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The Amazon Basin is the largest on the planet, and its aquatic ecosystems affect and are
affected by the Earth’s processes. Specifically, Amazon aquatic ecosystems have been
subjected to severe anthropogenic impacts due to deforestation, mining, dam
construction, and widespread agribusiness expansion. Therefore, the monitoring of
these impacts has become crucial for conservation plans and environmental legislation
enforcement. However, its continental dimensions, the high variability of Amazonian water
mass constituents, and cloud cover frequency impose a challenge for developing accurate
satellite algorithms for water quality retrieval such as chlorophyll-a concentration (Chl-a),
which is a proxy for the trophic state. This study presents the first application of the hybrid
semi-analytical algorithm (HSAA) for Chl-a retrieval using a Sentinel-3 OLCI sensor over five
Amazonian floodplain lakes. Inherent and apparent optical properties (IOPs and AOPs), as
well as limnological data, were collected at 94 sampling stations during four field
campaigns along hydrological years spanning from 2015 to 2017 and used to
parameterize the hybrid SAA to retrieve Chl-a in highly turbid Amazonian waters. We
implemented a re-parametrizing approach, called the generalized stacked constraints
model to the Amazonian waters (GSCMLAFW), and used it to decompose the total
absorption αt(λ) into the absorption coefficients of detritus, CDOM, and phytoplankton
(αphy(λ)). The estimated GSCMLAFW αphy(λ) achieved errors lower than 24% at the visible
bands and 70% at NIR. The performance of HSAA-based Chl-a retrieval was validated with
in situmeasurements of Chl-a concentration, and then it was compared to literature Chl-a
algorithms. The results showed a smaller mean absolute percentage error (MAPE) for
HSAA Chl-a retrieval (36.93%) than empirical Rrs models (73.39%) using a 3-band
algorithm, which confirms the better performance of the semi-analytical approach.
Last, the calibrated HSAA model was used to estimate the Chl-a concentration in
OLCI images acquired during 2017 and 2019 field campaigns, and the results
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demonstrated reasonable errors (MAPE = 57%) and indicated the potential of OLCI bands
for Chl-a estimation. Therefore, the outcomes of this study support the advance of semi-
analytical models in highly turbid waters and highlight the importance of re-
parameterization with GSCM and the applicability of HSAA in Sentinel-3 OLCI data.

Keywords: chlorophyll-a, water quality and clarity, Amazon foodplain, inherent and apparent optical properties,
turbid water

1 INTRODUCTION

The Amazon River basin is the largest in the world, contributing
to about 10% of the global surface freshwater, and it plays a
critical role in Earth’s climate system. Despite its importance, the
Amazon basin has been subjected to intense anthropogenic
activities such as deforestation (Hansen et al., 2013; Renó
et al., 2016), construction of hydroelectric reservoirs along the
Amazon River tributaries (Tundisi et al., 2014; Latrubesse et al.,
2017), goldmining (Lobo et al., 2015), and lately, showing signs of
climate changes (Marengo and Espinoza, 2016). These impacts
can affect the frequency and intensity of extreme events
(i.e., droughts and floods) across the Amazon basin, with
several consequences for the aquatic ecosystems (Castello
et al., 2013). For example, the extreme hydrological events
might alter the sediment exchange between the Amazon River
and its floodplain, which impacts the phytoplankton community,
primary productivity (Behrenfeld and Falkowski, 1997), and
species diversity (Kraus et al., 2019). Monitoring the
distribution and dynamics of phytoplankton at a different time
and space scales is fundamental for reaching several of the
sustainable development goals (SDG) (Hakimdavar et al.,
2020). In addition, the chlorophyll-a (Chl-a) concentration is
typically used as a proxy to phytoplankton biomass (Kalenak
et al., 2013) and waterbody trophic state (Wang et al., 2018).
Therefore, there has been an increasing trend to develop new
instruments and methods for Chl-a monitoring (Palmer et al.,
2015).

In the last decade, the satellite observations have been widely
used for Chl-a retrieval over inland waters (Novo et al., 2006;
Watanabe et al., 2015; Cairo et al., 2020; Pahlevan et al., 2020).
Typically, the medium resolution sensors such as Landsat-8 and
Sentinel-2 are applied (Palmer et al., 2015); however, they often
lack appropriate spectral bands for optimal detection of Chl-a
absorption features because they were originally designed for land
applications. In contrast, the satellite ocean color instruments are
well known for their capabilities in quantifying water optical
properties due to their high radiometric quality and multiple
visible and near-infrared bands (Topp et al., 2020). An example
among these instruments is the Ocean and Land Color
Instrument (OLCI) onboard Sentinel-3 satellite. Since 2016,
OLCI has provided 21 bands (range: 400–1,020 nm), a spatial
resolution of 300 m, and <4 days temporal resolution, and recent
studies have shown the potential for Chl-a retrieval in large lakes
(Pahlevan et al., 2020). Yet the application of this satellite data
remains incipient or unproven in Amazon floodplain waters, and
the challenges for such application range from limited availability
of extensive in situ radiometric and water quality data to the

development of the Chl-a retrieval algorithm over highly turbid
waters. More specifically, the high load of inorganic sediments,
often associated with a significant presence of CDOM leached
from the forest, makes it difficult to isolate the Chl-a contribution
out of the reflectance value, even when very high Chl-a
concentrations occur. Beyond that, the high frequency of
cloud cover (Martins et al., 2018), the lack of research
infrastructure, and the difficult access to remote lakes lead to
challenges for the consistent acquisition of in situ measurements
concurrently with satellite overpass. As a result, the number of
studies focused on satellite-based Chl-a retrieval in the Amazon
floodplain lakes is still limited.

Several developed (or recalibrated) algorithms for Chl-a
retrieval are found in the literature (Matthews, 2011; Jaelani
et al., 2016; Watanabe et al., 2017; Pahlevan et al., 2021). Bio-
optical algorithms are based on statistical relationships
(empirical) or approximations of the radiative transfer
equation (semi-analytical) (Dekker et al., 1993; Lee et al., 2002;
Matthews, 2011; Odermatt et al., 2012). However, in optically
complex waters, the accurate Chl-a retrieval with empirical
approaches is challenging (Song et al., 2013; Zheng and
Digiacomo, 2017) once high sediment and CDOM
concentrations influence the absorption and scattering
processes (Rudorff et al., 2006) and reduce the discrimination
of spectral absorption features of Chl-a (Lee et al., 2016b; Lin
et al., 2018). To enhance the Chl-a estimates in optically complex
waters, several authors have proposed more robust modeling
approaches to address the optically active component (OAC)
variability, such as the use of the spectral unmixing model for
empirically retrieving Chl-a concentrations in turbid Amazon
floodplain lakes (Novo et al., 2006), a three-band semi-empirical
algorithm based on Chl-a spectral absorption features in the red
and near-infrared regions for Chl-a in turbid waters (Gitelson
et al., 2008), and a hybrid empirical approach in eutrophic lakes
using Sentinel-2 (Cairo et al., 2020). More recently, neural
networks, machine learning, and genetic algorithms have
provided accurate Chl-a estimates from inland waters (Cao
et al., 2020; Nguyen et al., 2020; Pahlevan et al., 2020; Smith
et al., 2021).

Due to the disadvantages of empirical algorithms in terms of
spatial–temporal applicability range (Novoa et al., 2017), semi-
analytical algorithms such as the quasi-analytical algorithm
(QAA) have also been proposed (Lee et al., 2002). The QAA
was implemented to inversely decompose water inherent optical
properties (IOPs) from above-water remote sensing reflectance
(Rrs(λ)) based on a conjunction of well-established analytical
relationships (among IOPs, AOPs, and OACs) and a couple of
empirical approximations. As a first step, QAA derives total

Frontiers in Remote Sensing | www.frontiersin.org April 2022 | Volume 3 | Article 8345762

Flores Júnior et al. HSAA for Chlorophyll Retrieval in Amazon Floodplain

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


absorption (αt(λ)) and total backscattering coefficients (bb(λ))
from Rrs(λ), and as the second step, it decomposes αt(λ) into
CDOM plus detritus absorption coefficient (αCDM(λ)) and
phytoplankton absorption coefficient (αphy(λ)). Since the
QAA was originally developed for oceanic waters (Lee et al.,
2002), several studies re-parametrized it for turbid inland
waters (Le et al., 2009; Li et al., 2013; Watanabe et al., 2015;
Jorge, 2018) focused mainly on the following: 1) the selection
of the optimal reference wavelength (λ0), where pure water
absorption αt(λ0) dominates; 2) the empirical determinations
of αt(λ0); and 3) the power coefficient (η) of particle
backscattering (bbp). Another challenge in optically complex
waters is the partitioning of absorption components into
detritus (αdet(λ)), αCDOM(λ), and αphy(λ), considering a high
contribution of sediments and CDOM to the total absorption,
which increases the uncertainties of αphy(λ) retrieval (Zheng
et al., 2015; Watanabe et al., 2016; Xue et al., 2019). For this
reason, Zheng et al. (2015) developed a semi-analytical
approach using the generalized stacked-constraint model
(GSCM) for αphy(λ) retrieval with less strict assumptions
when than previous models. Later, GSCM performance was
assessed by Zheng and Digiacomo (2017), showing better
accuracy of Chl-a concentration estimates using αphy(λ)
GSCM than other approaches (e.g., empirical, or other
semi-analytical algorithms). While this hybrid approach is
promising, no studies were developed to evaluate its
suitability to Amazon floodplain lakes, especially with new
ocean color sensors such as Sentinel-3 OLCI (Valerio et al.,
2021), and the current need for Chl-a monitoring in the region
encourages further experiments.

Hence, the objective of this study was to develop and assess a
Hybrid Semi-Analytical Algorithm approach to accurately
retrieve inherent optical properties (IOPs), and then estimate
the Chl-a concentration in turbid Amazon floodplain lakes
using Sentinel-3 OLCI bands. A new hybrid algorithm using
coupled QAA and GSCM is proposed using a total of 86
radiometric and water quality samples for five Amazon lakes
(Lago Grande Curuai (LGC), Monte Alegre, Paru, Pacoval, and
Aramanaí). The HSAA performance for Chl-a retrieval was
compared to the results of well-established empirical algorithms
using Rrs(λ). The main contributions are as follows: 1) this study
is the first accurate algorithm for Chl-a concentration in
Amazon highly turbid waters, especially using a large in situ
dataset collected over time. In these optically complex
environments, the empirical algorithms (e.g., normalized
difference chlorophyll index, NDCI) do not perform well,
and this new HSAA approach represents a substantial
contribution toward integrated semi-analytical approaches in
such environments; 2) we demonstrated the benefits of the
hybrid approach (re-parametrized QAA and GSCM)
compared to empirical algorithms; and 3) the framework was
developed to Sentinel-3 OLCI data which so far have been barely
evaluated for Amazon floodplain lakes. Therefore, as far as we
know, this study is the first application of re-parametrized QAA
and GSCM for Sentinel-3 OLCI images in the Amazon
floodplain lakes, demonstrating its potential for Chl-a
retrieval over highly turbid waters.

2 MATERIALS AND METHODS

Figure 1 presents the main implementation steps of the HSAA
Chl-a algorithm: 1) IOPs, AOPs, and limnological data
processing; 2) IOP retrieval using hybrid semi-analytical
algorithm; 3) evaluation of Chl-a retrieval with the two- and
three-band algorithms; 4) validation of HSAA and empirical
Rrs(λ) algorithms with in situ Chl-a measurements; and last, 5)
application of the calibrated HSAA Chl-a model on Sentinel-3
OLCI image.

2.1 Study Area
The study area comprises five Amazon floodplain lakes located
at the Lower Amazon River reach (01o50′S and 55o00′W),
around 900 km from the Amazon River mouth, near the
cities of Santarem, Óbidos, and Monte Alegre (Figure 2).
According to Barbosa et al. (2010), the hydrological regime
at that reach can be divided into four stages related to the
Amazon River level: 1) the rising waters stage, between January
and March, characterized by the Amazon River waters entering
the floodplain; 2) the high-water stage, between April and July,
when the river and floodplain water level reach a balance; 3) the
receding stage, between August and October, characterized by
water leaving the lakes toward the Amazon River; and 4) the low
stage, from November to December, when the temporary lakes
dry and perennial lakes become shallow and turbid. During the
rising water, sediment, nutrient, and organic matter rich waters
from the Amazon River reach the lakes as channelized fluxes
and overbank flows, leading to a complex and lively
constituents’ composition, with suspended sediment
composition ranging from 36 to 360 mg.L−1 and chlorophyll
from 0.20 to 26 μg.L−1 (Barbosa et al., 2010). During high water,
the water level balance between the river and lakes reduces the
water flux velocity which favors the sedimentation process, and
increases light availability in the water column, thus increasing
the primary productivity (McClain and Naiman, 2008; Almeida
et al., 2015) up to the end of the receding stage. Along these two
water-level stages, the chlorophyll-a concentrations span from
1.20 to 350 μg.L−1, and sediment from 5.5 to 200 mg.L−1

(Barbosa et al., 2010). The authors add that at the low water
stage, the lakes’ depth reduces to around 1 m, enabling sediment
resuspension due to wind stirring favoring suspended sediment
concentration of up to 1,000 mg.L−1. Among the selected lakes,
Lago Grande Curuai (LGC) stands out, with an open water
surface of up to 3,500 km2 in the high-water stage decreasing to
about 600 km2 in the dry season (Bonnet et al., 2008).

2.2 In Situ Data
2.2.1 Limnological Data
The dataset (limnological and radiometric) was collected during
four field campaigns distributed along the hydrological years
spanning from 2015 to 2017 as follows: June/2015 (high water),
March/2016 (rising waters), July/2016 (high water), and August/
2017 (receding phase). Water samples were collected at the
subsurface (~30 cm) and distributed along 86 sample stations
to understand the water constituent’s variability. Water samples
were stored in light-free bottles and filtered within nearly 30 min
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after sample collection. A 250-ml volume of each water sample
was filtered through a 47-mm Whatman GF/F (0.7 µm) filter for
Chl-a concentration determination (Nush, 1980). A similar
volume was filtered through a 47-mm Whatman GF/C
(1.2 µm) filter for the determination of the total suspended
solid (TSS) concentration and its fractions (inorganic, and
organic—TSI and TSO, respectively) (Wetzel and Likens,
2000). The filters were stored frozen (below −20°C) in dark
containers until laboratory analysis. For this dataset, the Chl-a
ranges from 0.35 to 85 μg.L−1 and suspended sediment from 5.25
to 131.50 mg.L−1. Since field campaigns were not performed
during the low water-level stage, sediment load was not as
high as reported in the study by Barbosa et al. (2010).

2.2.2 Radiometric Data
Three inter-calibrated spectroradiometers (RAMSES-TRIOS)
were used to measure above water total radiance Lt(λ), sky
radiance Lsky(λ), and surface incident irradiance Es(λ). The
sensors were positioned nearly 5 m above the water surface to
avoid shadow effects and platform reflections. Acquisition
geometry was adopted from the study by Mobley (1999). Lt(λ)

measurements (W m−2 sr−1 nm−1) were taken with a 45° zenith
angle and nearly 135° azimuth angle from the Sun position to
minimize boat-shading and sun-glinting effects (Mobley, 2015).
For Lsky(λ) measurements (W m−2 sr−1 nm−1), the sensor was
pointed upward (sky) in the same plane but with a rotation of 45°

off-nadir. A cosine sensor pointing upward was also used to
measure Es(λ) (W m−2 nm−1). Around 150 spectra were acquired
within 30 min (~1 spectrum every 10s) while measuring IOPs in
the water column. All data were collected between 10:00 and 14:
00 each day. The remote sensing reflectance Rrs(λ) was estimated
following the study by Mobley (1999, 2015) as in Eq. (1):

Rrs(λ) � Lt(λ) − ρLsky(λ)
Es(λ) , (1)

where ρ is a surface reflectance factor calculated with in situ
auxiliary data, being wind, time of acquisition, sensor field of view
(FOV), latitude, and longitude. As the radiometers acquire data in
the range of 320–950 nm and with a spectral resolution of
approximately 3.3 nm, Es(λ), Lt(λ), and the Lsky(λ)
measurements were interpolated to 1 nm. These spectra were
visually inspected for outlier removal, and then, one spectrum

FIGURE 1 | Flowchart of the hybrid semi-analytical approach developed in this study (light blue). The Ch-a retrieval and validation steps are presented in green.
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was selected for each sampling station based on its nearness to the
dataset median value in the entire spectrum (400–900 nm)
(Maciel et al., 2019). As this study focused on OLCI sensor,
the Rrs(λ) in situ data was convoluted to its spectral bands based
on their spectral response function (ESA, 2015) (Eq. (2)):

Rrs(λk)sim � ∫λj

λi
S(λ)Rrs(λ)dλ∫λj

λi
S(λ)dλ

, (2)

where Rrs(λk)sim is the OLCI simulated remote sensing
reflectance for λk band, λi and λj are the lower and upper
limits, respectively, of each band (λk), and S(λ) is the response
function for the OLCI bands.

In situ attenuation and absorption measurements were
performed with a 10-cm path length attenuation–absorption
meter (AC-S) in the spectral range of 400–750 nm and a
wavelength resolution of approximately 3.5 nm.
Conductivity–temperature–depth (CTD) measurements were
acquired using SBE-37SI (Sea-Bird Electronics). The profile
was measured at each station as follows: 1) the CTD and AC-S
were simultaneously lowered to 75% of the lake depth; 2) they
were kept at this depth for around 8 minutes to warm up and to
remove air bubbles, as recommended by the manufacturer; and
3) the instruments were slowly raised up to the surface,
following the procedures described in the study by Sander
de Carvalho et al. (2015). The air-calibration method, as
described in the manufacturer’s manual, was run before and
after the field campaigns to account for possible instrument
drifting. AC-S measurements were conducted for three field
campaigns (Jun/2015, July/2016, and August/2017) (n = 58).
The Kirk method (Kirk, 1992) was adopted for the scattering
correction in the absorption tube according to Sander de
Carvalho et al. (2015).

2.2.3 Laboratory Analysis
Water samples for the spectral determination of αCDOM(λ) (m−1)
were filtered through a Whatman nylon filter membrane with
0.22 µm pore size and 47 mm diameter. The CDOM filtered
samples were kept cold (not frozen) in a dark container until
the laboratory analysis. The samples were measured at room
temperature using a 10-cm quartz cuvette in a single beam mode
of a 2600 UV–VIS spectrophotometer (Shimadzu, Kyoto, Japan),
scanning from 280 to 800 nm, with 1 nm increments using Milli-
Q water as a blank reference. The CDOM optical density (ODmed)
was measured following the study by Tilstone et al. (2002). The
αCDOM(λ) was determined based on ODmed for each sample
station. The optical density values were converted to the
absorption coefficient according to the method proposed by
Bricaud et al. (1981) (Eq. (3)), where L is the cuvette length in
meters (for more information about this protocol, see Silva et al.
(2021)).

acdom(λ) � 2.303 ×
ODmed(λ)

L
(3)

Water samples for αphy(λ) and αdet(λ) measurements were
filtered through a 47-mm Whatman GF/F (0.7 µm) filter. These
filters were kept frozen and in the dark container until the
laboratory analysis. The transmittance–reflectance (TR)
method (Tassan and Ferrari, 2002) was used for the
determination of αphy(λ) and αdet(λ). First, the total particulate
matter optical density was determined. The filters were then
depigmented with sodium chloride and measured again to
determine the detritus optical density. The total particulate
matter absorption αp(λ) and αdet(λ) were estimated from the
corrected optical densities (Tassan and Ferrari, 1995; 2002).
Finally, the αphy(λ) was obtained by subtracting the αdet(λ)
from αp(λ). The measurements were carried out using the

FIGURE 2 | Study area with Amazon floodplain lakes: Lago Grande Curuai (LGC), Monte Alegre, Paru, Pacoval, and Aramanaí. Sampling locations are represented
as red dots. Background image: true-color composite of Sentinel-3 OLCI image acquired on 16 July 2016.
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2600 UV–VIS spectrophotometer with an integrating sphere,
scanning from 280 to 800 nm, with 1 nm increments.

2.3 IOP Retrieval Using Hybrid
Semi-Analytical Algorithms
In this study, two algorithms were used to obtain the IOPs
from Rrs. First, we recalibrated the Quasi-Analytical Algorithm
(QAA) using in situ data collected in the Lower Amazon
River to derive the total absorption αt(λ) and backscattering
bb(λ) coefficients. Second, we used a re-parametrized and
modified version of the generalized stacked-constraints
model (GSCM) algorithm to partition the total non-water
absorption coefficient, anw(λ) (i.e., the light absorption
coefficient without pure-water contribution), into
phytoplankton, aphy(λ), non-algal particulate, ap(λ), and
CDOM, aCDOM(λ) coefficient. The steps are described in the
following sections.

2.3.1 Total Absorption Coefficient Retrieval αt(λ)
To estimate the αt(λ), the empirical steps of the quasi-analytical
algorithm (QAA) were re-parametrized to the Lower
Amazon floodplain waters based on Rrs(λ)sim and αt(λ)
obtained from AC-S (hereafter called QAALAFW). The
procedure to obtain αt(λ) is briefly described in the following
text:

First, Rrs(λ)sim was converted to subsurface remote sensing
reflectance (rrs(λ)) using Eq. (4), where T and γQ are
considered wavelength-independent and can be
approximated to T ~ 0.52 and γQ ~ 1.7 (Lee et al., 2002).
Then the relationship between rrs(λ) and IOPs was
computed by Eqs ((5)–(7), with values of g0 and g1 of 0.089
and 0.1245, respectively (Lee, 2014).

rrs(λ) � Rrs(λ)sim
T + γQRrs(λ)sim, (4)

rrs(λ) � g0 × u(λ) + g1 × [u(λ)]2, (5)
u(λ) � bb

a + bb
, (6)

u(λ) �
−g0 +

������������������[g2
0 + 4 × g1 × rrs(λ)]√
2 × g1

. (7)

The next step was to estimate the αt(λ0), where λ0 is the
reference wavelength. In theory, the absorption in the reference
wavelength should be dominated by pure water absorption (Lee
et al., 2002). In this study, we re-parametrized αt(λ0) based on the
OLCI band at 754 nm to reduce TSS and CDOM influences on
the absorption. Equations (8) and (9) were used for αt(754)
calculation, where αw(754) is the pure water absorption
coefficient at 754 nm, obtained from the study by Pope and
Fry (1997). The error (MAPE) of the αt(754) estimate was
10.51% in relation to the data obtained by the AC-S.

αt(754) � αw(754) + 10−1.1459−1.3658χ−0.46927χ
2
, (8)

χ � log⎛⎝ ( rrs(400) + rrs(413))
rrs(λ0) + 5 rrs(674)

rrs(490) rrs(674)
⎞⎠. (9)

Knowing αt(754), bbp(754) was analytically derived using Eq.
(10), where bbw(754) is the pure water backscattering coefficient
obtained from the study by Zhang and Hu (2009). The
extrapolation of bbp(754) (Eq. (11)) for all wavelengths
requires the power slope of bbp, which is obtained using an
empirical equation (Eq. (12)). Generally, the band ratio used
in the QAA is 443/555. In the study, this ratio was defined as 665/
754 through the recalibration of the original QAA. The bbp power
slope was not validated because of the lack of in situ data.
However, the final validation of αt(λ) vicariously validates the
model performance. Therefore, after knowing bbp(λ), αt(λ) was
calculated by Eq. (13).

bbp(754) � u(λ0) × at(754)
1 − u(754) − bbw(754), (10)

bbp(λ) � bbp(754) × (λ/(754))η , (11)
η � 2( 1 − 1.2 exp( − 0.9

rrs(665)
rrs(754))), (12)

anw(λ) � (1 − u(λ)) × (bbw(λ) + bbp(λ))/u(λ). (13)
The αnw(λ) retrievals derived by QAALAFW were validated

with in situ AC-S αnw(λ) measurements collected at a sub-surface
level (30–70 cm).

2.3.2 Generalized Stacked-Constraints Model (GSCM)
for αphy(λ) Retrieval
The GSCM developed by Zheng et al. (2015) is based on two
previous stacked-constraints models (SCM), one of which
partitions αnw(λ) into αphy(λ) and αCDM(λ) (Zheng and
Stramski, 2013a) and the other which separates the total
particulate absorption (αp(λ)) into αphy(λ) and αdet(λ) fractions
(Zheng and Stramski, 2013b). SCM is a type of model that relies
on a set of properly defined inequality constraints for each of the
components to realistically determine possible solutions for a
given range of optical water type, and GSCM is an extension of
SCM for partitioning αnw(λ) into three components of αphy(λ),
αdet(λ), and αCDM(λ). GSCM represents an improvement over
other semi-analytical approaches as it parameterizes αdet(λ) and
αCDM(λ) slopes in terms of several distinct spectral shapes rather
than assuming a common exponential spectral shape for them
(Lee et al., 2016a). Moreover, the GSCM accounts for αdet(λ) at
the NIR spectral region, which could not be neglected in optically
complex waters, improving the model performance at this
spectral region. In this study, GSCM was re-parametrized and
applied to derive phytoplankton, CDOM, and non-algal
particulate absorption contributions to αnw(λ). To re-
parametrize GSCM for the Lower Amazon floodplain turbid
waters (hereafter called GSCMLAFW), we used 83 αphy(λ),
αdet(λ), and αCDOM(λ) spectra. Moreover, an additional
constraint rule was added to account for the high CDOM
absorption in Amazon floodplain lakes. The approach
described in the study by Zheng et al. (2015) was broken
down into three main tasks briefly explained in the following text.

The first task builds αdet(λ), αCDOM(λ), and αCDM(λ) spectral
libraries to adequately characterize non-algal particles (NAP) and
CDOM spectra of the study area. To define a relatively small but
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representative number of absorption shapes, we normalized each
αdet(λ) and αCDOM(λ) spectra by the integral of their spectral
values between 400 and 750 nm, and later, they were grouped
according to their spectral shape similarities. The clustering
process was carried out using K-means (MacQueen, 1967),
with the optimum number of clusters determined by both
GAP statistics (Tibshirani et al., 2002) and the Silhouette
analysis (Rousseeuw, 1987). The GAP statistic provides a
standardized way to define the optimal number of clusters
based on the percentage of data variance accounted for each
cluster (Tibshirani et al., 2002). The Silhouette measures if a
sample is more related to samples within its cluster or to those in
other clusters. In practice, a sample silhouette lower than 0 means
that it is more related to samples of other clusters and likely to be
misclassified, while silhouettes closer to one mean that the sample
is likely to be in the right cluster (Rousseeuw, 1987). In this study,
we considered the 0.5 value as the optimal number for defining
the clusters. The K-means module from the Python scikit-learn
(Varoquaux et al., 2015) package was used to compute the
clusters. Based on the clustering process, five αCDOM(λ), and
seven αdet(λ) clusters were obtained. Figure 3A,C show the
αCDOM(λ) and αdet(λ) spectral shapes, respectively, and
Figure 3C,D show the results of the Silhouette analysis.

A spectrum representative of each cluster was computed by
averaging all spectra within the cluster, resulting in five and seven
basic representative spectra shapes for αCDOM(λ) (~aCDOM(λ))
and for αdet(λ) (~adet(λ)), respectively. To generate the ~aCDM(λ)
spectral library, we considered it as the sum of ~adet(λ) and
~aCDOM(λ). The proportions of ~adet(λ) and ~aCDOM(λ) within
~aCDM(λ) composition were represented, as proposed by Zheng
et al. (2015), using an array of discrete weighting factors (wf)
ranging from 10 to 90% with 10% increments, which resulted in
nine possibilities. It is assumed that both NAP and CDOM are
always present and complementary in the water. Therefore, the
sum of the weighting factors is always 100%. The combination of

~adet(λ) (7) and ~aCDOM(λ) (5) basic representative spectra shapes
with the wf (9) leads to 315 (7 × 5 × 9) normalized spectral shapes
of ~aCDM(λ), which represent all combinations of ~aCDM(λ) basic
spectral shapes for our GSCMLAFW. The set of ~aCDM(λ) is
estimated as a linear combination of ~adet(λ) (7) and
~aCDOM(λ) (5) according to Eq. (14):

~aCDM(λ)k � wf ~adet(λ)p + (1 − wf)~aCDOM(λ)q , (14)
where ~aCDOM(λ)k is the kth spectrum of ~aCDM(λ), k = 1,2,
. . ..315; ~adet(λ)p is the p-th basic spectrum of ~adet(λ), p = 1,2,
. . . 7; and ~aCDOM(λ)q is the q-th basic spectrum of ~aCDOM(λ), q =
1,2, . . . 5. The 315 spectra of ~aCDM(λ), seven of ~adet(λ), and five of
~aCDOM(λ) constitute a library of spectral shapes for total non-
phytoplankton absorption, non-algal particulate absorption, and
CDOM absorption, respectively.

The second task was to determine the speculative solutions for
αphy(λ), αdet(λ), and αCDOM(λ) for each sampling station, based on
the ~aCDM(λ) spectral library, on the inequality constraints, and
on the αnw(λ) in 4 wavelengths. The inequality constraints are the
rules which ensure that the speculative solutions follow the
realistic patterns found in the measured water spectra.
Constraints 1 (CS1) and 2 (CS2) are used as speculative
solutions for shape simulation of αphy(λ), αdet(λ), and
αCDOM(λ). For GSCMLAFW, CS1 (αphy(412)/αphy(443)) ranged
from 0.85 to 1.5 (32 bins) and CS2 (αphy(490)/αphy(443)) from
0.45 to 0.75 (30 bins). Therefore, all the possible speculative
solutions are described by a matrix of 32 × 30 × 315 (for further
information, see Equations (4) to 14) in the study by Zheng et al.
(2015)).

The GSCM last task was to determine feasible solutions by
filtering the speculative solutions using the inequality constraints
3, 4, and 5 (CS3, CS4, and CS5, respectively). In this study, CS3
(αphy(469)/αphy(412)) ranged from 0.55 to 0.83, CS4 (αphy(555)/
αphy(490)) from 0.35 to 0.67, and CS5 (αdet(750)/αdet(443)) from

FIGURE 3 | (A) αCDOM(λ) spectral shapes of each cluster; (B) silhouette analysis of αCDOM(λ) clustering; (C) αdet(λ) spectral shapes of each cluster; (D) silhouette
analysis of αdet(λ) clustering. Red dashed lines at (b) and (d) represent the mean value for the silhouette coefficient. The spectral shape colors are the same as the ones in
the silhouette cluster colors.
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0.045 to 0.125. In addition to the standard GSCM, we added an
additional constraint (CS6). This constraint is composed of the
ratio between αCDOM(750) and αCDOM(443). This
modification provides more feasible solutions for αCDOM,
considering that αCDOM(443) should always be higher than
αCDOM(750). We observe that the ratio between αCDOM(750)
and αCDOM(443) is smaller than 1.1% for all our in situ data,
which depict highly slopped spectra. Without CS6, the
simulations would flatten CDOM absorption spectra not
observed in the in situ measurements, causing spectrum
underestimation, thus decreasing the model performance. CS6
calibrated to our dataset ranged from 0 to 0.011.

To obtain αphy(λ) spectra for each sampling station, the feasible
solutions of αdet(λ) and αCDOM(λ) were subtracted from αnw(λ)
values. Then all the feasible solutions that remained after
filtration with CS4, CS5, and CS6 were averaged to determine the
optimal IOPs (αdet(λ), αCDOM(λ), and αphy(λ)) as proposed by Zheng
et al. (2015) and Zheng and Digiacomo (2017).

2.4 Chl-a Retrieval
Phytoplankton’s first absorption peak at 443 nm is commonly
used for ocean color (e.g., OC2, OC3, and OC4) algorithms to
estimate the Chl-a concentration based on blue and green band
ratios (Carder et al., 1999; Matthews, 2011; Odermatt et al., 2012).
However, in highly turbid waters, high CDOM and particle
absorption coefficients at blue and green regions make them
unsuitable for Chl-a estimation. As an alternative, algorithms
based on red-NIR bands have been used once the influence of the
remaining OACs is lower at these wavelengths (Matthews, 2011;
Mishra and Mishra, 2012; Odermatt et al., 2012). Therefore, two
empirical Rrs(λ) algorithms were tested: 1) two-band (2B) and 2)
three-band (3B) algorithms, both from the study by Gitelson et al.
(2008). These indexes were tested in their original
implementation based on Rrs(λ) (2B-Rrs and 3B-Rrs)
(Equations (16) and (18) and based on the HSAA-derived
αphy (2B-HSAA and 3B-HSAA) (Equations (17) and (19). To
apply 2B and 3B HSAA algorithms, they were decomposed in
terms of αphy(λ) and αw(λ) as proposed by Le et al. (2013) and
used byWatanabe et al. (2016). The algorithms were calibrated by
the least square method for linear and quadratic fits using a
prediction interval with a 0.95 confidence level.

2B − Rrs x � Rrs(709) / Rrs(665) (15)
2B −HSAA x � [αphy(665) + αw(665)] / αw(709) (16)

3B − Rrs x � [ 1
Rrs(665) + 1

Rrs(709) ]pRrs(754) (17)

3B−HSAA x� [αphy(665)+αw(665)− αphy(709)− αw(709)]
αw(754) .

(18)

2.5 Validation Metrics
To validate the Chl-a algorithms, a Monte Carlo simulation (MC)
was used. It consists of randomly selecting samples to calibrate
and validate the proposed algorithm. This process was repeated
several times (20000) in which 70% of the dataset is used for

calibration (n = 58) and 30% for validation (n = 25). The
validation metrics were Pearson (R), the mean absolute
percentage error (MAPE), root mean square error (RMSE),
and BIAS (Equations ((20)–(22), respectively).

MAPE �
∑n

i�1
∣∣∣∣∣∣xesti −xobsi

xobsi

∣∣∣∣∣∣
n

*100, (19)

RMSE �
��������������
1
n
∑n
i�1
(xest

i − xobs
i )2√

, (20)

Bias � 1
n
∑n
i�1
(xest

i − xobs
i ). (21)

where “est” are the estimated values, “obs” are the measured
values, n is the number of samples, and σ is the standard
deviation.

2.6 Algorithm Validation for Sentinel-3/OLCI
Images
For the algorithm application and its validation, three Sentinel-3
OLCI images were selected (16 July 2016 (n = 9), 06 August 2017 (n
= 14), and 28 August 2019 (n = 14)). Note that the 2019 campaign
was used only for validation of the algorithm due to the
unavailability of in situ IOPs. The enhanced full resolution top-
of-atmosphere radiance product was downloaded from the
Copernicus database, and then, the atmospheric correction was
applied using the second simulation of satellite signal in the solar
spectrum vector version (6SV) algorithm (Vermote et al., 2006). 6SV
is a physical-based atmospheric correction method that allows
simulating atmospheric effects based on the radiative transfer
theory. As input data, 6SV requires atmospheric parameters such
as ozone, aerosol optical depth, and water vapor, and other auxiliary
information such as sun-view angles, spectral response function of
the sensor, date, and time of image acquisition. The atmospheric
parameters were obtained from MODIS atmospheric products
(MOD04 and MOD08) using the Google Earth Engine platform
(Martins et al., 2017). For the application of the 6SV, the AtmosPy
package was used to automate the correction procedure (Carlos
et al., 2019). The 6SV has been successfully used to correct
atmospheric effects of Sentinel-2 and Landsat-8 data across
different Brazilian inland waters (Cairo et al., 2020; Curtarelli
et al., 2020; Maciel et al., 2020). For algorithm validation, the
pixel values corresponding to the in situ station were extracted
for each corresponding OLCI image. Note that a time gap interval of
±5 days was selected in this study for the matchups. The time gap
between in situ measurements and the satellite overpass is a well-
known problem in other inland water studies that need to be
adjusted for a sufficient sample number (Kloiber et al., 2002;
Olmanson et al., 2008; Sriwongsitanon et al., 2011), and the
reasonable interval is typically dependent on lake and
hydrological conditions of the region. In this study, the field
data collection was performed in a wet season where the river-
floodplain water exchange is a slow and gradual process, and
water level remains stable for days. Moreover, all measurements
were collected under clear-sky conditions and low wind speed
(<5 m/s) that minimize water circulation and sediment
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resuspension. For these reasons alongside with the fact that a
time gap of ±5 days presented a negligible impact on the data
comparison in studies presented by Barbosa et al. (2009) and
Maciel et al. (2019), the time gap was considered appropriate.

3 RESULTS

3.1 Water Quality and Radiometric Data
Variability
The quantities of limnological parameters measured in situ, as
well as the Secchi and water bodies depths, can be observed in

Table 1. Chl-a in situ concentration in this study spanned from
0.35 μg.L−1 to 85.05 μg.L−1, with an average of 14.51 μg.L−1 and
TSS concentrations ranged from 5.25 to 131.5 mg.L−1, with a
higher TSI contribution (mean values of TSI/TSS ratio of
61.75%). The Secchi disk depth varied from 0.12 to 1.15 m
and lake depth from 1.8 to 7.7 m along with the field
campaigns, in response to the Amazon River hydrological
phases. The TSI/TSS ratio throughout all campaigns ranged
from 28 to 86%. However, the average ratios of the campaigns
(55% in 2015, 70 and 58% in 2016, and 66% in 2017) indicate a
major influence of inorganic matter, since the lowest average
was 55%.

TABLE 1 | Minimum (min), mean, and maximum (max) values for Chl-a, TSS, TSO/TSS ratio, TSI/TSS ratio, Secchi disk depth, and water depth for each campaign.

Campaign
(number of samples)

Statistics Chl-a (μg.L−1) TSS (mg.L−1) OSS/TSS ISS/TSS Secchi (m) Depth (m)

July/2015 (n = 30) Min 0.35 5.25 0.17 0.28 0.3 3.7
Mean 3.25 16.46 0.45 0.55 0.6 6.04
Max 8.59 33.2 0.72 0.83 1.1 7.7

Mar/2016 (n = 16) Min 3.87 20.5 0.16 0.51 0.12 1.8
Mean 22.07 62.99 0.3 0.7 0.22 2.36
Max 42.32 131.50 0.49 0.84 0.4 3.0

Jun/2016 (n = 06) Min 5.25 18.75 0.3 0.41 0.28 4.5
Mean 30.01 33.98 0.44 0.56 0.34 4.85
Max 85.05 45 0.59 0.7 0.38 5.5

Aug/2017 (n = 22) Min 2.82 7.0 0.14 0.32 0.2 3.0
Mean 25.65 27.72 0.34 0.66 0.49 4.11
Max 67.85 81 0.68 0.86 1.15 5.3

Whole dataset Min 0.35 5.25 0.14 0.28 0.12 1.8
Mean 20.25 35.29 0.38 0.62 0.41 4.34
Max 85.05 131.5 0.72 0.86 1.15 7.7

FIGURE 4 |Rrs(λ) simulated for OLCI bands in (A) July/2015 (n = 30), (B)March/2016 (n = 16), (C) Jun/2016 (n = 06), and (D) Aug/2017 (n = 22). The colors bars are
representative to OLCI bands in the true visible colors of the electromagnetic spectrum and NIR.
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The observed OACs variability for each campaign was also
present in the OLCI simulated in situ Rrs(λ) (Figure 4). The
lower reflectance at wavelengths below 500 nm in all campaigns
was mainly explained by high CDOM and detritus absorption.
None of the phytoplanktonic diagnostic pigment features
occurred in the blue spectral region. Between 550 and
650 nm, there were fluctuations in the Rrs(λ) magnitude but
without any significant change in the spectra shape. Spectra
magnitude variation can be associated with particulate
concentration fluctuations, which modifies the backscattering
coefficient, due to an increase in TSS concentration. The low
Chl-a concentration in 2015 (Figure 4A) prevented the
detection of pigment absorption bands. In Jun/2016
(Figure 4C) and Aug/2017 (Figure 4D) campaigns, for some
in situ measured spectra, the Chl-a absorption peak is well
defined around 675 nm.

Figure 5 presents the relative contribution of IOPs
absorption (phytoplankton, CDOM, and detritus) at 400,
443, 560, and 665 nm, corresponding to the Oa01, Oa03,
Oa06, and Oa08 OLCI bands. At 400 nm, αdet(400) and
αCDOM(400) contributions to the total absorption
(anw(400)) were 48.8 and 28.2% (median values),

respectively, and confirm the dominance of αdet. At
443 nm, αdet(443) maintained its dominance with a median
of 46.6% of total absorption, whereas αCDOM(443) and
αphy(443) had similar but much lower values of 25.8 and
27.6%, respectively. At 560 nm, αCDOM(560) was heavily
reduced to 16.8%, whereas αdet(560) kept similar to 443 nm

FIGURE 5 | Phytoplankton, CDOM, and detritus absorptions at OLCI bands (A) Oa01, (B) Oa03, (C) Oa06, and (D) Oa08. Note that campaigns 2015, 2016, and
2017 refer to Jul/2015, July/2016, and Aug/2017, respectively. The αnw was calculated based on the sum of laboratory-measured IOPs (αnw = αCDOM + αphy + αdet).

TABLE 2 | Statistical results of αt(λ) retrieval for OLCI bands.

Band central wavelength MAPE (%) R BIAS (m−1) RMSE (m−1)

400 25.15 0.50 1.1 3.70
413 20.81 0.61 0.52 2.70
443 15.64 0.80 0.01 1.44
490 14.98 0.80 −0.26 1.13
510 15.74 0.77 −0.44 1.10
560 26.19 0.72 −0.70 1.06
620 29.84 0.66 −0.55 0.74
665 30.77 0.62 −0.55 0.83
674 30.94 0.61 −0.52 0.80
681 31.28 0.60 −0.52 0.79
709 28.94 0.43 −0.55 0.83
754 10.51 0.35 −0.32 0.66
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(46.2%), and the αphy(560) contribution increased to 37.0%.
Finally, at 665 nm, the influence of αphy(λ) became dominant,
with a median of 56.2%, despite its wide variability, ranging
from 40 to 85% (Figure 5D), while αCDOM(λ) was reduced to
5.7% of total absorption.

3.2 IOP Retrieval
3.2.1 αt(λ) Retrieval
The first step of the HSAA is to accurately retrieve the total
absorption coefficient (αt), which will afterward be used in the
GSCM algorithm. The results demonstrated the feasibility of the
recalibrated QAA proposed in this study, as the MAPE values
were lower than 31.28% for αt in the range between 400 and
750 nm (Table 2). For the blue bands (400, 413, 443, and

490 nm), the MAPE values were lower than 25.15%; however,
Pearson R varied between 0.5 (at 400 nm) and 0.8 (at 443 and
490 nm). For the green bands (510 and 560 nm), the MAPE
values were 15.74% (510 nm) and 26.19% (560 nm) with a
Pearson R of 0.77 and 0.72, respectively. For red bands (620,
665, 674, and 681 nm), the MAPE values were relatively stable at
approximately 30%, and Pearson R values were around 0.6.
Finally, for the 709 nm red-edge band, MAPE was 28.94%,
with a Pearson R of 0.43. Therefore, the results show that
these errors are relatively low, mainly in the key bands to
chlorophyll-a retrieval (e.g., the red and red-edge bands).
Moreover, the algorithm was able to accurately identify the αt
for blue bands, which is a relevant result considering the highly
absorbing environment.

FIGURE 6 | αphy(λ) retrieval for HSAA at (A) 443 nm, (B) 665 nm, (C) 674 nm, and (D) 709 nm.
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TABLE 3 | Statistical results obtained from Monte Carlo simulation for chlorophyll-a algorithms using 2-band (2B) and 3-band (3B) algorithms with linear (Lin) and quadratic
polynomial (Pol) fitting.

Rrs(λ)sim HSAA

Algorithm 2B 2B 3B 3B 2B 2B 3B 3B
Fit Lin Pol Lin Pol Lin Pol Lin Pol
R 0.92 0.90 0.94 0.89 0.79 0.65 0.94 0.94
MAPE (%) 98.90 100.82 73.39 81.12 109.76 97.65 46.04 36.93
Bias (μg.L−1) 0.11 0.15 0.24 0.42 0.15 −0.09 0.16 0.05

Bold values refer to best results.

FIGURE 7 | Scatterplot between field-measured Chl-a and estimated Chl-a with (first row) 2B algorithm using (A) Rrs(λ)sim and (B) HSAA; and (second row) 3B
algorithm using (C) Rrs(λ)sim and (D) and HSAA. Red data refer to the model developed using linear fit, while blue data refer to the algorithm developed using quadratic fit.
Note that the data in each plot correspond to the validation dataset that is closer to the mode of MAPE values and may not be the same in all plots.
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3.2.2 αPhy Retrieval From GSCM
In the second step, αt was partitioned into its fractions αdet(λ),
αCDOM(λ), and αphy(λ). Due to the optical complexity of the Amazon
floodplain waters, the accuracy of αphy(λ) retrieval using the QAA
framework (see Supplementary Files S1) was unsatisfactory (MAPE
>38%), demanding other methods for better determination. The
GSCM algorithm filled the accuracy gap observed in the SAA
algorithm regarding αphy(λ) retrieval (Figure 6). The GSCM
results provided MAPE values lower than 24% for αphy(λ)
estimates in the visible bands. For example, Pearson R for
αphy(443) was 0.88, with MAPE values of 23.49%. For Chl-a
absorption bands (665 and 674 nm), MAPE was lower than 20%,
with Pearson R higher than 0.95. The new proposed algorithm
outperformed theQAA; its best results was aMAPE of 38.73%, and a
Pearson R of 0.75 for 674 nm. These results indicate that our re-
parametrized GSCMLAFW provided accurate results for the Amazon
floodplain optically complex waters.

3.3 Chl-a Concentration Retrieval From
IOPs
Chl-a concentration retrieval was evaluated using 2B and 3B
algorithms (Le et al., 2013) based on in situ measured Rrs(λ)sim,
and on αphy(λ) derived from the HSAA (αphy(λ)HSAA) (Table 3). The
results from the validation based on the Monte Carlo simulation
showed that the 3B-αphy(λ)HSAA polynomial (quadratic) algorithm
(3B-HSAA) outperformed the remaining algorithms when
predicting Chl-a concentration. The mode of MAPE for that
algorithm was 36.94%, with R of 0.94, and BIAS of 0.05,
indicating good agreement between in situ measured and
αphy(λ)HSAA-derived Chl-a concentration. Comparatively, the
HSAA-based algorithm outperformed Rrs-based algorithms.
Despite the high Pearson R values (0.90–0.94), MAPE values are
higher than 73% for these Rrs-based algorithms. To further evaluate
the algorithms’ performance, Figure 7 presents the scatterplots of in
situ measured versus Chl-a concentration obtained from Rrs(λ) and
αphy(λ)HSAA algorithms. The scatterplot between predicted and
measured Chl-a concentration also demonstrated the accuracy of
the 3B-HSAA algorithm to estimate Chl-a in optically complex
waters, with results closer to the 1:1 line.

3.4 Application to Sentinel-3/OLCI Data
To demonstrate the applicability of HSAA for estimating Chl-a
concentration using OLCI data, we obtained three OLCI
images at Lago Grande do Curuai. First, the accuracy of

atmospheric correction was assessed by comparing Rrs(λ)sim
with Rrs(λ)OLCI. The accuracy of the 6SV did not present a
reasonable correlation in the blue band, possibly due to the low
Rrs caused by the high CDOM and suspended sediment
absorption (Table 4). The results were better from green
(560 nm) toward the red edge. MAPE values were between
17.32% (665 nm, Pearson R of 0.86) and 72.27% (754 nm,
Pearson-R of 0.73), indicating good agreement between
satellite and in situ measured Rrs.

Once the atmospheric correction was validated, Rrs(λ)OLCI

was used as an input to the HSAA to retrieve αphy(λ), and this
result was used as an input to the 3B polynomial (quadratic)
algorithm to obtain Chl-a concentration (Figure 8). The
results demonstrated that the errors were 57%, with
Pearson-R of 0.86, BIAS of -17.88, and RMSE of
20.21 μg.L−1, indicating the reasonability of using this
algorithm applied to OLCI images to estimate Chl-a
concentration in optically complex waters. However,
uncertainties were also higher than those obtained for field
data. This could be attributed to the errors in atmospheric
correction (>39% for wavelengths lower than 510 nm), absence
of glint correction, and the spatial resolution of the OLCI
sensor. The influence of atmospheric correction makes the
blue band less reliable than longer wavelengths due to the
strong atmospheric scattering causing uncertainties in the Chl-
a retrieval derived from the HSAA framework. Therefore,
more accurate methods for retrieving the high-quality Rrs

products from OLCI images were needed.

TABLE 4 | Validation of atmospheric correction using 6SV algorithm (n = 45).

OLCI band MAPE (%) R OLCI band MAPE (%) R

400 222.32 −0.44 620 18.13 0.77
413 167.69 −0.46 665 17.32 0.86
443 116.50 −0.43 674 18.46 0.87
490 55.62 −0.31 681 18.08 0.87
510 39.83 −0.16 709 18.44 0.88
560 21.44 0.20 754 72.27 0.73

Bold values refer to best results.

FIGURE 8 | Scatterplot between field-measured Chl-a and estimated
Chl-a with the HSAA-3B algorithm. Note that the sample size is lower due to
negative values (n = 26).
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4 DISCUSSION

In this study, we implemented a novel hybrid semi-analytical
algorithm (HSAA) that combines a re-parameterization of quasi-
analytical algorithm (QAA) (Lee., 2014) with an improved
version of generalized Generalized Stacked-Constraint Model
(GSCM) (Zheng et al., 2015; Zheng and Digiacomo, 2017)
focusing on the Sentinel-3 OLCI data. The new algorithm
accurately estimated the phytoplankton absorption coefficient
(αphy(λ)HSAA) with errors smaller than 24% in the visible bands.
The HSAA Chl-a retrievals with two- and three-band algorithms
(using spectral αphy input) were validated with in situ Chl-a
measurements and compared to the commonly used Rrs
empirical-based algorithms. The results demonstrated that the
3B-HSAA algorithm outperformed the 3B-Rrs-based algorithms
for Chl-a concentration retrieval (MAPE of 35%). The proposed
algorithm was applied and validated in OLCI images to provide a
synoptic view of Chl-a in lower Amazon floodplain lakes.

4.1 In Situ OACs and Rrs(λ) Variability
The medium-to-high suspended sediment concentrations (mean
= 35.28 mg.L−1) observed in this study limit the observation of
Chl-a absorption features in Rrs spectra (Figure 3). During the
2015 field campaign, the mean Chl-a concentration was
3.25 μg.L−1, with a mean TSS concentration of 16.46 mg.L−1.
This pattern can be attributed to the high water level of the
Amazon River (Barichivich et al., 2018), which increases the
inflow toward the floodplain lakes, bringing sediments and
organic matter. Thus, as turbulence increases, the availability
of light decreases, leading to a reduction of the phytoplankton
growth rate (Barbosa et al., 2010; Rudorff et al., 2018). For June
2016 and August 2017 field campaigns (beginning of receding
water phase), high values of Chl-a (mean of 30.01 and
25.65 μg.L−1, respectively) are attributed to nutrients supplied
to the lakes during rising and high water stages (Dunne et al.,
2010; Silva et al., 2013; Bonnet et al., 2017). Moreover, CDOM
and TSS input from the Amazon River into the floodplain
decrease in these stages, resulting in higher light availability
supporting phytoplankton growth (Martinez et al., 2015;
Maciel et al., 2020).

The influence of hydrograph phases over OACs’ concentration
and, consequently, on Rrs(λ) spectra was also observed in other
studies (Barbosa et al., 2010; Fassoni-Andrade and Paiva, 2019;
Maciel et al., 2019). The low intensity in the Rrs(λ) spectrum for
2015 and 2017 campaigns can be attributed to low TSS and TSI
concentrations (mean of 16.46 and 27.72 mg.L−1, respectively).
For June 2016, a drought in the Amazon Basin led to higher TSS
and TSI (mean of 33.98 mg.L−1 of TSS with 56% being TSI), due
to lower water levels in floodplain lakes, than those of August
2017 (Barichivich et al., 2018). For March 2016 (rising water
stage), high TSS (mean of 62.99 mg.L−1) with 70% being TSI
resulted in high magnitude Rrs(λ) spectra. Thus, Rrs(λ) also
combined into two different groups due to the high variability
in amplitude and proportion of OACs in the March campaign.
Furthermore, the mean TSI/TSS ratio presented high values
(~72%), indicating a high concentration of inorganic
sediments related to the input of the Amazon River sediments

through river channels at rising water (Barbosa et al., 2010;
Rudorff et al., 2018).

4.2 HSAA Parametrization and
Uncertainties: QAA and GSCM
Improvements
The first step of the quasi-analytical algorithm is the selection of
λ0. The main assumption of this step is that total absorption is
dominated by pure water (Lee et al., 2002). In this study, we used
the 754 nm OLCI band as it improves the results and it was also
used by other authors in turbid environments (Yang et al., 2014;
Watanabe et al., 2016). The next step in the QAA implementation
is to empirically parameterize the residual influence of the OACs
in the absorption at λ0 (αt(λ0)). The selected bands need to be
related to the environment characteristics regarding OAC
proportions, considering the residual influence of particulate
matter, CDOM, and phytoplankton (Mishra et al., 2013;
Mishra et al., 2014; Watanabe et al., 2016). Due to the small
influence of Chl-a on the total absorption in Curuai Lake data
(Figure 5), the selected bands aimed to compensate for the
remaining influence of the TSS and CDOM, being 400, 413,
674, and 490 nm. This empirical selection presented errors of 11%
at 754 nm band (see Table 2). In addition, the backscattering
coefficient slope (η factor) has high influence on αt(λ) estimates
(Lee et al., 2002; Yang et al., 2013; Rodrigues, 2017). In the
original versions, QAAs propose an empirical ratio using Rrs(λ)
that should be re-parametrized based on in situ data (Lee et al.,
2009; Lee, 2014). The assessment of several band ratios indicated
665/754 nm as the best to derive η, the same ratio used by
Rodrigues (2017). The η values obtained by QAA ranged from
1.28 to 1.98 with an average of 1.79, which corroborate with in
situ data observed for Curuai lake by Sander de Carvalho. (2016).
Typically, these values range from 0 to 2.2, with higher values
associated with backscattering by small particles (Roesler and
Boss, 2008). The accuracy of the recalibrated QAA algorithm was
evaluated based on the results of αt(λ). Errors were between 14
and 30% for the visible and NIR bands (at up to 754 nm),
indicating a good agreement between predicted and measured
αt(λ). These results agree with a recalibrated QAA based on
Sentinel-2/MSI on the Lower Amazon lakes (Maciel et al., 2020),
where authors obtained errors between 20 and 35% for the αt(λ)
estimates, with higher errors for the red bands (~35%), like those
obtained in our study.

The adequate estimation of αt(λ) from QAA is essential to its
decomposition into the specific absorption components αCDM(λ)
and αphy(λ). In this study, the GSCM approach was used.
Although the GSCM may not be as fast-forward as other
semi-analytical models to derive αphy(λ) such as QAA, it
represents a new and unexplored approach to complex waters.
The GSCM also requires computational efforts, and as stated by
Zheng et al. (2015), it may not give feasible solutions. However, in
this study, our dataset provided enough groups to represent the
aquatic environment variability without expanding the
processing time. It was also fundamental to calibrate the
inequality constraints for both spectra simulation and filtering,
as our data range visibly differs from the original GSCM. The
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addition of a new constraint (CS6) to the GSCMLAFW was key to
make CDOM simulations realistic. When the performance of the
αphy(λ) retrieved from GSCM and QAAs was compared,
GSCMLAFW provided much more precise results, with R
higher than 0.88 and MAPE lower than 25% for 443, 665, and
674 nm bands.

Given the results from HSAA, it represents a feasible solution
for decomposing the IOPs in turbid complex waters. The
framework presented comprises two well-known semi-
analytical models which are reliable and accurate in state-of-
the-art literature. Moreover, as both models allow calibration, the
HSAA can be applied in other aquatic environments.

4.3 IOP Algorithms to Derive Chl-A
Concentration
The empirical algorithms derived with in situ measured Rrs(λ)
data did not present satisfactory performance (Table 3). These
errors may be attributed to the lack of relationship between Chl-a
and Rrs(λ) due to the high scattering of the inorganic particle,
typical of Amazonian turbid waters, which affects phytoplankton
absorption features (Lee et al., 2016a). In this sense, the best result
was achieved using the 3-B αphy(λ)HSAA with a quadratic fit. The
GSCM approach improved the accuracy compared to Rrs(λ), or
QAA derived αphy(λ) for Chl-a retrieval, as reported by Zheng and
Digiacomo (2017). The authors observed that GSCM provided
more accurate results using GSCM-derived αphy(λ) (e.g., R = 0.66
and mean percentage difference = 31% for Chl-a estimated by
αphy(670) algorithm using VIIRS sensor). However, it should be
noted that Zheng and Digiacomo (2017) applied only αphy(670) to
parameterize a Chl-a algorithm. In our research, we used a 3B
algorithm because it provided better results. The increase in
accuracy using band ratios or IOPs band combinations
algorithms was also demonstrated by other authors (Le et al.,
2013; Watanabe et al., 2016; Rotta et al., 2021). For example,
Watanabe et al. (2016) observed that band ratios with QAA-
derived αphy(λ) (MAPE = 25.31%) outperformed other empirical
algorithms (MAPE = 69.06%) in the estimation of Chl-a
concentration (up to 550 µg.L−1) in a Brazilian eutrophic
reservoir.

Considering the algorithm applied to the Sentinel-3 OLCI
imagery, the results presented reasonable accuracy (MAPE =
57%). The result observed in this study was in alignment with
recent works with Chl-a retrieval using OLCI data. For example,
Pahlevan et al. (2020) observed errors of 55.6% on Chl-a
retrieval using the mixture density network across several
lakes in North America. Kravitz et al. (2020) obtained an
RMSE of 107% and R2 of 0.35 for Chl-a retrieval in four
small dams with an empirical algorithm using maximum
chlorophyll index (MCI). It indicates that the HSAA
proposed in this study agrees with the results obtained in the
literature for the OLCI sensor. The comparison between in situ
and orbital data is affected by different sources of uncertainty
such as inaccurate atmospheric correction, time gap interval,
specular reflectance, instrument characteristics, and
bidirectional reflectance distribution function (BRDF) effects.
Regarding these sources, standard protocols in data collection

were adopted to minimize the difference between in situ and
orbital data. For example, the data collection was restricted to a
short time window (10 a.m.—2 p.m.) and close to the sensor
overpass which minimizes the solar zenith differences.
Moreover, field sensor zenith and azimuth angles were fixed,
as suggested by Mobley (1999), and all measures were corrected
by sky radiance (Section 2.2.2). For OLCI data, an atmospheric
correction was performed with a well-known 6SV model, also
used by MODIS and Landsat surface reflectance products. The
BRDF correction is desirable though BRDF coefficients for
normalization are not available for the Sentinel-3 OLCI
sensor, and this additional analysis is out-of-scope for
this study.

Another source of errors is the atmospheric correction,
especially in OLCI blue bands. The errors and uncertainties
in the blue region are well reported in the literature (Gossn et al.,
2019; Vanhellemont and Ruddick, 2021). These errors are
associated with uncertainties in the atmospheric scattering,
caused by the presence of molecule and aerosol particles in
the atmospheric layer. Both the aerosol particles and molecules
are responsible for the extinction (absorption and scattering) of
the radiation that leaves the water surface toward the sensor.
When the aerosol loading is high, the magnitude of the
atmospheric scattering surpasses the ground reflectance at
the top-of-atmosphere and, consequently, imposes the
challenge of atmospheric correction of remote sensing images
(Martins V. et al., 2017). In the Amazon region, huge variability
and quantities of aerosol particles in the atmosphere are
expected due to the frequent occurrence of fires in the dry
season (Martins et al., 2018). According to Martins V. S. et al.
(2017), the aerosol optical depth at 550 nm, the parameter used
to measure the scattering and absorption of the radiation due to
aerosol, in some Amazon regions can range from 0.25 to 1.0
during most of the year’s months. These values indicate the
atmosphere’s optical complexity, and the difficulty to estimate
the water reflectance accurately in this region. Moreover, the
contrast between the atmosphere scattering and the water
surface is preferentially pronounced at blue wavelengths
(Martins V. et al., 2017), due to greater scattering by
atmospheric constituents, and high absorption coefficient in
the water, attributed to CDOM and suspended materials,
making the Rrs at this region small (Sander de Carvalho
et al., 2015; Maciel et al., 2020).

Moreover, the 6SV atmospheric correction method used in
this study did not perform any correction for glint effects. It
was observed that with Sentinel-2, a simple glint correction by
subtracting the SWIR band from the VNIR could reduce
uncertainties in atmospheric corrections by 80% in Curuai
Lake (Maciel et al., 2019). Therefore, these three facts could be
interfering in the accuracy of Rrs retrieved from OLCI in blue
bands (MAPE >39%). The importance of the blue band in the
HSAA realizes on the fact that the parametrization of QAA
and GSCM is based on several bands in this region (e.g., Eq.
(9)). Therefore, small uncertainties could be impacting the
results. Moreover, another uncertainty observed is the
negative Chl-a values obtained from the HSAA approach.
These negative values are attributed to the fact that
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αphy(709) are given values closer to the αphy(665), and the 3B
model parameterized with the in situ data did not present
these values. This could be related to the uncertainties
observed in atmospheric and glint correction. It could be
also inferred that the errors are attributed to the fact that
the suspended sediment masks the small signal of Chl-a in the
664 nm band, and the errors in OLCI Rrs obtention are
preventing high-quality data of surface reflectance. For
further reference, we observed that an important step when
developing algorithms based on in situ data to be applied to
satellites is the development of algorithms based on bands
with a lower uncertainty in atmospheric correction (Jorge
et al., 2017). For example, Maciel et al. (2021) developed a
random forest algorithm for estimating Secchi disk depth in
Brazilian waters based on in situ Rrs. Despite the availability of
Rrs data between 400 and 900 nm, only bands between 490 and
740 nm were used due to errors in atmospheric correction.
These errors, when propagated to the satellite data, could be
an important source of errors (Silva et al., 2021). However,
despite the observed uncertainties, this algorithm represents
an important development for remote sensing estimates of
optically active constituents in the Amazon region. This work
is an important contribution to the estimative of Chl-a years in
Amazon lakes, as the last study focused on retrieval of Chl-a
concentration using satellite data in the Amazon region was
dated from 2006 (Novo et al., 2006). Therefore, this study is
important and necessary to present an alternative method for
Chl-a retrieval in optically complex waters (Fassoni-Andrade
et al., 2021). However, it is important to point out that this
study has implemented generic empirical models for
comparison, but there is extensive literature on the topic
and further studies are recommended to compare the
recent models using different band ratios or even machine
learning approaches.

5 CONCLUSION

In this study, we proposed a hybrid semi-analytical algorithm
(HSAA) to retrieve the inherent optical properties (IOP) of
the five Amazon floodplain lakes, and then estimate Chl-a
concentration using IOP indexes algorithms. The algorithm is
based on re-parameterizations, and improvements of the
quasi-analytical algorithm (QAA) combined with the
generalized stacked constraints model (GSCM). The use of
HSAA presented errors between 15 and 35% for αt(λ)
estimates in Amazon waters. After αt(λ), αphy(λ) was
implemented. However, αphy(λ) retrieval using re-
parametrized QAA did not achieve reasonable results
(MAPE greater than 50% in the visible bands). Thus, an
improved GSCM was applied to better estimate αphy(λ), and
consequently, Chl-a concentration retrieval using two- and
three-band algorithms. The results obtained with HSAA
αphy(λ) retrieval were more accurate than those with QAA
(being the lowest MAPE = 17.49% and R = 0.96). Regarding
Chl-a estimates, the 3-B αphy(λ)HSAA algorithm achieved the
most accurate results (MAPE = 36.93% and R = 0.94). Using

the calibrated model, Chl-a concentration was applied to
Sentinel-3 OLCI images. The results demonstrated the
algorithm’s feasibility in retrieving Chl-a concentration
with OLCI data, with errors of 57%. However, challenges
are still imposed by an accurate atmospheric correction in
shorter wavelengths, which increased the uncertainty of the
proposed algorithm when applied to satellite data.
Considering the lack of studies on optical water properties
in the Amazon regions, the proposed HSAA becomes the first
step in developing a Chl-a monitoring system in these turbid
environments. Also, considering that the Rrs(λ) is the only
input to HSAA, it has great potential for future applications
with satellite optical images, especially with OLCI sensor due
to its radiometric quality (signal-to-noise ratio), band
suitability for OAC retrieval, and high temporal/spatial
coverage.
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