land Imager (OLI) on
Landsat-8 and the MultiSpectral Instrument (MSI) on Sentinel-2, offer a synoptic view at
high spatial resolution (10–30m) with weekly revisits allowing the study of coastal
dynamics (e.g., river plumes and sediment re-suspension events). Accurate
estimations of CDOM and SPM from space require regionally tuned bio-optical
algorithms. Using an in situ dataset of CDOM, SPM, and optical properties (both
apparent and inherent) from various field campaigns carried out in the coastal waters
of the estuary and Gulf of St. Lawrence (EGSL) and eastern James Bay (JB) (N = 347), we
developed regional algorithms for OLI and MSI sensors. We found that CDOM absorption
at 440 nm [ag (440)] can be retrieved using the red-to-green band ratio for both EGSL and
JB. In contrast, the SPM algorithm required regional adjustments due to significant
differences in mass-specific inherent optical properties. Finally, the application of
regional algorithms to satellite images from OLI and MSI indicated that the
atmospheric correction (AC) algorithm C2RCC gives the most accurate remote-
sensing reflectance (Rrs) absolute values. However, the ACOLITE algorithm gives the
best results for CDOM estimation (almost null bias; median symmetric accuracy of 45%
and R2 of 0.78) as it preserved the Rrs spectral shape, while tending to yield positively bias
SPM (88%). We conclude that the choice of the algorithm depends on the parameter of
interest.

Keywords: SPM, CDOM, optically complex waters, atmospheric correction, Landsat-8 (OLI), Sentinel-2 (MSI),
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1 INTRODUCTION

The ability to operationally monitor coastal water constituents such as colored dissolved organic
matter (CDOM) and suspended particulate matter (SPM) is critical to understand the physical,
chemical, biological, and geological processes governing the coastal ecosystem. These optically active
constituents (OACs) are driving light penetration in the aquatic environment (Kirk, 2011) and major
biogeochemical (e.g., van der Molen et al., 2017) and photochemical processes (e.g., Zhang and Xie,
2015). During the last decade, new sensors with a spatial resolution of 10–30 m have improved our
ability to observe the spatial variability of ocean color (OC) in coastal areas (e.g., Aurin et al., 2013).
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As a result, high-resolution OC sensors such as the operational
land imager (OLI) onboard Landsat-8 and the MultiSpectral
Instrument (MSI) on-board Sentinel-2 platforms have shown
their importance as monitoring tools for analyzing the spatial and
temporal variability of OACs (e.g., Normandin et al., 2019; Chen
et al., 2020). These OC sensors allow studying the spatial and
temporal dynamics of these constituents in unprecedented ways
(Vanhellemont and Ruddick, 2014; Li et al., 2019; Osadchiev and
Sedakov, 2019).

On one hand, locally tuned bio-optical algorithms are needed
for accurate retrieval of OACs from operational multispectral
sensors due to the great optical diversity found in contrasting
coastal zones (e.g., Zheng and DiGiacomo, 2017). On the other
hand, prior to the application of bio-optical algorithm, satellite
data recorded at the top of atmosphere need to be corrected for
atmospheric contribution to compute the bottom of atmosphere
radiance/reflectance. As a result, atmospheric correction
algorithm development is an active field of research and the
number of available models has increased significantly over the
last decade (Pahlevan et al., 2021). Therefore, here both bio-
optical and atmospheric correction algorithms have been
considered for practical application to satellite imagery.

Two types of approaches can be followed to retrieve OACs
from the marine reflectance signal. Physics-based models in the
form of analytical or semi-analytical algorithms (SAAs) present
the advantage of retrieving multiple parameters at the same time
and allow to associate error to causes through error analysis and
error propagation (Odermatt et al., 2012, and ref. therein).
However, SAAs require more spectral information than that
offered by sensors with broad spectral bands in the visible
such as OLI or MSI. Furthermore, atmospheric correction in
coastal region can be quite challenging and provide inaccurate
values of remote sensing reflectance (Pahlevan et al., 2021), errors
which will bemore critical for SAAs than for empirical algorithms
based on the band ratio.

Nearshore coastal waters of Québec, specifically the eastern
shore of James Bay and the north shore of the estuary and Gulf of
St. Lawrence (EGSL), are under the freshwater runoff’s influence
from the numerous rivers draining the boreal Canadian shield
watersheds. The EGSL is one of the major subarctic estuaries
characterized by high phytoplankton production sustained by
nutrient-rich upwelling in the lower estuary along the north coast
(Le Fouest et al., 2006; Cyr et al., 2015), and by fluvial input
loaded with nutrients (Therriault and Lacroix, 1976; Hudon et al.,
2017). Freshwater runoff brings CDOM and SPM, which by
modifying light attenuation and heating the upper part of the
water column (Costoya et al., 2016), can affect photosynthesis
and primary production of phytoplankton, macroalgae, and
seagrass meadows. James Bay, located south of Hudson Bay, is
the land of Cree communities that rely on natural resources to
maintain their cultural heritage. However, their fishing and
hunting grounds are going through profound changes, notably
caused by a decline of the eelgrass (Zostera marina L.) beds, a
coastal habitat playing a structuring role in the food web (DFO,
2009). Among factors shaping the growth of eelgrass,
photosynthetically available radiation (PAR) is a key limiting
parameter (Duarte, 1991). Since PAR attenuation is largely driven

by CDOM and SPM, the retrieval of these constituents can
significantly improve our ability to develop mitigation
strategies by defining areas more prone for eelgrass
implantation and to respond to this decline (Murphy et al.,
2021). In the EGSL coastal waters, chlorophyll-a varies from
0.2 to 17 mg m−3 with a mean (standard deviation) value of 2.6
(±2.3) mg m−3 (Araújo and Bélanger, 2022). As shown by Araújo
and Bélanger (2022), phytoplankton contribution to the non-
water absorption budget is marginal in these waters, making the
water color (i.e., the remote sensing reflectance) variability mainly
driven by CDOM and SPM. A similar conclusion can be drawn
from James Bay waters where coastal waters are even more
influenced by CDOM-rich boreal rivers inputs, maintaining
the surface salinity below 25 PSU. For these reasons, this
study focuses on the retrieval of the main driver of the Rrs,
i.e., the CDOM and SPM.

Since 2015, we have conducted several oceanographic
campaigns in the lower St. Lawrence estuary (PMZA-RIKI buoy)
and in nearshore waters along the north coast of St. Lawrence (Sept-
Îles Bay, Manicouagan Peninsula, Forestville) and along the eastern
shore of James Bay (Figure 1). These campaigns allowed building a
biogeochemical–optical database gathering near-simultaneous
remote sensing reflectance (Rrs), inherent optical properties
(IOPs), and seawater constituents. The main objective of this
study was to investigate empirical relationships linking Rrs with
CDOM absorption and SPM. We tested various empirical
algorithm formulas published in the literature (e.g., Matthews,
2011; Dorji and Fearns, 2016; Houskeeper et al., 2021) with
known potential and drawbacks for their application to modern
multispectral sensors. The specific objectives were: 1) to develop
empirical algorithms for Landsat-8 and Sentinel-2 satellite missions
for the Québec coastal waters; 2) to examine the similarity and/or
differences between the coastal zones in terms of optical properties
and their implications for satellite remote sensing of CDOM and
SPM; and 3) to validate the satellite retrievals using OLI and MSI
through a matchup analysis. The validation is made with a
comparison of six atmospheric correction algorithms.

We first present the sampling strategy and materials and
methods used to build the optical database. Next, we focus on
the empirical algorithm development based on in situ data, which
highlights similarities and differences among coastal regions. The
third section will present the validation of satellite retrievals,
based on a matchup analysis of the OLI and MSI sensors with the
in situ database. Finally, the main findings in terms of satellite
retrievals of SPM and CDOM after the application of atmospheric
correction (AC) are discussed.

2 MATERIALS AND METHODS

2.1 Study Area and Sampling
Acquisition of in situ data has been made within the scope of four
different research projects from 2015 to 2019. More detailed
information about the projects in the EGSL can be found in
Bélanger et al. (2017) and Araújo and Bélanger (2022). Briefly, the
lower St. Lawrence estuary was sampled within the framework of
the Programme de monitorage de la zone Atlantique (Atlantic
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Zone Monitoring Program) PMZA (AZMP), initiated and
maintained by Fisheries and Oceans Canada (DFO). The
station PMZA–RIKI (Figure 1, red symbol), offshore
Rimouski, has been visited on 19 occasions in 2015 as detailed
in Bélanger et al. (2017). In-water radiometric measurements
were performed for the determination of Apparent Optical
Properties (AOPs). Concurrently, an optical package was
deployed for the determination of bulk IOPs, including
particulate backscattering coefficient (bbp). Along with the
IOPs and AOPs, a suite of biogeochemical and optical
variables were obtained from discrete water samples, including
SPM, spectral CDOM, and particulate absorption coefficients (ag
and ap).

Within the scope of the Canadian Healthy Oceans Network
(CHONe2), 11 field campaigns were conducted in the Bay of
Sept-Îles (BSI) area from August 2016 to June 2019 (Figure 1;
orange symbols) (for details, see Table 2 in Araújo and Bélanger,
2022). The sampling stations include nearshore coastal waters
and optically shallow waters (~120 stations). In September 2017,
with the collaboration of the DFO and the Canadian
Hydrographic Service (CHS), fieldwork in support of airborne
hyperspectral imagery acquisition was carried along the northern
shore of the EGSL. This campaign includes 7 stations in the
Forestville (FV) area, sampled on 11 September, where the above-
mentioned optical and biogeochemical dataset were collected
(Figure 1; black symbols). Finally, in August 2019, a field
campaign was organized in the frame of the WaterSat Imaging
Spectrometer Experiment in nearshore coastal waters of the
Manicouagan Peninsula (Figure 1; yellow symbols), during
which more than 50 stations were visited to record optical and
biogeochemical data. For all these field campaigns, the protocols
detailed in (Bélanger et al., 2017) were followed to compute the

desired AOPs, in situ IOPs, and biogeochemical and optical
measurements (see below).

The nearshore coastal waters of eastern James Bay were
sampled within the framework of a multidisciplinary project
in collaboration with the Cree nation to better understand the
evolution of eelgrass meadows observed over the last 3 decades
(Figure 1; green symbols). The sampling was performed in
August–September 2018 and July–August 2019 with the
freighter canoes piloted by members of the Cree communities.
Due to logistic constraints, different protocols were adopted for
in-water AOPs and IOPs (see following subsections).

A total number of 186, 188, and 132 concomitant
measurements of Rrs with SPM concentration (CSPM), ag, and
bbp, respectively, were available in the EGSL. In James Bay, 161,
155, and 144 concomitant measurements of Rrs withCSPM, ag, and
bbp, respectively, were available.

2.2 Derivation of Rrs
Derivation of Rrs (Eq. (1)) follows the NASA protocol (Mueller
et al., 2003). Underwater measurement of upwelling radiance Lu
(z) and above water measurement of downwelling irradiance Ed
(0+) were made with different instruments and methods in the
EGSL and JB. In the EGSL, vertical profiles of upwelling radiance,
Lu (λ, z), where λ is spectral wavelength in nm and z is depth of
observation, were measured at 19 wavelengths with different
Compact-Optical Profiling System instruments (Morrow et al.,
2010). Seventeen common wavelengths were available for the
various C-OPS instruments used in the EGSL: 320, 340, 380, 412,
443, 465, 490, 510, 532, 550 (or 560), 589, 625, 665, 683, 694, 710,
and 780 nm. In James Bay, underwater hyperspectral upwelling
radiance [Lu (z)] below the sea surface (~5–15 cm depth) was
measured using two Satlantic HyperOCR radiometers (HOCR)

FIGURE 1 | Localization map of the datasets, colors correspond to the different areas in which the data were acquired.
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held away from the boat with a pole and submerged at two
different depths, allowing an estimation of the spectral diffuse
attenuation coefficient for the upwelling radiance (KLu). The
acquisition spectrum of the HOCR spans from 380 to 800 nm by a
3 nm step. In all cases, the incident Ed (0

+) was measured above
water using a radiometer attached to the boat above the structure
to avoid shadow. All radiometers were calibrated by the
manufacturer less than a year before or after the deployment.
In-water radiometry data was processed using the open-source
R-packages “Cops” and “HyperocR” available on GitHub (https://
github.com/belasi01/). A detailed discussion about the C-OPS
instrument and the processing protocols can be found in previous
studies (Mueller et al., 2003; Morrow et al., 2010; Antoine et al.,
2013; Hooker et al., 2013; Bélanger et al., 2017). Briefly, the
processing includes the extrapolation of Lu (z) to the sea surface
using the estimated value for KLu and its transmission across the
air-water interface to provide Lw (0+), which is used to estimate
the remote sensing reflectance:

Rrs � Lw 0+( )
Ed 0+( ). (1)

Instrument’s self-shadow correction was applied to C-OPS
data following the procedure described by Gordon and Ding
(1992) and Zibordi and Ferrari (1995), but considered
negligible for HOCR (radius of 3 cm). Radiometric variables
were measured at different spectrum limits and were
interpolated to obtain values at the same wavelengths
through the database. The spectral interpolation (generally a
few nanometers) error is assumed to be negligible. We also
computed a sensor-equivalent Rrs from our in-water spectral
radiometric measurements for OLI and MSI sensor bands
through the Relative Spectral Response (RSR) function to
develop empirical algorithms specifically for those sensors
and to conduct the matchup analysis. Due to the difference
in spectral sampling in the near-infrared between C-OPS and
HOCR, we could expect some discrepancy between the EGSL
and JB dataset for the Rrs (740) channel of MSI.

2.3 Particulate Backscattering
The volume scattering function (VSF) in the backward
direction of light propagation was measured with four
different backscattering meters: a Hydroscat-6 from HOBI
Labs, and ECO-VSF, BB3, and BB9 from Wetlabs. The
Hydroscat-6 was used for the sampling of PMZA-RIKI, FV,
BSI, and Manicouagan peninsula. Hydroscat-6 measures the
VSF at 141° at six waves bands centered at 394, 420, 470, 532,
620, and 700 nm. The BB9 was used at a few stations during
WISE-Man (wavebands: 412, 440, 488, 510, 532, 595, 650, 676,
and 715 nm). In James Bay, the ECO-VSF (wavebands: 470 and
532 nm) and BB3 (wavebands: 470, 532, and 715 nm) were
used in 2018 and 2019, respectively. The Hydroscat-6,
mounted on an optical package, which also included a CTD
(conductivity-temperature-depth; SBE19 from Seabird
scientific) and an a-sphere (HOBI Labs) to measure the
total non-water absorption coefficient for vertical profiles of
IOPs along the water column. After depth discretization, the
data point closest to the surface is selected. Similarly, the BB9

was deployed together with a CTD and an AC-s meter. In
James Bay, the BB3 and the ECO-VSF were held by hand in
surface water for ~2 min, and the average value was retained.
The raw VSF data, measured at given scattering angle (i.e., ~
124° for the ECO-BB and ~141° for Hydroscat-6; Doxaran
et al., 2016), were converted in physical unit (m−1 sr−1) using
the manufacturer calibration coefficients with updated dark
offsets taken on the field. The conversion of the VSF into a
backscattering coefficient (bb) was performed following the
procedure described in Doxaran et al. (2016) for ECO-BB and
Hydroscat-6 and in Boss et al. (2004) for the ECO-VSF. The
corrections included the loss of signal due to the absorption of
the backscattered photons along the optical path length, which
was estimated using absorption coefficients for the a-sphere or
the AC-s when available, or from the absorption coefficients of
CDOM and particles determined on discrete samples
(Bélanger et al., 2017; Araújo and Bélanger, 2022). On a few
occasions in James Bay, the ECO-BB meters saturated in very
turbid waters and the data was flagged.

2.4 Discrete Water Sample Measurements
Water samples were taken near the surface with a bucket or a
Niskin bottle, stored away from light and heat in coolers. They
were processed in the laboratory as soon (less than 8 h after
collection) as the boat returned to harbor. To trace CDOM
concentration, spectral absorption coefficients, ag, were made
according to the IOCCG (2018) protocol. Briefly, two filtration
steps allow removing all particulate matter, a prefiltration on
Whatman GF/F (0.7 µm nominal particle size retained) followed
by filtration on Nucleopore 0.2 µm nominal pore size. The
absorbance was obtained using a Perkin Elmer double-beam
Lambda-850 with quartz cells on 10 cm, 5 cm, or 1 cm path
lengths (depending on the concentration) against nano pure
water as the reference. The raw data were converted to
absorption, and corrected for null offset in the NIR with open
source R packages, RspectroAbs, and CDOM available on GitHub
(https://github.com/belasi01/RspectroAbs; https://github.com/
PMassicotte/cdom).

CSPM were determined following the recommendations of
Neukermans et al. (2012b). Whatman GF/F filters of 47 mm
diameter, which effectively retained particles larger than about
~0.7 µm, were rinsed with distilled water, dried and weighted with
a high precision microbalance. Each water sample (volumes
depended on turbidity evaluated using the Secchi depth) was
filtered in triplicates to assess variation of the measured CSPM.
Additionally, the loss on ignition technique was used by placing
the filters at 450°C for 4 hours to determine the fraction of
inorganic matter (PIM) and organic matter (POM) in the total
SPM pool.

2.5 Algorithm Development and
Performance Metrics
For the remote sensing algorithm development, the dataset is
divided into training and testing datasets at approximately 70 and
30%, respectively. All regressions were made using the training
set, while the performance metrics were calculated on the testing
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set. Following the recommendations of Seegers et al. (2018), we
used three metrics to measure individual algorithms performance
and compare them. As outliers may be present (e.g., unflagged
optically shallow waters) in our dataset, we choose to compare the
accuracy metrics of the relative error (RE) computed with the
mean (Mean RE) and the median (Med RE). The former is
sensitive to outliers, while the latter is not. Bias is measured
with the median of the error, minimizing the impact of the
outliers and giving the algorithm systematic error from the
bulk of the observation. To assess the relative efficiency of
atmospheric correction algorithms, we have used a pairwise
comparison metric. Briefly, this method allows the selection of
the algorithm with the least residuals (ŷ−y) for each
observation. Then, the number of times an algorithm is
chosen instead of its competitors is used to compute the
percent wins.

To facilitate comparison with the latest literature on
atmospheric correction algorithms performance published in
Pahlevan et al. (2021), we chose to report the median
symmetric accuracy (MdSA, Eq. 3) and the symmetric signed
percentage bias (SSPB, Eq. (2)). For a detailed description of those
metrics and their proprieties, the reader is referred toMorley et al.
(2018).

SSPB � 100sign z( ) 10|z| − 1( ) %[ ]where
z � Median log10 R̂rs λi( )/Rrs λi( )( )( ), (2)

MdSA � 100 10y − 1( ) %[ ]where
y � Median|log10 R̂rs λi( )/Rrs λi( )( )|, (3)

where R̂rs(λi) is the retrieved remote sensing reflectance by the
satellite at a specific wavelength and Rrs is the measured remote
sensing reflectance. They can be replaced by CSPM or ag (λi) to
compute their specific MdSA and SSPB.

2.6 Match-Up Exercise and Atmospheric
Correction Comparison
The regional algorithms were applied to satellite imagery from
Sentinel-2 and Landsat-8 for which coincident in situ data were
available. In total, 72 in situmatchups where found at an interval
of ±3 h, 62 with MSI, and 10 with OLI. The matchup data points
constitute the testing datasets. L1C images of Landsat-8 OLI and
Sentinel-2 MSI A and B, corresponding to a day of an in situ
acquisition, were downloaded. We applied six atmospheric
correction algorithms:

1 Case 2 Regional Coast Color (C2RCC) (Brockmann et al.,
2016);

2 Case 2 extreme (C2X) (Brockmann et al., 2016);
3 Atmospheric Correction for OLI lite (ACOLITE) using the
dark spectrum fitting algorithm option (Vanhellemont and
Ruddick, 2018; Vanhellemont, 2019a,b, 2020; Vanhellemont
and Ruddick, 2021);

4 Sea-viewing Wide Field-of-view Sensor Data Analysis System
(SeaDAS) (Franz et al., 2015; Pahlevan et al., 2017);

5 Spectral Shape Parameter (SSP) implemented in SeaDAS
(Singh et al., 2019);

6 Image Correction for atmospheric effect (iCOR) (Keukelaere
et al., 2018).

C2RCC and C2X are artificial neural network-based models
trained with a synthetic dataset generated from radiative transfer
simulations of various oceanic and atmospheric conditions. The
difference between C2RCC and C2X is that the latter is trained
with more extreme cases of optically complex waters, like
CDOM-rich and very turbid waters. The others algorithms
belong to the tow-steps family. First, they remove the effect of
Rayleigh scattering and gaseous absorption using pre-computed
look-up-tables (LUTs). The second step estimates the aerosol
contribution to the Rayleigh-corrected reflectance. The
algorithms are based on different assumptions. For example,
SeaDAS is based on the black pixel assumption in the near
infrared (NIR) and use it as a baseline to extrapolate the
contribution of aerosol in the rest of the spectrum (Gordon
and Wang, 1994). The black pixel assumption in the NIR does
not hold true in turbid waters where significant amount of light in
the NIR (Ruddick et al., 2000). The SSP algorithm is an
addendum to the SeaDAS processor to estimate aerosol
contribution with the assumption of a non-zero water-leaving
radiance in the UV and in the NIR. The ACOLITE and iCOR
models are image-based algorithms originally designed to retrieve
aerosol optical thickness (AOT) over land surfaces, but with
additional correction for water (sky glint corrections). They were
adapted to retrieve AOT from the darkest pixels found in a sub-
scene (e.g. dense dark vegetation or clear waters). These
algorithms have been chosen because they are specifically
designed to perform atmospheric correction in coastal waters
and are freely available online. After image processing, 44
matchups out of 72 were valid, from which 36 were in the BSI
and 8 in JB. Following the methodology described in Pahlevan
et al. (2021), the median pixel value was extracted from a 150 m
by 150 m box surrounding the measurement location.

3 RESULTS

3.1 Exploratory Data Analysis
The histograms of SPM and CDOM (Figure 2) show different
distributions in the EGSL and JB. CSPM follows a log-normal
distribution in the EGSL, while in JB, the distribution is
negatively skewed, and presents a higher range of
concentrations. CDOM concentration, as expressed by the ag
(440) proxy, exhibits a bimodal distribution in both regions,
which is more obvious in JB. In addition, a higher CDOM
background is present in JB with most values ranging between 1
and 3 m−1, but with frequent values > 3 m−1. In addition, the
spectral slope (S) of the CDOM spectra was slightly steeper in JB
compared to EGSL. The S calculated for 350–500 nm spectral
range of 0.0175 ± 0.0006 and 0.0167 ± 0.0010 nm−1 for JB and
EGSL, respectively.

Figure 3 shows the relationships between Rrs at four
wavelengths with CSPM, bbp (532) and ag (440). The
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relationship between CSPM and Rrs is almost null at 440 nm and
becomes positively stronger at longer wavelengths. At 560 nm,
the relation is strongly dependent on CDOM concentration
(color of the dots), meaning that for a given remote sensing
reflectance, high CSPM are associated with higher CDOM
concentration. In JB, for example, for an Rrs value of

0.004 sr−1, we found ag (440) and CSPM values of 1 m−1 and
2 mgL−1, respectively, then 4 m−1 and 11 mgL−1, and finally
8 m−1 and 42 mgL−1. If we plot a linear relationship between
CSPM and Rrs, in JB alone, we find that as CDOM increases, the
intercept of the relationship also increases. In the same way, but
with different relationships, the EGSL Rrs versus CSPM and

FIGURE 2 | Histograms showing the distribution of CSPM and ag (400) in the EGSL and JB.

FIGURE 3 | Relation between Rrs at 440, 560, 665, and 740 nm, and (A) CSPM, (B) bbp (532), and (C) ag (440). Plot (A) and (B) colors correspond to ag (440) to
assess covariance patterns. Similarly, plot (C) colors correspond toCSPM in square root space. Triangles and circles represent data from JB and the EGSL, respectively.
Grey color represent missing values.
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CDOM seem to be linked. As CDOM concentration increases,
Rrs (560) decreases even if CSPM increases. These results indicate
a significant role of CDOM for the green reflectance in both
coastal zones.

CSPM versus Rrs in the red (665 nm) also revealed regional
differences between the EGSL and JB. For a CSPM of 10 mgL−1, Rrs
is ten times higher in JB than in EGSL. It also shows that the
strength of the correlation is weaker in the EGSL comparatively to
JB, with a Spearman correlation coefficient of 0.33 and 0.79,
respectively. The strongest relationship between Rrs with CSPM in
the two regions is found in the near infrared (740 nm), a spectral
region where CDOM is known to have negligible influence on Rrs.
The linear relationship for both regions converge (similar slope
and intercepts) and higher coefficients of correlation of 0.37 and
0.80 for EGSL and JB, respectively, are reached. Interestingly, at
800 nm (not shown), the two distinct groups, visible at 665 nm,
appear again, but the Spearman correlation coefficient (r) reaches
its highest values of 0.46 and 0.81 for the EGSL and JB,
respectively.

Knowing that remote sensing reflectance is proportional to
particulate backscattering coefficient, an inherent optical
property (IOP), we further examine the relationship
between Rrs and bbp measured in the green at 532 nm.
Figure 3B indicates that the particles sampled in the EGSL
and JB likely have distinct specific optical properties. First, the
strongest relationship between bbp (532) and Rrs was found in
the red band (665 nm) with no difference between JB and the
EGSL. Second, a regional distinction is found at 740 nm, where
a linear relationship would yield different intercept, but similar
slope. Lower bbp (532) values for identical Rrs (740) is found in
the EGSL compared to JB, indicating that the spectral slope of
bbp or particulate absorption coefficients (ap) in the NIR are
not the same in both regions. Hence, it confirms the regional
differences previously observed from the CSPM versus Rrs

relationships. The relationships between the absorption of
CDOM at 440 nm and Rrs at the same four wavelengths are
shown in Figure 3C. Absorption spectrum of CDOM shows an
exponential decay toward longer wavelengths. As expected,
knowing the inverse relationship between Rrs and absorption,
stronger negative correlation is found at 440 nm than at
560 nm. However and as previously stated for CSPM, the
trend of the ag (440) relation with Rrs is impacted by CSPM

through the bbp, but this time with higher Rrs value for high
CDOM and CSPM events. As we move toward longer
wavelengths, at 665 and 740 nm, the relation of ag (440)
and Rrs become positive, meaning a potential co-variation
between CDOM and particle backscattering and/or SPM, or
a direct contribution of CDOM to particle backscattering.
However, even at 740 nm, CDOM is suspected to have a
significant absorption power. Indeed, the CSPM

concentration follows a diagonal gradient from the top left
to bottom right; it shows the interaction of ag and SPM on Rrs

(740), with lower Rrs associated with high ag (440) and low
CSPM values. Contrary to the CSPM versus Rrs relationship, we
found no difference in ag (440) with Rrs relation between the
EGSL and JB. This indicates that a single algorithm can be
fitted to retrieve ag (440) from marine reflectance.

The mass-specific particulate backscattering
(bpSPMbp � bbp/CSPM, in m2g−1), is a physical quantity used to
study the backscattering efficiency of SPM (e.g., (Neukermans
et al., 2012a). On average, bpSPMbp (532) of 0.0140 and 0.0021m2

g−1 was found in JB and the EGSL, respectively, indicating that
particles are six times more efficient at scattering light in JB
compared to those in EGSL. More specifically, we found a
negative relationship between CSPM and bpSPMbp (532)
(Figure 4A) in the EGSL, but not in JB. As a result, in the
EGSL, as CSPM increase bbp will stay approximately the same
and bpSPMbp decrease. In JB, in contrast, the slightly positive
relationship of CSPM versus bpSPMbp , yields a stronger positive
correlation between CSPM and bbp and indicates an additive
effect of CSPM on bbp.

Regarding the mass specific particulate absorption at 443 nm,
a difference of magnitude is found between the JB and the EGSL,
with an average of 0.083 m2g−1 and 0.033 m2g−1, respectively. A
similar negative relationship was found between apSPMp and CSPM

in both regions (Figure 4B).

3.2 Empirical Algorithms Development
3.2.1 Colored Dissolved Organic Matter Retrieval
Normalization functions such as band ratio algorithms show
great potential to assess ag (λ) accurately. In lower wavelengths, ag
is the main OAC responsible for the total absorption in nearshore
zones of the EGSL (Araújo and Bélanger, 2022) and in JB. Thus,
its variability can be directly related to the ratio of a wavelength
sensitive to its absorption spectrum to a wavelength insensitive to
it (Gitelson et al., 1993). Furthermore, band ratio algorithms are
less sensitive to atmospheric correction errors (see section 3.3.2),
as the ratio will diminish a part of the error. Building up on
published studies and the exploratory analysis above, we tested
relationships between ag and Rrs ratio using non-linear
algorithms with the non-linear least square (nls, Gauss-
Newton algorithm) function of R. Only the best relationships
are shown in Figure 5 and Table 1.

For comparison, we tested the recently published so-called end-
members approach of Houskeeper et al. (2021) with an algorithm
based on the Rrs (665) to Rrs (440) ratio (Figure 5). These
algorithms show a curvature starting at around ag (440) values
of 2 m−1. An algorithm based on Rrs (740) to Rrs (440) ratio, the
end-members of the MSI bands were also tested (Figure 5C). It
shows a regional separation likely due to the use of reflectance at
740 nm, and did not prove to have a better accuracy even when
fitting the model for the EGSL and JB independently (result not
shown). In addition, Rrs (740) estimated from COPS (in the EGSL)
is obtained using linear interpolation between 710 and 765 nm,
while in JB it is measured using the HOCR, which could partly
explain the regional differences.

In the EGSL and JB, respectively, 27 and 47% of the stations
had values of ag (440) > 2 m−1, showing the necessity of an
algorithm able to work in CDOM laden coastal waters. We found
that the ratio of Rrs (665) to Rrs (560) gives results similar to the
Rrs (665) to Rrs (440) ratio in terms of performance metrics, but
with a slight curvature that is much less affected by this
“saturation” at very high CDOM concentration. In terms of
the mean and the median relative errors, Rrs (665) to Rrs (560)
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FIGURE 4 | (A)Mass-specific particulate backscattering at 532 nm versus CSPM, (B)mass-specific absorption at 443 nm versus CSPM. Color corresponds to PIM
fraction of total CSPM, in percent. Black points correspond to the absence of PIM data.

FIGURE 5 |Nonlinear empirical algorithms for ag (440) on log-log space by (A) band ratioRrs (665)/Rrs (440), (B) band ratioRrs (665)/Rrs (560), and (C) band ratioRrs

(740)/Rrs (440). Continuous line corresponds to fitted values. Circles and triangles correspond to the data acquired in the EGSL and in JB respectively. Station V11-11 in
JB is flagged as optically shallow; the Secchi disk touches the bottom at 1.30 m.
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ratio yield values of 21 and 15%, respectively, for a range of ag
(440) values spanning from 0.16 to 11.5 m−1, which is slightly
better than that of the Rrs (665) to Rrs (440) ratio. Therefore, we
chose the red-to-green band ratio algorithm for CDOM to
process the satellite imagery because of the linearity of the
relationship, the overall best retrieval performance relative to
the other algorithm, and finally its weaker sensitivity to
atmospheric correction errors (see below). We fitted this
algorithm to retrieve CDOM in the UV-B domain, i.e. ag

(295) and ag (275), which can be used to predict dissolved
organic carbon (DOC) concentration in coastal waters (Fichot
and Benner, 2011).

3.2.2 Suspended Particulate Matter Retrieval
Several empirical or semi-empirical algorithm formulas have
been proposed to retrieve CSPM from multispectral space-
borne sensors in the literature (e.g., Dorji and Fearns, 2016;
Tavora et al., 2020). In this study, we found that the best

TABLE 1 | Algorithms to retrieve ag (440), ag (295) and ag (275), with associated performance metrics. Numbers in bold font highlight the best model.

Parameter Equation Mean RE% Median RE% Bias (m−1)

ag (440)
20 log10(Rrs(665)/Rrs(560) + 1)1.8 21 15 0.04

3.4 log10(Rrs(665)/Rrs(440) + 1)1.4 26 18 0.09

5.7(Rrs(740)/Rrs(440))0.88 48 35 0.06

ag (295) 174 log10(Rrs(665)/Rrs(560) + 1)1.7 21 14 0.02

ag (275) 219 log10(Rrs(665)/Rrs(560) + 1)1.6 22 14 0.15

FIGURE 6 | Regional empirical algorithms for CSPM (A) from Rrs (665) (B) from Rrs (740), and (C) from Rrs (710)/Rrs (665) ratio. Dashed line corresponds to CSPM

values fitted with Nechad et al. (2010) semi-empirical algorithm.
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algorithm for CSPM used a single reflectance at 740 nm
(Figure 6), which is slightly better than 665 nm band used
in many studies (e.g., Nechad et al. (2010) as shown in Figures
6A,B). The single red-band algorithm has good precision and
accuracy in JB, with a bias of 0.30 mgL−1 and a median RE of
27%. An outlier was found in optically shallow water, where
the station depth was 0.56 m, which strongly influenced the
Mean RE, degrading the algorithm’s overall performance. For
the EGSL, we tested the algorithm published by
Mohammadpour et al. (2015) based on the Rrs (710)/Rrs

(665) ratio. It yields a slight degradation of the precision
and accuracy metrics compared to those obtained using the
single red-band algorithm with a median RE of 27% and a
higher bias of 1.02 mgL−1. Despite a better performance of the
near infrared band algorithm (Table 2), we choose the red
band algorithm as it is available on both OLI and MSI sensors,
whereas 740 nm is only available on the later.

Residuals of the CSPM empirical algorithm based on Rrs (665)
show a positive correlation with ag (440) (Figure 7). The slope is
of 1.1 and 2.4 for the EGSL and JB, respectively, with p values
significant for JB (p < 0.001) but not for the EGSL (p = 0.023).

Others band formulations (not presented here) have been tested
with no better success.

3.3 Validation With Matching Satellite
Imagery
The above algorithms were applied to actual satellite imagery
from OLI and MSI after the application of atmospheric
corrections (AC), which is a crucial pre-processing step for
any aquatic applications. Therefore, we performed a matchup
analysis for the entire database with the MSI and OLI sensors. As
mentioned in the methods, we tested six atmospheric correction
algorithms: 1) C2RCC, 2) C2X, 3) ACOLITE, 4) SeaDAS, 5) SSP,
and 6) iCOR. Primarily, we will assess the performance of AC
based on retrieved Rrs. The sensitivity of the ag (440) and CSPM

retrievals to error in the Rrs retrieval introduced by the AC
algorithm is then presented. For CSPM, the single-band
algorithm based on 665 nm available on both the MSI and
OLI was chosen. It is noted that we parameterized the
algorithms presented above by computing the coefficients
for the specific satellite sensor bands of OLI and MSI, but
also for other commonly used satellite sensors for coastal water
monitoring (MODIS, MERIS, and OLCI). Those bands were
retrieved from in situ Rrs through the RSR function of each
sensor as provided by the space agencies. The regional
empirical coefficients can be found in Supplementary
Table S3.

3.3.1 Rrs Matchups
Figure 8 show the in situ versus remotely retrieved Rrs by the OLI
and the MSI for each atmospheric correction algorithm. All the
metrics for Rrs retrieval by wavelength and AC algorithm’s can be
found in supplementary materials, Supplementary Table S1 for
MSI and Supplementary Table S2 for OLI. The determination
coefficient (R2) and the median symmetric accuracy (MdSA) are
shown in Figure 9 to graphically represent the performance of Rrs
retrieval for each sensor, AC algorithms, and wavelengths. In
general, the algorithms tend to overestimate Rrs, except for
C2RCC and C2X. In the same way, all algorithms except
C2RCC and C2X overestimated Rrs at 443 and 740 nm, two
wavelengths were in situ Rrs is at the lowest. For example, at
443 nmACOLITE and iCOR give an SSPB of 1,243% and 1,417%,
respectively, for the MSI, 342 and 471% for the OLI, indicating
systematic overestimation. The green band is the most accurately
retrieved by all algorithms, where Rrs is the highest. No single

TABLE 2 | Regional algorithms for CSPM with their associated performance metrics. Numbers in bold font highlight the best model.

Parameter Region Equation Mean RE% Median RE% Bias [mgL−1]

log10CSPM

EGSL 17(Rrs(710)/Rrs(665))1.5 49 27 1.02

JB 33(Rrs(710)/Rrs(665))4.9 154 57 1.15

EGSL 3.6Rrs (665)
0.21 48 27 0.52

JB 13Rrs (665)
0.52 45 27 0.30

EGSL 3.8Rrs (740)
0.19 46 26 0.65

JB 17Rrs (740)
0.42 38 23 0.20

FIGURE 7 | Residuals of the relationship between CSPM and Rrs (665)
(Figure 6A) as a function of ag (440). Yellow dot represents data from the
EGSL and blue represents triangle data from JB. Yellow and blue lines
represents the linear regression between the residuals and ag (440) with
correlation coefficients (r) of 0.02 (p < 0.05) and 0.17 (p < 0.001) for the EGSL
and JB, respectively.
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algorithm is found to give the best results for all wavelengths and
sensors. At 443, 560, 665, 704, and 740 nm C2RCC get the more
percent wins followed by C2X. C2RCC and C2X give an MdSA of
68 and 61%, respectively for the MSI green band (560 nm).
Interestingly, SeaDAS give the best results for the OLI green
band (561 nm) with an MdSA of 26%, closely followed by SSP
with a MdSA of 34%. In contrast for the MSI green band
(560 nm), SeaDAS and SSP gives an MdSA of 217 and 205%,
respectively, while C2RCC and C2X give anMdSA of 40 and 47%,
respectively for the OLI green band. Likewise, C2RCC and C2X
give the lowest MdSA for the MSI red band (665 nm) with

respectively 57 and 78%, while they give high MdSA for the
OLI red band (655 nm) with 102 and 211%, respectively. Again
inversely, SeaDAS and SSP give the lowest MdSA for the OLI red
band (655 nm) with respectively 37 and 49%, while they give high
MdSA for the MSI red band (665 nm) with 180 and 104%,
respectively.

3.3.2 Colored Dissolved Organic Matter Matchup
The CDOM empirical algorithm based on the red-to-blue ratio
[Rrs (665)/Rrs (440)] shows an important underestimation with all
atmospheric corrections (Supplementary Figure S1; Table 3).

FIGURE 8 | Rrs measured in situ and remotely in the EGSL (yellow) and in JB (blue) by MSI (circle) and OLI (triangle) in the blue (443 and 482, 492 nm, respectively),
green (560, 561 nm, respectively), red (665, 655 nm, respectively), and NIR (704, 740 nm, MSI only) bands. The solid black line represents the 1:1 relation.
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The ACOLITE and iCOR showed very small dynamic range in
terms of CDOM retrieval with all (but one for ACOLITE) ag
values < 1 m−1. The C2X algorithm, which performs better in
highly absorptive waters, is able to detect a larger dynamic range
for ag with a slope closer to 1:1, but still systematically
underestimates ag (440) with a SSPB of -51%. This
underestimation comes from the constant overestimation by
atmospheric correction of Rrs in the blue part of the spectrum
from satellite remote sensing.

The use of a red/green reflectance ratio significantly improved
CDOM retrieval for all AC algorithms (Figure 10; Table 3). For
example, iCOR and ACOLITE respectively have small positive
and negative SSPB of 12% and −1%, an MdSA of 47 and 45%
respectively. A relatively strong linear relationship indicated by a
R2 of 0.78, is also observed for ACOLITE, suggesting a good
preservation of the spatial pattern of CDOM. Therefore,

ACOLITE errors seem less random and more systematic.
Similarly, C2RCC, SSP, and SeaDAS also perform better for ag
(440) retrieval using the red-to-green band ratio. SeaDAS showed
the lowest MdSA (42 versus 43% and 53% for C2RCC and SSP,
respectively), while C2RCC showed the closest relation to the 1:1
line. SeaDAS points are, however, less dispersed than C2RCC,
with an R2 of 0.62 and 0.43, respectively.

3.3.3 Suspended Particulate Matter Matchup
As expected, CSPM retrieval from the single-band empirical
algorithm of the EGSL (Figure 11) is challenging due to large
mass-specific IOP variability of SPM in this region (Figures 4, 6).
Those results also show that for the limited matchup points
available in JB, all are equally distributed with the EGSL data. This
may tell that when it comes to satellite remote sensing, the better
precision and accuracy of the CSPM model in JB is lost. Our range

TABLE 3 | Performance metrics of atmospheric correction algorithms for CDOM and SPM retrieval. For CDOM, only the algorithms for ag (440) were tested (first two lines in
Table 1). Numbers in bold font highlight the best atmospheric correction.

Algorithm AC algorithm SSPB% MdSA% Wins% R2 Slope

CDOM Rrs (665)/Rrs (440)

ACOLITE −420 420 0 0.23 0.18
C2RCC −118 118 8 0.24 0.26
C2X −51 81 50 0.29 0.93
iCOR −467 467 0 0.50 0.09
SeaDAS −114 154 29 0.01 0.51
SSP −196 196 13 0.12 0.12

CDOM Rrs (665)/Rrs (560)

ACOLITE −1 46 28 0.78 0.59
C2RCC −16 43 21 0.43 0.95
C2X −40 86 7 0.28 0.70
iCOR 12 47 17 0.61 0.74
SeaDAS 9 42 21 0.62 0.65
SSP −3 53 7 0.24 2.41

SPM Rrs (665)

ACOLITE 87 87 3 0.76 0.61
C2RCC −13 68 14 0.62 0.50
C2X −4 79 31 0.47 0.45
iCOR 82 82 10 0.54 1.46
SeaDAS 123 123 24 0.57 1.43
SSP 29 50 17 0.65 0.61

FIGURE 9 | Performance metrics, y-axis coefficient of determination, and x-axis median symmetric accuracy, of atmospheric correction processors.
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FIGURE 10 | ag (440) measured in situ vs. estimated remotely with the Rrs (665)/Rrs (560) empirical algorithm applied to MSI (circle) and OLI (triangle) in the EGSL
(orange) and JB (blue). The solid black line represents the 1:1 relation.

FIGURE 11 | CSPM measured in situ vs. estimated remotely with the red band empirical algorithm applied to MSI (circle) and OLI (triangle) in the EGSL (orange) and
JB (blue). The solid black line represents the 1:1 relation.
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of observation span from 2.11 to 36.40 (mgL−1), but all except one
observation are made below 10 (mgL−1). ACOLITE, iCOR,
SeaDAS, and SSP show a consistent overestimation of CSPM, as
it did for the Rrs retrieval. Consistently, SSP performed better than
ACOLITE, iCOR, and SeaDAS with an SSPB more than twice
lower with 29 versus 87, 82, and 123%, respectively.

4 DISCUSSION

Our primary goal in this study was to provide empirical remote
sensing algorithms to retrieve SPM and CDOM in Québec coastal
waters from high-resolution multispectral satellite sensors (e.g.,
OLI and MSI). As shown in Figure 12, the spatial patterns follow
the expected distribution of SPM and CDOM in the Bay of
Sept–Iles area, where higher concentrations were found at the
mouth of the main rivers (Moisie, Rapides, and Foin) at the time
of the spring freshet (Araújo and Bélanger, 2022). We focused our
study on the retrieval of CDOM and SPM because they are the
main drivers of the coastal water color in our study area (Araújo
and Bélanger, 2022). An empirical algorithm based on band ratios
was preferred for CDOM over SAAs semi-analytical algorithms
for their simplicity and because they are less sensitive to the
absolute values of Rrs. In addition, Landsat and Sentinel-2 offer a
limited number of spectral bands (relatively broad bands) in the
visibility range, limiting the spectral inversion of Rrs. Moreover,
SAAs semi-analytical algorithms are more sensitive to
atmospheric correction errors than empirical algorithms based
on band ratios. For CDOM, this has been achieved with a unique
band ratio algorithm and a good level of confidence in both
coastal regions. The range of CDOM recorded in Québec coastal
waters is similar to other boreal environment such as the Baltic
Sea (Kowalczuk et al., 2006; Berthon and Zibordi, 2010; Kratzer
and Moore, 2018). In these dark and optically complex waters, it
is difficult to accurately link other OACs with radiometric
quantities such as chlorophyll-a, which makes a weak
contribution to the total inherent optical properties (Araújo
and Bélanger, 2022). A single red band algorithm for the SPM
retrieval was chosen following Nechad et al. (2010). We found a
satisfactory level of confidence for the James Bay region,
considering the performance metrics of this specific algorithm.
However, the EGSL region appears to be markedly different. The
differences among the regions, their probable origin, and their
consequences in terms of algorithm performance are discussed in
the following sections.

4.1 Effects of Colored Dissolved Organic
Matter and Suspended Particulate Matter
on Rrs
The spectral relation of CSPM, ag (440), and Rrs (Figures 3A,C)
shows that as we shift from lower wavelengths toward longer
wavelengths, the relative influence of OACs on Rrs shifts from
CDOM to SPM. The partition occurs between 560 and 665 nm.
Empirical algorithms linking Rrs with ag (440) and CSPM take
advantage of opposed physical properties, respectively
absorption and scattering. Therefore, those two OACs are

expected to act against one another in their effect on Rrs.
CDOM mainly impacts Rrs by absorbing light in lower
wavelengths and is generally considered negligible in longer
wavelengths. However, our results show that at 665 nm, ag is
significant enough to affect CSPM retrieval (Figure 7). In fact, the
residuals of the CSPM algorithm using Rrs (665) are positively
correlated with ag (440) (spearman correlation coefficient of
0.02 and 0.17 for EGSL and JB, respectively). The
overestimation is associated with low CDOM concentration,
and as ag (440) increases, the relation shifts toward
underestimation. As CSPM and Rrs relation is positive, it
indicates that CDOM absorption masks a part of the SPM
signal at least up to 665 nm. This effect is of greater
amplitude at 560 nm where absorption by CDOM and
backscattering by SPM, acting against one another, is best
seen. Consequently, Rrs (560) is not the best-suited
reflectance to retrieve CSPM because it needs prior retrieval of
CDOM concentration to correct its effect. Contrary to this
confounding effect, CSPM has not shown any impact on ag
(440) retrieval, neither from the Rrs (665)/Rrs (440) nor the
Rrs (665)/Rrs (560) algorithms. This is a surprising result, at least
for the Rrs (665)/Rrs (560) residuals, considering that Rrs (560)
seems to be under the equal influence of SPM and CDOM and
that Rrs (665) is directly related to CSPM. Yet, all results indicate
that ag (440) can be retrieved with an uncertainty as good as
~18% from the Rrs (665)/Rrs (560) algorithm in the range from
0.16 to 11.5 m−1 without any confounding effect coming
from SPM.

The positive correlation between CDOM and Rrs at 665 nm
(Figure 3C), yield a spearman correlation coefficient of 0.35 and
0.43 (p < 0.001), for the EGSL and the JB, respectively. As we
previously stated, the SPM backscattering effect is more
significant than CDOM absorption at long wavelengths. In
addition, we observed a positive correlation between CSPM and
CDOM (R2 0.34 and 0.55; p < 0.001 for the EGSl and the JB,
respectively), which further strengthens the relationship between
ag (440) and the Rrs (665)/Rrs (560) band ratio.

4.2 Linking Rrs Ratio and ag (440)
The recently published end member approach (Hooker et al.,
2020; Houskeeper et al., 2021) showed good results to retrieve
CDOM concentration for a wide different range of water types.
These authors argue that CDOM absorption can be retrieved
using the [Lw]N ratio of UV to NIR bands, if available, or the
extremity of the visible spectral range (e.g., 412 and 670 nm). Due
to the limited number of bands on satellite sensors targeted in this
study (MSI and OLI), the shortest wavelength available in the
blue is 440 nm, but red (665) and NIR (740) bands are available
for MSI. The end member approach shows good results with our
dataset for the lower range of CDOM. In fact, we observed a
strong linearity between ag (440) and Rrs (665)/Rrs (440) in the
log-space for ag (440) below 2 m−1. Above this value, however, a
saturation of the algorithm starts to occur, as the ratio Rrs (665)/
Rrs (440) tends to reach a plateau. Houskeeper et al. (2021) did not
observed this saturation likely because the upper limit of their ag
(440) range was below 2 m−1. The saturation may be explained by
the fact that as CDOM concentration increases, the marine
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reflectance signal at 440 nm will reach an asymptotic value
toward zero, hence the Rrs (440) variability become less and
less significant in respect to the increase of CDOM concentration,
resulting in a slope that will also tend toward zero. In our study
area, ag (440) the range from 0.16 to 11.5 m−1 with a large number
of observations with value > 2 m−1. In the upper range, we found
a remarkable linear relationship between ag (440) and the red-to-
green ratio.

As the original work of Houskeeper et al. (2021) presented the
Rrs (740)/Rrs (440) ratio, we chose to also present it under the
same form. Our results show that CDOM in the EGSL and in JB
cannot be retrieved directly and simultaneously for both
environments as a regional separation appears in the relation
of ag (440) with this reflectance ratio. Our results also show no
significant regional differences in the nature of CDOM. In fact,
the CDOM spectral shapes between the two regions were not
statistically different, with a spectral slope calculated for
350–500 nm spectral range of 0.0175 ± 0.0006 and 0.0167 ±
0.0010 nm−1 for JB and EGSL, respectively. These spectral slopes
are typical of coastal environments influenced by terrigenous
input of CDOM (Babin et al., 2003). This mean that the regional
separation of ag (440) in relation with Rrs (740)/Rrs (440) is likely
to come from the confounding effect of different regions bpSPMbp .

Interestingly, CDOM matchup analysis brings forward the
advantage of using algorithms based on the red-to-green band
ratio, which is less sensitive to atmospheric correction errors
(Figure 10). As noted in the matchup analysis, a significant
underestimation error is associated with using Rrs in the blue, as
atmospheric correction algorithms tend to overestimate Rrs in
these wavelengths. Furthermore, performance metrics show that
there is no significant difference among the CDOM algorithms

using Rrs (665)/Rrs (440) and Rrs (665)/Rrs (560) when applied to
in situ data. The assumption that CDOM absorption variability
has a more pronounced impact on the remote sensing reflectance
in the UV or in the blue wavelengths does not hold in these
CDOM-rich nearshore waters. In this water type, the CDOM
absorption actually reduced the variability of Rrs (443), and had a
greater impact on Rrs (560). These results confirm several other
studies that have put forward the use of red-to-green ratio to
estimate CDOM concentration (Kutser et al., 2005; Ficek et al.,
2011; Odermatt et al., 2012; Zhu et al., 2014; Zhang et al., 2021).
Considering these points, the Rrs (665)/Rrs (560) algorithm
should be used in the nearshore waters of EGSL and JB to
provide accurate measurements of ag (440). Similar results
were obtained in northern inland waters: Boreal Lake of
Europe (Kutser et al., 2005, 2012); lakes of the Yamal
Peninsula, Russia (Dvornikov et al., 2018); and lakes of
Minnesota, US (Brezonik et al., 2005, 2015; Menken et al.,
2006; Olmanson et al., 2016). The upper limit of our red-to-
green algorithm may be even higher, but more data would be
needed to test the abovementioned relationship ag (440) > 2 m−1,
which is expected to be more common in lakes (Kutser et al.,
2005; Menken et al., 2006; Zhu et al., 2014; Brezonik et al., 2015;
Olmanson et al., 2016; Zhang et al., 2021) than in coastal waters
(e.g., Babin et al., 2003; Mannino et al., 2014).

4.3 Linking CSPM and Rrs
The CSPM relationship with Rrs is different between the EGSL and
JB. In JB, this relationship is strong enough to derive an
acceptable model for CSPM from Rrs. The physical quantity
bpSPMbp , required for this regression to be accurate, is sufficiently
constant as shown by Figure 7A. The semi-analytical approach

FIGURE 12 |Map of SPM (A) and CDOM (B) in the Sept-Îles bay retrieved from the 17/05/2017 Sentinel-2MSI image after atmospheric correction with the C2RCC
processor.
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proposed byNechad et al. (2010) gives results similar to those that
we proposed for JB and thus shows that this kind of algorithm is
appropriate for this environment. In the EGSL, however, the
bpSPMbp varies widely with CSPM. The difference of b

pSPM
bp between

the EGSL and JB may be explained by the mineralogical
composition of SPM, the adsorption of organic matter, as well
as by the type of flocs encountered. In particular, the particles
encountered in the EGSL have very low backscattering efficiency
compared to other coastal regions (Neukermans et al., 2012a),
most likely due to large organic fraction (Araújo and Bélanger,
2022). Mohammadpour et al. (2017) reported values of 0.1 m2 g
for the total mass-specific scattering coefficient of SPM (bpSPMp ) in
the lower estuary of St. Lawrence, which is in the same range as
the values reported here assuming a backscattering to scattering
ratio of 1.8%. In contrast, bpSPMbp of JB (0.014 m2g−1) are closer to
the values reported for mineral particles (Neukermans et al.,
2012a; Reynolds et al., 2016). As pointed out by Nechad et al.
(2010), most remote sensing algorithms assume no variability in
bpSPMbp . Our results show that such assumption is not met for the
coastal waters of the EGSL. In fact the water masses of this region
are stratified (Saucier et al., 2003), with upwelling zones and river
plumes that can have a considerable effect in the coastal area.
Seasonal variability in the distribution and stratification of those
water masses could also give a sensible explanation for the
observed variability of bpSPMbp .

Band ratio algorithms to retrieve CSPM have been used
successfully in turbid estuaries (Doxaran et al., 2002, 2005).
Previous studies conducted in the EGSL (Larouche and
Boyer–Villemaire, 2010; Montes–Hugo et al., 2012;
Montes–Hugo and Mohammadpour, 2012, 2013;
Mohammadpour et al., 2015, 2017; Mohammadpour, 2016) have
shown the difficulty to build solid empirical algorithms for CSPM in
these CDOM-rich waters. CSPM algorithms for the EGSL have been
previously developed and published in Montes–Hugo et al. (2012)
and in Larouche and Boyer–Villemaire (2010), while
Mohammadpour et al. (2015) proposed an algorithm for the
maximum turbidity zone of the St. Lawrence estuary. Unlike the
finding of Montes–Hugo et al. (2012) who used the band ratio of Rrs
(670)/Rrs (560) as a proxy of CSPM in the lower St. Lawrence estuary,
the red-to-green ratio yield poor performance in our dataset (result
not shown). Mohammadpour et al. (2015) published a power-law
algorithm for CSPM as a function of Rrs (708)/Rrs (665) and reported
an r2 of 0.687.We tested their formula they proposed, and obtained a
Mean RE of 49 and 154% for the EGSL and JB, respectively, which
was not considered to be satisfying. In fact, this low accuracy is well
represented in Figure 6C as the data points are widely dispersed.

The interrelation of different optically active constituents and
their effects on marine reflectance bring non-uniqueness in the
solution to the inverse modeling of ocean color. It has been shown
by Defoin-Platel and Chami (2007) that a significant part of
inversion error in optically complex coastal waters originates
from the non-uniqueness of the solution. Considering the high
level of variability observed with the Rrs versus CSPM relation in
the EGSL, it is likely that the single band or band ratio algorithms
suffers from this kind of error. To reduce such ambiguity, it is
necessary to use as much spectral information as is available in
terms of shape and magnitude. In fact, single band algorithms

used only the magnitude of the reflectance at a single wavelength,
while the band ratio algorithms destroy the magnitude
information to keep only a small part of the spectral shape.

Considering the low efficiency of particulate backscattering
specific to concentration in the EGSL (Araújo and Bélanger,
2022), even in relatively low CDOM concentration and even
at 665 nm, ag may have a significant effect on Rrs with respect to
the bbp. As the bbp is the physical process allowing the use of Rrs as
a direct proxy of CSPM, it may provide an explanation for the poor
result of the CSPM algorithm in the EGSL.

4.4 Matchup Analysis and Atmospheric
Correction Comparison
The matchup analysis has shown that the six atmospheric
correction algorithms performed differently in terms of Rrs, ag
(440) and CSPM retrieval. No algorithm is found to give the best
performance for every target product. Both ends of the visible
spectrum were the most difficult to accurately retrieve, as it
approaches null reflectance due to the high absorption in the
water column.

For 443 nm, Pahlevan et al. (2021) report that iCOR gives the
best results for water types dominated by CDOM. In our
analysis, it is the algorithm giving the largest error with an
SSPB of 993.08%. Instead it is C2X, a version of the C2RCC
neural network trained for extremely absorptive water that gives
the best results. This could be expected as the coastal water of
Québec, specifically the North Coast and JB are most often
loaded with CDOM that absorbs most of the blue radiation.
Considering this difficulty in front of which all other algorithms
failed, C2X shows a relatively good performance at retrieving ag
(440) from the red/blue ratio. In fact, C2X MdSA for CDOM
retrieval from the red/blue ratio is 81.49% slightly lower and
close to the MdSA of 84.63% for Rrs (443) retrieval. However,
the C2X gives error similar to the red/green and the red/blue
algorithm, showing its limits as an algorithm useful in extreme
cases. The CDOM red/green algorithms show better
performance with ACOLITE algorithm, with the distribution
of the point clearly representing the quasi null systematic error
of the retrieval (SSPB of −1.40%). This may indicate that
ACOLITE better preserves the spectral shape of Rrs in the
green/red part of the spectrum. We also found the SeaDAS
and SSP algorithms yielded better retrievals for OLI compared
to MSI, consistent with the findings of Pahlevan et al. (2021).

The single red band algorithm for CSPM shows a wide error for
each atmospheric correction algorithm compared (Table 3). This
may be directly related to the poor performance of the CSPM

algorithm tested with the in situ data, and may not represent the
remote sensing retrieval performance. However, as the CSPM

algorithm is based on a single band in the red, the remote
sensing errors can be directly related to the Rrs retrieval errors
and the algorithm uncertainty itself. Therefore, the use of a fit for
purpose atmospheric correction may be a suitable choice to apply
this algorithm Pahlevan et al. (2021). With the least MdSA
(< 80%) and an acceptable bias (< 20%), the neural nets
(C2RCC and C2X) and SSP algorithms seem to be appropriate
choices.
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5 CONCLUSION

We developed empirical algorithms to retrieve CSPM and ag (440)
in the coastal waters of Québec, dominated by high concentration
of terrigenous CDOM from boreal watersheds. However, the
retrieval of CSPM in nearshore waters of the northern EGSL has
shown the challenges to empirically link the concentration of this
constituent with the optical properties. SPM is a generic term
covering a wide diversity of particles assemblage, mineralogy,
organic content, or flocs. Here, we only characterized SPM in
terms of concentration (C) of total dry mass, as well as its
inorganic/organic fractions. Acquiring information more
specific to the SPM composition such as the mineralogy, the
particle size distribution, as well as microphotography of particles
and flocs would help to identify the specific variability observed in
the nearshore EGSL. Furthermore, the methodology limitation in
terms of CSPM measurement (i.e. gravimetric method) and
possible alternative or complementary methods such as
counting the particles size distribution, would greatly help us
to improve our understanding of this subject. In this article, we
only presented simple empirical formulation to relate CSPM to Rrs.
The main findings and conclusions of this study can be
summarized as follows.

• Based in in situ observations ag (440) is similarly related to
Rrs (665)/Rrs (440) or Rrs (665)/Rrs (560) band ratio algorithms for
the range 0.16–11.5 m−1.

• ag (440), however, is best retrieved by the Rrs (665)/Rrs (560)
algorithm when estimated using space-borne sensors such as the
OLI and MSI due to lower error in Rrs retrieval in these bands
after atmospheric correction. In our study area, ACOLITE dark
fitting algorithm yielded the best ag (440) retrievals for the range
0.38–3.84 m−1.

• CSPM can be efficiently retrieved in eastern nearshore coastal
waters of James Bay with a red single band algorithm.

• CSPM in the EGSL can neither be precisely retrieved from Rrs
nor from bbp due to a large variability in mass-specific IOPs due to
the heterogeneous nature of SPM in this region, and to some
extent, due to the confounding effects of CDOM in these dark
waters. Clues have been given by the positive correlation of ag
(440) and bb (532) indicating that very small particles (< 0.2 µm)
may be the missing component, invisibly increasing bbp.

• Characterization of SPM in terms of mineralogy, particle
size distribution, and chemical analysis of the organic fraction
would be the necessary steps to understand the variability of the
bpSPMbp in the EGSL.
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