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Smoke aerosols arise from a variety of regional sources and fuel types dependent on the
properties of the fire, leading to spatial variability in smoke composition and optical
properties. After emission, these aerosols age and mix in the atmosphere with other
aerosol species, such as sulfates, altering the optical, and microphysical properties of the
smoke aerosols over time. Thus, lidar ratio (extinction to backscatter ratio) derived from
lidar sensors exhibit spatiotemporal variability for smoke. Traditional backscatter lidar
processing algorithms employ a signal loss method that utilizes the reduction of signals
below and above cloud layers, enabling simultaneous retrievals of both layer-averaged
lidar ratio and particulate extinction, which avoids the need for assigning lidar ratios based
on layer type as is typically used for backscatter lidar algorithms. In this study, the signal
loss method, which is traditionally designed for cloud property retrievals, is attempted for
elevated smoke plume property retrievals using NASA’s Cloud Physics Lidar (CPL)
observations from the 2019 Fire Influence on Regional to Global Environments and Air
Quality (FIREX-AQ) field campaign. Good agreement (linear correlation coefficient of 0.67)
is found between aerosol optical depth (AOD) derived from the signal loss method and the
constrained method, utilizing collocated GOES MAGARA AOD values as constraints for
lidar ratio retrievals, for the Williams Flats smoke event. Differences in derived lidar ratios
from the signal loss method and the constrained method (13.6 and 7.4%) are found to be
smaller than the expected signal loss lidar ratio error estimate of ~17–23%. A good
agreement is also found in lidar ratios derived from this study and from using Differential
Absorption Lidar-High Spectral Resolution Lidar (DIAL-HSRL) measurements for the
Williams Flats Fire. The lidar ratio statistics of smoke plumes presented in this analysis
(51 ± 13 sr) also compare favorably with lidar ratio values found in previous studies;
however, they remain lower than the assumed smoke lidar ratio of 70 sr (at 532 nm) used
by CALIPSO and CPL, and vary with plume transport distance. These findings suggest
lidar ratio is likely to be regionally specific and evolve with plume transport. Thus, innovative
methods for simultaneous retrieval of lidar ratio and aerosol extinction, such as the signal
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loss method proposed in this study, are needed for accurate aerosol retrievals from
standard backscatter lidars in the future.

Keywords: lidar, remote sensing, smoke optical properties, AOD, aerosol extinction, aerosols

1 INTRODUCTION

Atmospheric aerosols play a critical role in earth’s radiation budget
and can negatively affect local air quality and visibility. Thus, passive
and active space-based and airborne sensors have been routinely
implemented to monitor the distribution and evolution of
atmospheric aerosols. While passive sensors provide column-
integrated optical properties such as aerosol optical depth (AOD),
accurate knowledge of the vertical distribution of aerosol optical
properties, such as aerosol extinction, are equally important for a
variety of aerosol related applications including the study of aerosol
and cloud interactions (Markowicz et al., 2008). Additionally, aerosol
induced atmospheric heating is strongly dependent on aerosol
vertical distribution (Ban-Weiss et al., 2012).

Backscatter lidar, such as NASA’s Cloud Physics Lidar (CPL),
detects backscattered signal that can be further used to retrieve the
vertical distribution of aerosol properties, including aerosol
extinction. In this approach, aerosol extinction for a given layer is
related to range-resolved backscattered averaged signal (Spinhirne
et al., 1980) using the extinction-to-backscatter ratio, or the lidar
ratio, through an iterative process (Klett, 1981; Fernald, 1984). The
lidar ratio is assumed to be constant for a specified layer type; thus,
accurate detection of atmospheric aerosol layers is required to obtain
the most appropriate extinction coefficient values. Note, while this
requirement can pose a problem for space-based lidars such as the
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) due
to signal attenuation (e.g., Koffi et al., 2012), the higher signal-to-
noise ratio of CPL flying on the NASA ER-2 high-altitude aircraft
allows for more detections, including tenuous layers, which
improves the accuracy of extinction retrievals.

For a given aerosol species, the lidar ratio could vary as a function
of aerosol physical properties and environmental conditions (Ferrare
et al., 2001). For aerosol layers where an estimate of layer optical
depth is not available, a lidar ratio is assigned from a look-up table
based on a global or regional climatology (McGill et al., 2003; Hlavka
et al., 2012). A significant source of uncertainty in standard
backscatter lidar derived aerosol extinction is the layer-average
lidar ratio (Fernald 1984; Sasano et al., 1985; Young et al., 2013).
Thus, methods must be developed for more accurate retrievals of
aerosol extinction and lidar ratio usingmeasurements from standard
backscatter lidars such as CALIOP and CPL.

The signal loss method was developed in the past to
simultaneously estimate the layer-average lidar ratio and vertical
profile of extinction coefficient of clouds by determining the
reduction of signal through a layer in favorable conditions
(Yorks et al., 2011a). This is the preferred method to assigning
a lidar ratio based on aerosol type since the lidar ratio is calculated
directly from the lidar data by comparing the loss of signal above
and below the layer. The signal loss technique requires an optically
thin layer that is the highest layer in the atmosphere (no overlying
attenuation), elevated, and directly above clear air. These criteria

have traditionally restricted the signal loss method to optically thin
clouds. However, McGill et al. (2003) attempted this technique, on
a small dataset consisting of an elevated smoke and dust mixture
off the coast of Namibia during the Southern African Regional
Science Initiative (SAFARI)-2000 field campaign. Additionally,
Yorks et al. (2011a) applied this technique on an extensive CPL
dataset of cloud layers and found the derived lidar ratios to agree
well with previous studies.

The goal of this study is to investigate the feasibility of applying
the signal loss method to elevated smoke plumes for accurate
retrievals of layer-average lidar ratio and aerosol extinction
coefficient vertical profiles using the standard backscatter lidar
measurements, as well as for monitoring variations in lidar ratio
during smoke transport. Using combined observations from CPL
and Geostationary Operational Environmental Satellite (GOES)
that were collected in summer 2019 during the Fire Influence on
Regional to Global Environments and Air Quality (FIREX-AQ)
field campaign, we applied and evaluated, for the first time, the
signal loss technique for elevated smoke layers from North
American wildfires. In addition, for regions where independent
retrievals of column AOD are available, a constrained lidar ratio
method is applied for simultaneous retrieval of lidar ratio and
aerosol extinction. This approach has commonly been used in the
past by combining the active lidar retrieval with a passive sensor
such asMODIS to calculate the constrained lidar ratio (e.g., McGill
et al., 2003; Burton et al., 2010). In this study, to intercompare with
the signal loss-based method, constrained lidar ratio retrievals are
derived from CPL using collocated GOES Multi-Angle Aerosol
Retrieval Algorithm (MAGARA) retrieved AOD.

This paper is organized as follows: data used in this study and
methodology for the lidar ratio calculations are discussed in Data
and Methodology; results and discussion follow in Results and
Conclusion. Finally, Section 5 includes conclusions of the study.

2 DATA AND METHODOLOGY

2.1 The 2019 Fire Influence on Regional to
Global Environments and Air Quality Field
Campaign
The FIREX-AQ field campaign was a joint NOAA/NASA study of
North American fires that took place during summer 2019. FIREX-
AQ aimed to improve the understanding of fire impacts on air
quality, weather and climate through a combination of sensor
platforms including aircraft, satellite, and ground-based networks
(Roberts et al., 2020). During this study, CPL was mounted on
board NASA’s ER-2 high-altitude research aircraft, which
completed eleven flights over the western United States sampling
fires of various sizes and burning fuels in California, Washington,
Montana, Arizona and Utah (Table 1). The Airborne Multiangle
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SpectroPolarimetric Imager (AirMSPI), Enhanced MODIS
Airborne Simulator (eMAS), and Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) were also mounted on board
the ER-2; however, calibration issues and the difficult nature of
AOD retrievals over optically thick smoke plumes for passive
sensors limited the feasibility of using coincident retrievals with
these sensors and CPL. During FIREX-AQ, NASA’s DC-8 aircraft
served as an additional airborne in-situ chemistry laboratory,
providing gas and aerosol phase measurements as well as remote
sensing retrievals from the MODIS/ASTER Airborne Simulator
(MASTER) and the Differential Absorption Lidar-High Spectral
Resolution Lidar (DIAL-HSRL). Despite planned coordination
during the field campaign, constraints on operations limited the
amount of coincident data collection between the two aircraft.

For each science flight conducted during the campaign, CPL
performed well after an approximate 30-min period of thermal
stabilization of the laser while in transit to the observation target.
Operationally, CPL is calibrated by normalizing the signal
between 15–17 km relative to a modeled profile of molecular
attenuated backscatter from Modern-Era Retrospective analysis
for Research and Applications, Version 2 (MERRA-2) reanalysis
data, and was well calibrated for the duration of the campaign
(Pauly et al., 2019). Throughout this campaign, CPL flew over
several elevated smoke plumes which were candidates for the
signal loss lidar ratio technique. The details of this technique are
described below and closely follow the detailed discussion found
in McGill et al. (2003) and Yorks et al. (2011a). To invoke this
method, the aerosol layer must be optically thin enough to sense a
layer below it and must be immediately above a layer of clear air
so that reduction of signal through the layer can be quantified.

2.2 Cloud Physics Lidar Data and Lidar Ratio
Retrievals
2.2.1 The Standard CPL Aerosol Retrieval Method
The Cloud Physics Lidar (CPL) is an elastic backscatter lidar
operating at 355, 532, and 1,064 nm to provide multi-wavelength
backscatter measurements of clouds and aerosols with fine
horizontal (1 s; 200 m; size of the beam at the surface) and
vertical (30 m) resolutions (McGill et al., 2002). While the
1,064 nm channel is utilized for depolarization ratio
measurements, backscattered signals from all three wavelengths
are available for optical property retrievals. Attenuated total

backscatter and depolarization ratio are available as Level 1 data
products, while aerosol extinction, layer-integrated lidar ratio and
optical depth are archived as Level 2 data products.

The lidar ratio is assumed to be constant throughout the vertical
extent of the layer for a given specified layer type; therefore, accurate
classification of atmospheric layers by the CPL processing algorithm
is required. Atmospheric layers (i.e., clouds and aerosols) are
detected using a threshold profile technique (Vaughan et al.,
2009; Yorks et al., 2011b). Once a layer is identified, the CPL
classification algorithm categorizes each layer as cloud or aerosol
using a multidimensional probability density function (PDF)
technique, similar to the method utilized for the Cloud-Aerosol
Transport System (CATS) lidar that operated on the International
Space Station (Yorks et al., 2021). Specific aerosol types are assigned
based on layer heights, attenuated backscatter intensity of the
1,064 nm channel, depolarization ratio and attenuated backscatter
color ratio (the ratio of 1,064 nm attenuated backscatter to 532 nm
attenuated backscatter) thresholds. Ancillary data such as geographic
location and surface type are also used.

For identified atmospheric layers, the default lidar ratio is
assigned from a look-up table containing values similar to those
traditionally used in Geoscience Laser Altimeter System (GLAS),
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIPSO) and CATS algorithms (Palm et al.,
2002; Omar et al., 2009; Yorks et al., 2015). These values are
based on numerous studies using spaceborne, airborne and
ground-based lidar instruments in various regions. The CPL
default lidar ratio of a smoke layer is 70.0 sr for a retrieval at
532 nm.

2.2.2 The Signal Loss Method and the Constrained
Lidar Ratio Retrieval Method
When considering the total backscattered signal, both the
particulate, and molecular contributions must be investigated.
To solve for the molecular contribution, Rayleigh theory is
invoked to calculate the molecular transmission [Tm(z)] and
molecular backscatter coefficient [βm(z)]. Based on this, the
molecular lidar ratio, Sm, is a constant 8π⁄3 sr (McGill et al.,
2003), leaving the particulate lidar ratio to be solved. In the signal
loss method, for an aerosol layer with at least 616 m of clear air
below the layer (Yorks et al., 2011a), both the particulate lidar
ratio and layer optical depth can be solved using the effective
particulate two-way transmission at layer top [T’2secθ

p (zt)] and

TABLE 1 | Summary of fires sampled during the FIREX-AQ field campaign.

Fire name Date sampled Location °lat/°lon Cause Fuel type Total acreage
burned (km2)

Dixon 2 August 2019 38.567/−119.739 (CA) Lightning Timber (litter and understory), brush 0.12
Williams flats 6,7,8 August 2019 47.94/−118.621 (WA) Lightning Timber (litter and understory), short grass (1 foot) 180
Springs 13 August 2019 37.826/−118.872 (CA) Lightning Timber, brush, grass 5
Boulin 15 August 2019 35.393/−112.011 (AZ) Lightning Ponderosa pines, grasses 16
Sheridan 15, 16, 21 August 2019 34.677/−112.890 (AZ) Lightning Brush (2 feet), timber (litter and understory), chaparral (6 feet) 87
Castle 15, 16, 20 August 2019 36.531/−112.228 (AZ) Lightning Timber (litter and understory) 78
Trumball 15 August 2019 36.412/−113.141 (AZ) Lightning Ponderosa pines, oak brush, duff, grass 12
Ikes 16, 20, 21 August 2019 36.347/−112.286 (AZ) Lightning Timber (understory), grass 66
Little bear 20, 21 August 2019 37.5885/−112.32 (UT) Lightning Timber (litter and understory), brush, grass 6
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layer bottom [T’2secθ
p (zb)], where θ is the CPL tilt angle, ranging

from ~0.02 to ~0.03 for the cases analyzed in this study.
The effective particulate two-way transmission at layer bottom, or

T’2secθ
p (zb) is calculated by the ratio of the layer-integrated

attenuated backscattered return signal received at the instrument
to the layer-integrated molecular signal (similar to the layer top term
but assuming the aerosol layer is non-existent) as described in Eq. 1:

T ′2secθ
p (zb) �

∫zc

zb
β′(z) dz

∫zc

zb
βm(z)T2secθ

m (z) dz (1)

Here β′(z) is the total attenuated backscatter coefficient at
each height, βm(z) is the molecular backscatter and T2secθ

m (z) is the
molecular transmission from the layer bottom (zb) to the end of the
clear air zone (zc). Note that the effective transmission squared at
layer top, or theT’2secθ

p (zt) term can also be computed usingEq. 1 by
replacing layer bottom as layer top. TheT′ 2secθp (zt) termwill be 1.0 if
there is only clear air above the given aerosol layer.

Upon deriving the effective particulate two-way transmissions
at both the layer top and bottom based on Eq. 1, the optical depth
of the layer can be simply computed using Eq. 2:

τlayer � − 0.50 ln
T′ 2secθ

p (zb)
T′ 2secθ

p (zt)
(2)

By defining X as S′p/Sm, the effective lidar ratio, S’p, which is
taken to be constant through the layer, can also be solved through
the slant angle form of the lidar equation derived by Spinhirne
et al. (1980) as illustrated in Eq. 3:

T′ 2secθ
p (zb) T2Xsecθ

m (zb) � T′ 2secθ
p (zt) T2Xsecθ

m (zt)

− 2secθ × ∫
zb

zt

S′pβ′(z) T2(X−1)secθ
m (z) dz

(3)
By rearranging Eq. 3 as Eq. 4, the effective lidar ratio can thus

be derived.

S′p �
T′ 2secθ

p (zt)T2Xsecθ
m (zt) − T′ 2secθ

p (zb) T2Xsecθ
m (zb)

2secθ∫zb

zt
β′(z)T2(X−1)secθ

m (z) dz (4)

Then, to solve for S′p using Eq. 4, an iterative approach is
taken. A first guess of S′p based on layer type is selected. The
next iteration uses the calculated transmission loss through the
layer to compute an updated value of S′p. Iterations continue
until the solution converges to a set tolerance (0.08 sr) (Yorks
et al., 2011a).

In this approach, multiple scattering effects are considered
negligible for CPL retrievals of optically thin aerosol layers
(McGill et al., 2002; McGill et al., 2003; Yorks et al., 2011b).
Multiple scattering is primarily a function of particle properties
such as number density, size distribution and shape, and the lidar
field of view and distance from target (Eloranta, 1998). Typically,
these effects are parameterized by a multiple scattering correction
factor, η, which accounts for the apparent increase in two-way
transmission due to scattering (Platt, 1981). Therefore, the true

lidar ratio is S′p divided by η, or simply Sp. For space-based lidars
at greater distances (hundreds of kilometers) from the scattering
media, effects of multiple scattering can cause errors in the
retrievals of optical properties of clouds or thick aerosol plumes.
For this study, we assert that multiple scattering effects can be
neglected (η = 1) as the CPL field of view is narrow (100 μradians)
and the instrument is relatively close to the targets (~20 km), so the
footprint is small (Yorks et al., 2011b) and hence the multiple
scattering effect (McGill et al., 2002; McGill et al., 2003; Winker,
2003). Additionally, the signal loss technique applied in this study
requires optically thin aerosol layers for which the underlying
surface can be sensed, further allowing for multiple scattering
effects to be neglected.

In our investigation, the signal loss technique is applied to CPL
532 nm attenuated backscatter measurements since this
wavelength provides both high signal to noise and sufficient
molecular return that are necessary to accurately calculate
signal loss lidar ratios (McGill et al., 2003). Note that the
signal loss technique discussed above summarizes the
approach used to solve for the layer-integrated lidar ratio
values relying solely on CPL and is applicable only to layers
that satisfy the criteria discussed previously.

To inter-compare with the signal loss method, for smoke
layers where collocated GOES MAGARA retrieved AOD
values (τ) are available, the constrained lidar ratio method is
also applied. Different from the signal loss method for which both
lidar ratio and aerosol extinction are derived solely from lidar
observations, for the constrained lidar ratio method, AOD (τ)
values derived from an independent instrument are used to
constrain lidar ratio retrievals as shown in Eq. 5 following
Fernald et al. (1972) and showcased previously in the
literature (Welton et al., 2002; McGill et al., 2003; He et al.,
2006; Burton et al., 2010).

S′p � [1 − exp(−2τ)]
2secθ∫zb

zt
β′(z)T2(X−1)secθ

m (z) dz (5)

2.3 Uncertainties in the Lidar Ratio
Two classes of uncertainty contribute to the overall uncertainty in
the CPL lidar ratio calculations presented in this study. The first
of these is the systematic uncertainty comprised of uncertainty in
the CPL calibration, uncertainties in the molecular backscatter
computed fromMERRA-2 data and uncertainties in the modeled
two-way molecular transmittance. As discussed previously, a CPL
calibration constant is assigned based on normalizing the signal
between 15–17 km relative to a modeled profile of molecular
attenuated backscatter from MERRA-2 reanalysis data. Based on
the findings of Vaughan et al. (2010), a particulate scattering ratio
of 1.27 is applied over the calibration region to account for aerosol
loading in a standard Northern Hemisphere atmospheric profile
(Pauly et al., 2019). The uncertainty of the calibration (C) was
found to equal 4% compared to Rayleigh in the calibration zone at
532 nm (McGill et al., 2003), while the uncertainties of the
molecular backscatter (βM) and two-way molecular
transmittance (T2

M) were found to be 3 and 0.2%, respectively
(Reagan et al., 2002; Pauly et al., 2019). Applying these
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uncertainties to Eq. 6 results in a CPL lidar ratio systematic error
of 5%.

(Sr)systematic �
�������������������
(C)2 + (βM)2 + (T2

M)2
√

(6)
Random error, primarily caused by noise in the CPL lidar

signal, must also be accounted for in the overall uncertainty of the
signal loss lidar ratio calculations. Eq. 7 adapted fromWelton and
Campbell (2002) accounts for the variability in the lidar signal
within a clear air segment and is given by:

(Sr)2random � ((
SD(NRB(r))��

N
√ )

NRB(r) )2 (7)

Two separate CPL flights from the FIREX-AQ campaign were
analyzed to quantify the random error in this study. The first of
these flights was from 12 August in which 250 profiles of clear air
were averaged between an altitude of 3.5–4.5 km. This region was
selected given that smoke plumes throughout the study were
centered at an altitude of approximately 4 km (Table 2). Applying
Eq. 7 where N accounts for the 250 profiles used in the averaging
interval, the resultant random error in the lidar ratio is
approximately 17%. Eq. 7 was applied to an additional CPL
flight on 16 August in which 250 profiles were averaged between
3.5–4.5 km to again determine the variability of the lidar signal. In
this case, the resultant random error was approximately 23%.

Finally, the total error can be determined through Eq. 8.

(Sr)2total � (Sr)2systematic + (Sr)2random (8)
resulting in a total error estimate for the CPL signal loss lidar ratio
calculation of 17–23% for the FIREX-AQ field campaign.

2.4 GOES MAGARA AOD Retrievals
The multiangle geostationary aerosol retrieval algorithm
(MAGARA; Limbacher and Kahn, 2019; Limbacher et al., 2022
(in preparation) represents a novel aerosol retrieval algorithm
capable of retrieving AOD at 550 nm and fine-mode fraction
(FMF) at the native cadence of observation from the satellite
(currently 10 min) and pixel-size (for the blue-band; 1 km at the
nadir sub-spacecraft point) of the Advanced Baseline Imager (ABI)
found onboard both GOES-East [GOES-16 (R)] and GOES-West
[GOES-17 (S)]. The algorithm ingests five channels of shortwave
reflectances from either (or both) GOES ABI sensors, interpolating
these reflectances to a common grid, and then tiling those data over
a period of time ranging from a week to a month.

For each pixel in the aerosol retrieval, the algorithm then retrieves
the following daily-averaged fine-and-coarse mode aerosol particle
properties (at 550 nm): fine-mode effective radius (inmicrons), fine-

mode single-scattering albedo, fine-mode single-scattering albedo
spectral slope (brown vs. black smoke), and coarse-mode sphericity
(dust vs. spherical). The retrieved particle properties are exactly as
found in Junghenn Noyes et al. (2020).

This retrieval of daily-averaged aerosol particle properties is done
in an iterative manner with the retrieval of surface reflectance, with
dynamic weighting used to prevent (likely) clouds from impacting
the retrieval. Rather than trying to retrieve a temporally evolving
surface reflectance, the algorithm ingests the changes in surface
reflectance (over the tiling period) from the MODIS Multi-Angle
Implementation of Atmospheric Correction (MAIAC; MCD19A3;
Lyapustin et al., 2018), and then retrieves the average surface
reflectance for a given time-of-day and channel, under the
assumption that the changes from day-to-day are well
characterized by MAIAC. Aside from the assumption that the
surface reflectance changes linearly with day, MAGARA does not
rely on a surface reflectance model, which means that if we report
results every 10 min for the brightest 12 h of the day, the algorithm
will retrieve about 70 sets of independent surface reflectances (5 or 10
channels per set). To adequately characterize the surface reflectance
for any given time-of-day, the algorithm requires at least 2 cloud-free
(and low aerosol loading) views for that given time of day, with
enough cloud-free times (during a low AOD day) to accurately
characterize the average AOD.

Once the surface reflectance and daily aerosol properties have
been retrieved, the algorithm then retrieves AOD and FMF at
550 nm by identifying the optimal FMF for every point on our
input AOD grid via non-negative least-squares (NNLS; Lawson
and Hanson, 1995), and then using Newton’s method to identify
the best fitting AOD (Limbacher and Kahn, 2019; Limbacher
et al., 2022; in preparation).

In this study we validated GOES MAGARA AOD data against
ground-based spectrally interpolated (using a 2nd-order
polynomial fit in log-log space) AERONET AOD for the study
region during the study period as shown in Figure 1. Figure 1
shows GOES-West true color imagery (left) and 550 nm
MAGARA AOD (right) with AERONET locations overlaid
(circles) and the corresponding AOD retrievals at ~9:10 AM
on 7 August 2019, for the region affected by smoke from the
Williams Flats Fire. Additionally, a comparison of GOES
MAGARA and AERONET AOD retrievals within this
Williams Flats (same domain as in the imagery) domain is
shown in Figure 1 (bottom) for 4,795 data points. A complete
list of AERONET locations and the number of collocations with
high quality MAGARA retrievals is listed in Appendix A. The
resultant linear correlation coefficient of this dataset is 0.737 with
a mean absolute error of 0.014 and root mean squared error of
0.033. Collocated data points are those within a 10- by 10-pixel

TABLE 2 | Summary of smoke plume characteristics from the Williams Flats Fire flown on 8 August 2019. Median values of Williams Flats Fire plume characteristics.

Lidar ratio
(sr)

Depolarization ratio Color ratio Altitude (km) Thickness (km)

18:29:52–18:46:32 UTC 62 0.03 0.92 4.10 1.17
20:06:33–20:23:14 UTC 47 0.02 1.4 4.82 1.23
All plumes 53 0.05 0.90 4.25 0.90
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box surrounding the AERONET site with cloud screening applied
and a minimum cost function (χ2 value) less than 1.0.
Additionally, the selection criteria for AERONET is the mean
550 nm AOD within ± 15 min of the MAGARA observation. At
least 50 percent of the pixels within the 10- by 10-pixel box
surrounding the AERONET location must satisfy the cost
function criteria imposed, plus other quality-assurance criteria
(identical to the criteria used in Figure 1) to be used in the
analysis. Although the AERONET data presented does not
sample thick smoke plumes directly, this exercise suggests that
GOES MAGARA AOD data agree well with AERONET AOD
data for the study region and thus are used in this study.

3 RESULTS

3.1 Case Studies
The first case study presented in this analysis is of the Williams
Flats Fire, which was located approximately 80 km (50 miles)
northwest of Spokane, Washington and was ignited on 2 August

2019 from a lightning strike. This fire burned close to 45,000 acres
(182 km2) and was categorized by the United States Forest Service
as a creeping fire with fuels including timber, grass and decadent
bitterbrush with some heavily logged areas. Figure 2A shows CPL
532 nm total attenuated backscatter of a Williams Flats smoke
plume overpass completed by the ER-2 on 8 August 2019. For
layers within the plume where the solution to the iterative lidar
ratio calculation did not converge to a set tolerance (0.08 sr) or
where the number of iterations to reach convergence was too
large (100 iterations), the lidar ratio was not calculated resulting
in vertical gaps in the image in Figure 2B. For the smoke layers
where lidar ratios were successfully calculated, the general shape
of the plume is evident and follows that of the total attenuated
backscatter images. The lidar ratio values, along with other CPL
derived parameters including depolarization ratio, color ratio,
plume altitude, and thickness, are summarized in Table 2 for
individual plumes and for all plumes sampled from this fire. The
overpass of the plume sampled from 18:29:52–18:46:32 UTC
(Figure 2A) was located approximately 240 km from the flaming
source. The associated lidar ratios for this plume calculated using

FIGURE 1 |GOES-West [GOES-17 (S)] true color imagery of smoke from 7 August 2019 (left) and the GOESMAGARA 550 nmAOD for the same scene (right) with
AERONET locations denoted by circles which are filled with the corresponding AOD values. A scatter plot is also presented (bottom) comparing GOESMAGARA AOD to
AERONET AOD for 4,795 collocated data points and the calculated statistics.
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the signal loss lidar ratio technique are shown in Figure 2B. The
median lidar ratio value of this plume was 62 sr with a median
plume height centered at 4.10 km and a plume thickness of

1.17 km. A NOAA Hybrid Single-Particle Lagrangian
Integrated Trajectory (HYSPLIT; Stein et al., 2015) back
trajectory ensemble analysis for this plume is pictured in

FIGURE 2 | CPL 532 nm attenuated backscatter curtain plots (A,C) for the 18:29:52–18:46:32 UTC (top) and 20:06:33–20:23:14 UTC (bottom) smoke plumes
sampled during an overpass of the Williams Flats Fire on 8 August 2019 and the corresponding signal loss calculated lidar ratio values curtain plots (B,D).

FIGURE 3 | NOAA HYSPLIT ensemble back trajectories from the median smoke plume thickness beginning at 18:00 UTC [(A); left] and 20:00 UTC [(B); right] on 8
August 2019. The location of the Williams Flats Fire is indicated (red flame) in the source region of the smoke plumes sensed by CPL.
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Figure 3A on 08 August 2019 beginning at 18:00 UTC. The
trajectory tracks the path of the plume from the CPL location at
the median smoke plume altitude (4.1 km) backward in time. The
location of the Williams Flats Fire is marked within the source
region confirming the plume’s origin is from Williams Flats.

The second plume showcased (Figures 2C, D) was sampled
from 20:06:33–20:23:14 UTC at a location approximately 330 km
from the fire source. This plume again shows the general
characteristics (shape, thickness, altitude) evident in the total
attenuated backscatter image, but has a smaller retrieved median
lidar ratio value than the previous case (47 vs. 62 sr) and was
slightly higher in altitude (median altitude centered at 4.82 vs.
4.10 km) and a plume thickness of 1.24 km, compared to
1.17 km. The overall median lidar ratio value of all plumes
for the Williams Flats Fire was 53 sr with a median smoke layer
altitude of 4.25 km. A NOAA HYSPLIT back trajectory for this
plume is shown in Figure 3B on 8 August 2019 beginning at
20:00 UTC. The air parcels at an altitude corresponding to the
median smoke plume altitude (4.8 km) were traced backward
in time and again confirm the source of this plume is the
Williams Flats Fire.

The lidar ratio has been found to depend on the size and
absorption properties of particles (Müller et al., 2007), but can
also vary based on the chemical composition of the particles,
which is inherently dependent on the smoke source region,
available moisture and type of fire from which the smoke
plumes are produced (Nicolae et al., 2013). Even from similar
source regions, variations in chemical, physical and optical
properties of biomass burning aerosols have been found such
as in Junghenn Noyes et al. (2020) in which differences in particle
size and absorption properties were observed in different regions
of theWilliams Flats Fire plume on 6 August. With the combined
use of in-situ and remote sensing data, small yet highly
absorbing particles were found near the smoke source region,
while particles larger in size with an increasing amount of
weakly-absorbing aerosols were found from downwind
observations (Junghenn Noyes et al., 2020). Given these
findings, it is likely that variations in the lidar ratio values
are due to more weakly-absorbing particles than their fresh
smoke counterparts.

In addition, Figure 4 highlights the change in lidar ratio
with distance from the fire for the Williams Flats for all the
smoke plumes analyzed here. As the distance from the fire
source increases, the 532 nm layer-mean lidar ratio decreases
from a median value of 62 sr to a value of 47 sr over a distance
of approximately 120 km. As discussed previously, studies
have reported that lidar ratio can vary depending on the
size and absorption properties of particles (Müller et al.,
2007). As plumes are transported, the particles can uptake
water and swell (Kar et al., 2018) leading to larger particles
which exhibit a reduction of their light absorption capabilities
(Müller et al., 2007), thus impacting the lidar ratio. These
findings, corroborated with the results of Junghenn Noyes et al.
(2020), suggest that in the case of the Williams Flats smoke
plumes, particles grew as they were transported from the fire
leading to lower lidar ratio values as their extinction
characteristics changed.

The second event this study focused on was the Sheridan Fire,
which was centered approximately 37 km (23 miles) northwest of
Prescott, Arizona. This fire was ignited from lightning and grew
to encompass approximately 22,000 acres (89 km2), while
burning materials such as brush and timber with isolated
patches of Ponderosa pines. This was a smoldering fire located
in a mountainous environment and plumes from the Sheridan
fire were very localized in contrast to the Williams Flats Fire, as is
evident in the CPL 532 nm total attenuated backscatter imagery
of the Sheridan Fire overpass on 15 August 2019 (Figure 5, left).
While the plumes of the previous case extended 78 km
horizontally, plumes from the Sheridan Fire had a horizontal
extent of only approximately 17 km. The calculated signal loss
lidar ratio values from CPL for the plume near the fire source are
highlighted in Figure 5 (right). In contrast to the first case
analysis, the CPL overpasses of the Sheridan Fire were directly
over the source. Signal loss lidar ratio convergence is not evident
throughout the entire extent of the plume, but general plume
characteristics that are present in the total attenuated backscatter
images are also seen in the lidar ratio curtain plots. Since multiple
overpasses of the Sheridan fire were completed in approximately
the same location and thus no transport or aging of the smoke
plume was sampled, only summary statistics of the fire are
presented (Table 3). The overall lidar ratio values from the
Sheridan fire are lower than of the previous case study, with a
median value of 48 sr (vs. 53 sr), while the median altitude
(4.16 km) and thickness (1.19 km) of the smoke plumes remain
similar between the case studies.

3.2 Smoke Optical Properties Statistics for
FIREX-AQ
The particulate optical depth was estimated for smoke plumes
where lidar ratio was calculated using the signal loss technique.
Data from eleven FIREX-AQ flights are included in Figure 6
showing the distribution of CPL 532 nm smoke AOD. From this

FIGURE 4 | Evolution of the 532 nm layer-integrated lidar ratio
calculated using the signal loss technique for the Williams Flats Fire as a
function of distance from the fire.
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figure it is evident that two peaks of smoke AODs exist, the first at
0.5 and the second at 2.7. The peak at smaller AOD values is heavily
influenced by the Sheridan Fire observations, while the peak at
higher AODs is comprisedmostly of data from the 8 and 21August
flights sampling Williams Flats, Little Bear and Ikes fires, which
exhibit higher lidar ratio values. These results are consistent with
McGill et al. (2003) in which high AOD environments were found
to have the highest mean lidar ratio values. This distribution
highlights the applicability of the signal loss technique in both
light and heavy aerosol loading environments.

The 20:06:33–20:23:14 UTC plume from Williams Flats on 8
August 2019 sampled by CPL (Figure 2) was collocated with
GOES AODs retrieved using the MAGARA algorithm. The
distributions of AOD values from GOES (blue) and CPL
signal loss method (orange) are shown in Figure 7 for the
pixels within the smoke plume collocated with the CPL data.
A maximum time difference of 15 min was allowed between CPL
and GOES MAGARA retrievals to be considered collocated
temporally. Spatial collocation was completed by matching the
CPL pixel to the nearest located GOES pixel within 1 km.

Depending on satellite viewing angle, the GOES MAGARA
AOD resolutions were approximately 2–3 km and the closest
CPL AOD values were averaged for each collocated point. Both
sensors derive AOD values that are in good agreement, with CPL
AOD values centered at 0.59 ± 0.66 and GOES AOD of 0.59 ±
0.09. In general, the AOD values retrieved by CPL have maximum
values approaching 3.0, while GOES MAGARA AOD only
approach a maximum value of 1. Due to cloud screening
efforts applied to the GOES retrievals, high AOD values may
have been classified as cloud pixels and omitted from the
MAGARA analysis. Also shown is the distribution of AODs
derived from CPL default lidar ratio values assigned based on
layer type (green), with a lidar ratio values of 70 sr for smoke
(Yorks et al., 2015), as described previously. Themean AOD value of
0.81 ± 0.62 from this method is larger compared to the other
methods. These results indicate that an assumption of 70 sr for
smoke plume lidar ratios will result in AOD values that are too high
compared to what is retrieved for these plumes. As noted in Cattrall
et al. (2005) the black carbon content in relation to source region and
combustion processes has been considered by the climate modeling

FIGURE 5 | CPL 532 nm attenuated backscatter curtain plots (left) for smoke plumes sampled during multiple overpasses of the Sheridan Fire on 15 August 2019
and the corresponding signal loss calculated lidar ratio values curtain plots (right).

TABLE 3 | Summary of smoke plume characteristics from the Sheridan Fire flown on 15 August 2019. Median vales of Sheridan Fire plume characteristics.

Lidar ratio
(sr)

Depolarization ratio Color ratio Altitude (km) Thickness (km)

All plumes 48 0.04 1.03 4.16 1.20
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community. However, they also note thatmore accurate assessments
of the aerosol forcing on climate is tied to improved lidar retrievals of
extinction and scattering properties based on the inclusion of
regional aerosol influences. Therefore, a more accurate approach
to assigning lidar ratios based on aerosol type would take into
account regional characteristics of fires, including their burning
environments and the ageing and transport of plumes, as these
factors influence the extinction properties of the plumes.

3.3 Intercomparison of Lidar Ratio and AOD
Retrievals From the Signal Loss and the
Constrained Lidar Ratio Methods
For smoke layers within the 20:06:33–20:23:14 UTC overpass, we
implemented and compared aerosol retrievals from both the signal
loss and the constrained lidar ratiomethods.Note that herewe applied
a given method to smoke layers wherever applicable, and while the
GOES AOD constrainedmethod was applied over the entire overpass
of the plume, only 46% of the flight track was eligible for the signal loss
method. Thus, it is important to note that this analysis is not an
“apples to apples” comparison of the smoke plume observations, but a
demonstration of two techniques for the calculation of smoke
lidar ratio values within layers of the Williams Flats Fire
smoke plume. A point-to-point comparison is also
implemented and is discussed in a later paragraph. Here,
for the constrained lidar ratio method, collocated
MAGARA GOES AOD values are used as an independent
constraint for the lidar ratio calculations.

These results are shown in Figure 8 for lidar ratios calculated
using the independent AOD constraint (right) and for the signal
loss technique (left) for layers within the plume. Overall, the
portions of the plume where the signal loss technique was applied
resulted in a mean lidar ratio of 49 ± 18 sr, while regions of the
plume that relied on a GOES AOD constraint resulted in a mean

lidar ratio of 53 ± 16 sr. These findings are very reasonable given
the values summarized in Table 4. However, they remain lower
than historically used smoke lidar ratio default values. An analysis
of all smoke plumes from the eleven fires sampled during FIREX-
AQ resulted in a mean signal loss lidar ratio of 51 ± 13 sr. This
value agrees well with previous findings of HSRL lidar ratio
calculations for polluted continental and biomass burning
aerosols (49 ± 16 sr) described in detail by Rogers et al.
(2014), in addition to several other analyses of biomass
burning lidar ratio retrievals (see Table 4). As evident in
Table 4, a range of lidar ratio values have been recorded
across different regions. The cases analyzed here fall well
within the 40–60 sr range of lidar ratio values retrieved
previously across North America (Müller et al., 2005; Müller
et al., 2007; Sayer et al., 2014). The previous findings of 40–60 sr
lidar ratios are for aged (several days to week old) smoke
originating from North American wildfires that has been
transported downwind of the source. Müller et al. (2007)
found a decrease in lidar ratio with long-range transport
which may be linked to increasing particle size and decreasing
light absorption. This analysis demonstrates the successful
application of the signal loss technique to evaluate elevated
smoke plumes with the resultant lidar ratio values below the
default value of 70 sr frequently assumed for smoke (Palm et al.,
2002; Omar et al., 2009; Yorks et al., 2015).

A point-to-point comparison of collocated GOES
MAGARA and CPL signal loss derived AOD values
(i.e., using the exact same bins for both techniques) for
both the Williams Flats and Sheridan fires are shown in
Figure 9 (left panel). The calculated lidar ratio values using
the GOES MAGARA AOD constraint along with the
collocated CPL signal loss lidar ratio values for both fires
are also presented in Figure 9 (right panel). Colored points
(blue) are those with either CPL signal loss derived or GOES

FIGURE 6 | Distribution of the 532 nm layer-integrated optical depth
values calculated for all smoke plumes sampled by CPL during the FIREX-AQ
campaign.

FIGURE 7 | Distributions of collocated retrievals of AOD values for the
Williams Flats Fire from GOES (blue) and CPL signal loss technique (orange)
and CPL modified default technique (green).
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MAGARA AOD values greater than 1.5 and an AOD value
which is two times greater than the collocated counterpart.
Colored points (green) are those in which the signal loss
method has a high AOD bias due to the presence of an
overlying tenuous layer approximately 0.5 km above the
primary smoke plume that was not detected as a layer in
CPL data processing. Since the signal loss method assumes
molecular scattering above the layer with no attenuation from
particulates, the particulate layer above the primary smoke
plume negates this assumption, leading to erroneous high
values in both the particulate backscatter and extinction
coefficient at the bottom bin of the smoke plume layer.
Since these biases are found in both variables, the lidar
ratio value is still reasonable as these biases cancel out, but
should be taken with a grain of salt.

There are two possible sources of AOD discrepancies
between MAGARA and CPL. The first source is potential
MAGARA cloud masking biases. Because the selected
aerosol model is more important as AOD increases,
imperfections in the daily-retrieved fine-and-coarse mode
properties will be more important at higher AOD. This

means as AOD increases, the value of the minimized cost
function generally increases as well. Since we are screening for
clouds partly based on this cost function, it is quite likely that
significant amounts of thick smoke plumes are masked. The
second source are possible overlying particulate layers, either
an optically thin cirrus cloud or aerosol layer, not detected by
the CPL layer detection algorithm, as highlighted by the green
dots in Figure 9 (bottom panel) and explained above.
However, in general, the retrieved AOD values agree well in
both cases, even though only several dozen collocation points
were available (~30 for the Sheridan Fire and ~70 for the
Williams Flats Fire). The majority of AOD values in both case
studies were below an AOD of 1.0. There is slightly better
agreement in the Williams Flats case where there are more
observations. The linear correlation coefficient for the
regression between GOES MAGARA and CPL signal loss
AOD is 0.72 and 0.68 for the Williams Flats Fire and
Sheridan Fire, respectively. The lidar ratio correlation
coefficient for both cases is very similar, with an R value of
0.74 for the Williams Flats case study and 0.68 for the Sheridan
fire. Additionally, the RMS error and mean absolute error in
lidar ratio for the Williams Flats case are 10 and 7 sr,
respectively. The Sheridan Fire lidar ratio error values are
lower, with an RMS error of 7sr and mean absolute error of 4
sr. For both cases errors in the lidar ratio values are in line with
the expected signal loss lidar ratio error estimate of ~17–23%
reported in Section 2.5. In general, the CPL signal loss
technique produces very good agreement with the lidar
retrievals using collocated GOES MAGARA AODs as
constraints. The summary statistics for these comparisons,
and for the points where attenuation due to an overlying layer
causes a high AOD bias, are provided in Table 5. This close
agreement bolsters confidence in the CPL signal loss technique
applied throughout this study. Additionally, these lidar ratio
values continue to align with previous findings of smoke plume

FIGURE 8 | Distributions of lidar ratio values for the Williams Flats Fire utilizing GOESMAGARA AOD as a constraint (right) and calculated using the CPL signal loss
method (left).

TABLE 4 | Previously published smoke lidar ratio values from various locations.

40–60 sr Africa McGill et el. (2003)
40–60 sr North America Müller et al. (2005)
43 – 53 sr Eastern Europe Nicolae et al. (2013)
50 sr Western Europe Balis et al. (2003)
53 sr North America Müller et al. (2007)
55 sr Africa Veselovskii et al. (2018)
55–65 sr Eastern Europe Mattis et al. (2003)
59 sr North America Sayer et al. (2014)
60 sr Africa Voss et al. (2001)
60-65 sr Western Europe Alados-Arboledas et al. (2011)
67-69 sr South America Sayer et al. (2014)
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lidar ratios below 70 sr (Table 4) and further suggest the
historical smoke lidar ratio default value of 70 sr is too high for
smoke plumes sampled in this study.

3.4 Intercomparison of Lidar Ratio
Retrievals From the Signal LossMethod and
the DIAL–HSRL Data
A direct comparison of NASA DIAL–HSRL data was also made to
CPL retrievals from the Williams Flats Fire. The DIAL-HSRL system

makes DIAL ozone profile measurements in the UV (Browell et al.,
1998), in addition to standard backscatter aerosol and cloud
measurements at 355 and 1,064 nm. Utilizing the HSRL technique,
DIAL-HSRL also provides 532 nmextinction values (Hair et al., 2008).
During the FIREX-AQ field campaign DIAL-HSRL was mounted
onboard the NASADC-8 aircraft, while CPLwas on board the NASA
ER-2. For theWilliams Flats Fire, the DC-8, and ER-2 aircraft did not
sample plumes simultaneously. However, a comparison of retrieved
lidar ratio values from both sensors was still explored. DIAL-HSRL
532 nm lidar ratio retrievals are made at a 270m vertical resolution,

FIGURE 9 | Point by point comparison of collocated GOESMAGARA AOD and CPL AOD retrievals (left) for the Williams Flats and Sheridan fire case studies, along
with GOES MAGARA constrained lidar ratio values and CPL signal loss calculated lidar ratios (right). Blue colored points indicate values with larger discrepancies
between the two retrievals likely due to potential MAGARA cloud masking biases or the effects of CPL layer boundary detection issues. Green colored points indicate
values where the signal loss method has a high bias in the smoke plume AOD due to the presence of a tenuous layer above the primary smoke plume.

TABLE 5 | Summary statistics for collocated GOES MAGARA and CPL retrievals for the Williams flats and Sheridan fires.

Williams Flats Fire Sheridan Fire-total Sheridan Fire-no overlying attenuation

Number of collocated retrievals ~70 ~30 19
AOD r value 0.724 0.676 0.625
Lidar ratio r values 0.740 0.676 0.601
Lidar ratio RMS error 9.76 7.28 10.08
Lidar ratio mean absolute error 7.29 4.31 6.26
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while the CPL 532 nm lidar ratios are layer-integrated values. DIAL-
HSRL 532 nm lidar ratio values were compared to CPL 532 nm lidar
ratio values for the two plumes shown in Figure 2. Although DIAL-
HSRL data are not spatially (offset by ~25 km) or temporally (offset by
~3 h) collocated, good agreement exists between the lidars (Table 6).
HYSPLIT forward parcel trajectories were performed from the time
and location of the CPL overpasses to confirm the same plumes were
compared in this analysis. For the first plume sampled by CPL during
this event (18:29:52–18:46:32UTC), amedian lidar ratio value of 62 sr
was retrieved by CPL compared to 61 sr for DIAL-HSRL. A similar
analysis found good agreement (CPL lidar ratio 47 sr andDIAL-HSRL
lidar ratio 53 sr) for the second plume (Figure 2C). Despite temporal
and spatial offsets, these results highlight good agreement between the
sensors utilizing the most direct comparison available.

4 CONCLUSION

In this study, the signal loss method, which was developed for
simultaneous retrievals of both aerosol extinction and lidar ratio,
was applied to observations from CPL during the 2019 FIREX-
AQ field campaign. The AOD values derived from the signal loss
method are evaluated against AOD retrievals from GOES. Both
lidar ratio and AOD retrievals from the signal loss method are
also inter-compared with lidar ratio and AODs derived through
the constrained lidar ratio method that uses MAGARA GOES
AOD as a constraint during the lidar retrieval process.

The results presented in this study highlight two important
findings. The first of these is the successful application of the CPL
signal loss lidar ratio calculations for elevated smoke plumes sampled
during the FIREX-AQfield campaign. To the authors’ knowledge, the
present study showcases one of the first successful applications of the
signal loss lidar ratio calculation technique on an extensive dataset of
aerosol layers comprised of eleven CPL flights of fires in the western
United States. The signal loss method is typically restricted to
optically thin cloud layers. An advantage of this method is the
direct estimate of signal loss through a layer, which eliminates the
need for an assumed lidar ratio or an independent collocated AOD
retrieval to constrain the calculation. When directly comparing the
lidar ratios derived from the signal loss technique to those estimated
by using MAGARA GOES AODs as a constraint, the relative error
was less than 14% (13.6% for theWilliams Flats Fire and 7.4% for the
Sheridan Fire), suggesting the signal loss technique provides robust
layer-mean lidar ratio estimates of lofted smoke plumes. Backscatter
lidar algorithms, both for existing systems like CPL and future space-
based sensors, could incorporate the signal loss technique to improve
aerosol extinction retrievals.

The second important finding of this study is the wide range of
smoke lidar ratios and their potential relationship to the age or

transport distance of the smoke plume. The lidar ratio statistics of
smoke plumes presented in this analysis (51 ± 13 sr) compares
favorably with lidar ratio values found in previous studies
(Table 4), and with values of lidar ratio retrieved from DIAL-
HSRL for the Williams Flats case study. Although the 532 nm
lidar ratio value for smoke is typically assumed to be 70 sr, the
results presented here, and in the studies summarized in Table 4,
suggest that smoke lidar ratios vary by as much as 15 sr as the
plume evolves over even short distances (~120 km), are typically
lower than 70 sr and are regionally determined. As noted in
Sakamoto et al. (2016), in order to quantify the effects of global
and regional aerosol climate forcings, the evolution of biomass
burning particles must be accurately accounted for in models.
The investigation into understanding the change in lidar ratios
presented here is ongoing. However, it is clear that a “one size fits
all” approach of assigning a lidar ratio value based on aerosol type
does not capture the complexity of smoke plume
characteristics or their evolution. Future backscatter lidar
algorithms would benefit from considering a more localized
approach that takes into account the fire environment and
region, including burning material, aging, and transport of
smoke to more accurately calculate the extinction properties
of smoke.
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TABLE 6 | Comparison of CPL and DIAL-HSRL 532 nm lidar ratio values for the
Williams Flats Fire.

Plume Median CPL 532 nm Sr Median
DIAL-HSRL 532 nm Sr

Plume 1 62 sr 61 sr
Plume 2 47 sr 52 sr
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APPENDIX A

AERONET locations within the FIREX-AQ domain collocated
with high-confidence MAGARA observations and the resultant
number of observationsaa.

TABLE | AERONET locations within the FIREX-AQ domain collocated with high-confidence MAGARA observations and the resultant number of observations.

AERONET location (°latitude/°longitude) Number of high-confidence collocation points

Bozeman (45.66/−111.04) 302
Cascade airport (44.49/−116.01) 195
Cliff creek 1(45.10/−114.84) 17
Cliff creek 2 (45.1/−114.84) 28
Cliff creek 3(45.11/−114.83) 3
Cliff creek 4 (45.12/−114.83) 40
Cliff creek 5 (45.12/−114.84) 15
Cliff creek 6 (45.14/−114.84) 41
McCall AB polar (44.87/−116.11) 213
McCall AB standard (44.87/−116.11) 218
McCall dragon 1 (44.76/−116.19) 259
McCall dragon 3 (45.03/−116.28) 223
McCall dragon 4 (45.27/−115.91) 182
McCall dragon 5 (45.26/−115.68) 175
McCall dragon 6 (45.40/−116.02) 205
McCall dragon 7 (45.41/−116.32) 268
Meridian DEQ (43.60/−116.34) 225
Missoula (46.91/−114.08) 305
Missoula health dpt (46.87/−113.99) 301
Missoula midslope (46.99/−114.02) 326
Missoula Pt six (47.04/−113.98) 333
Missoula Waterworks (46.88/−113.98) 148
Neon yell (44.95/−110.53) 114
PNNL (46.34/−119.27) 45
Pinehurst idaho (47.53/−116.23) 21
Rexburg idaho (43.82/−111.78) 171
Rimrock (46.48/−116.99) 388
Taylor ranch TWRS (45.10/−114.84) 34
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