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We argue that the Earth Polychromatic Imaging Camera (EPIC) on the Deep Space Climate
ObserVatoRy (DSCOVR) platform has blazed new pathways in observational technology,
starting with its ~ 1.5 × 106 km stand-off distance, but also in remote sensing science. We
focus here on EPIC’s two oxygen absorption channels that 1) are unique in their spectral
sampling and 2) have stimulated deep innovation in cloud remote sensing using Differential
Oxygen Absorption Spectroscopy (DO2AS). Although first formulated 6 decades ago,
DO2AS-based cloud probing from overhead assets is still an emerging observational
technique. It is indeed somewhat paradoxical that one should use absorption by a gas to
assay scattering by particles. After surveying the history of space-based DO2AS, and
looking into its future, we see that EPIC/DSCOVRmarks an inflection point in this important
development. EPIC’s unique DO2AS capability motivated a notable sequence of papers
revisited here. This research indeed spawned a rare occurrence of information content
analysis coming from radically different—yet complementary—perspectives. First, we
adopted the increasingly popular machinery of optimal estimation (OE) that is
grounded in Bayesian statistics and uses a somehow linearized radiative transfer (RT)
model. Nonetheless, OE feels like a black-box algorithm that outputs a number of “degrees
of freedom” (a.k.a. independent pieces of information about clouds under observation).
However, the very same conclusions are reached using fully transparent physics-based
modeling for the RT, with a few approximations that enable closed-form analytical
formulation. Lastly, we preview a novel DO2AS technique for regaining shortwave
sensitivity to cloud optical thickness past the threshold where cloud reflectivity flattens off.
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1 INTRODUCTION AND OUTLINE

Since the beginning of operational satellite meteorology, NASA’s TIROS-1 (launched 1960), we have
been accustomed to seeing clouds as a dynamical 2D map projected onto the Earth’s surface.
However, meteorologists and atmospheric scientists in general yearn for knowledge of clouds in the
vertical dimension where complex processes in cloud physics unfold, from nucleation to
precipitation. This unsatiable thirst for knowledge of the vertical distribution of clouds persists
to this day. In fact it permeates NASA’s 2017 Decadal Survey (National Academies of Sciences,
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Engineering, and Medicine, 2018) not only in the Designated
Observables from the Aerosol/Cloud-Convection-Precipitation
(ACCP) arena but also in the more experimental Planetary
Boundary Layer (PBL) Incubator program.

The earliest known publications on the potential use of
molecular absorption to determine cloud height are in a
discussion initiated by Hanel (1961), just a year after TIROS-
1’s launch. He was indeed promptly engaged by Yamamoto and
Wark (1961) and Chapman (1962) who suggest using the oxygen
A-band (759–769 nm) because O2 is a dominant constituent with
a well-characterized pressure profile. Thus started the idea of
using differential Oxygen absorption spectroscopy (DO2AS), a
special case of differential optical absorption spectroscopy
(DOAS), to probe clouds from space.

In the following Section 2, we survey the history and
geography of DO2AS-based sensing of scattering particulates
in the Earth’s atmosphere from space. We focus on the period
ending in 2010 because that is more-or-less when theory-
dominated research is superseded by data-driven work since,
by then, several satellites with O2 A-band coverage were in orbit.
To balance the theory-heavy literature survey, we describe more-
or-less chronologically the core technological aspects of satellite
missions so far with DO2AS capability, underscoring EPIC/
DSCOVR’s uniqueness. Finally, we gaze into what lies ahead
for O2 absorption in satellite missions to be launched in the
foreseeable future.

This leads to the lessons-learned from investigating the cloud
information content of EPIC’s (764 ± 0.2 nm) and B-band
(687.75 ± 0.2 nm) channels using both physics and statistics in
Section 3. From there, we connect the implicit dependence of
EPIC’s O2 absorption channel responses on the mean pathlength
of sunlight in the cloudy medium to recent advances in statistical
physics. In turn, that deep dive into the fundamental physics of
O2 absorption in scattering media such as clouds reveals a new
path toward the inference of cloud optical thickness (COT) for
very opaque clouds from DO2AS, not just through radiance levels
in continuum channels that are soon saturated as COT increases.

We summarize in Section 4, and contemplate the future of
DO2AS observation of clouds from space.

2 BRIEF HISTORY OF SPACE-BASED
DO2AS, A LOOK INTO THE NEAR-FUTURE
ANDTHESPECIAL ROLEOFEPIC/DSCOVR
Soon after the first suggestion of using DO2AS in cloud sensing
(Yamamoto and Wark, 1961; Chapman, 1962), the mathematical
connection between the distribution of light paths in scattering
media and the detailed shape of the absorption spectrum was
rigorously established (Irvine, 1964) This key development was
followed by the physically-correct analogy with non-stationary
radiation transport (Katsev, 1969; Katsev and Zege, 1974).
Astrophysical theoreticians made important early
contributions (e.g., Ivanov and Sabashvili, 1972; Nagirner,
1974). The earliest known observations of clouds from space
in the O2 A-band are from 1965, using a handheld camera
operated aboard Gemini-5 (Saiedy et al., 1965; Saiedy et al.,

1967; Wu, 1985). It seems that the first non-astronaut
counterparts were performed by a sensor aboard Kosmos 320
in 1970 (Gorodetskiy et al., 1971; Syachinov and Kozlov, 1974),
and possibly as early as 1967 with the near-identical Kosmos 149
(Malkevich, 1974).

At any rate, a considerable amount of research on cloud
remote sensing using overhead DO2AS was performed in the
Former Soviet Union in the 1970s (Dianov-Klokov et al., 1970;
Dianov-Klokov and Krasnokutskaya, 1972; Kargin et al., 1972;
Malkevich et al., 1975; Dianov-Klokov, 1976; Grechko et al., 1976;
Dianov-Klokov et al., 1977; Grechko, 1978), including
observations from an aircraft (Grechko et al., 1973) and a
satellite (Gorodetskiy et al., 1971; Syachinov and Kozlov,
1974), and into the 1980s (Badayev and Kozlov, 1980;
Grechko et al., 1982; Romanova and Ustinov, 1982; Skorinov
and Titov, 1984; Gusev and Dvoryashin, 1990). In theWest, there
was a fast-growing interest in O2 absorption as a means of
probing clouds during the 1990s (Fisher et al., 1991; Fisher
and Grassl, 1991; O’Brien and Mitchell, 1992; Kuze and
Chance, 1994; Asano et al., 1995; Hayazaka et al., 1995;
O’Brien et al., 1999) and into the 2000s (Heidinger and
Stephens, 2000; Partain et al., 2000; Stephens and Heidinger,
2000; Kokhanovsky et al., 2004; Kokhanovsky and Rozanov,
2004; Rozanov and Kokhanovsky, 2004), with an increasing
emphasis on 3D RT signatures (e.g., Heidinger and Stephens,
2002; Kokhanovsky et al., 2007; Davis et al., 2009).

The above extensive but non-exhaustive literature survey of
cloud-focused space-based DO2AS ends in 2010. Indeed, by the
end of the first decade of the 21st century, there were already
several satellites in orbit collecting real DO2AS data on clouds, as
we will document in the following (Table 1). We therefore view
2010, somewhat arbitrarily, as the end of an era of theory-
dominated research on space-based cloud remote sensing
using DO2AS and the beginning of data-driven research. Since
then, activity in this field has of course continued to grow steadily.
In view of this sustained growth, aWorkshop on “Remote sensing
in the O2 A-band” was convened at KNMI in de Bilt, Nederlands,
in 2016. A Second Workshop on “Remote Sensing in Oxygen
Absorption Bands”was planned to happen in Berlin, Germany, in
2020, but has been postponed because of the COVID-19
pandemic to a future date in 2022. At any rate, this shows
that there is a well-defined scientific community engaged in
DO2AS, for clouds and from space in particular.

We can now take a more-or-less chronological stroll through
satellite missions with imaging DO2AS capability, whether or not
implemented with clouds in mind.1 We see five clusters emerge,
with spectral sampling and spatial resolution being distinguishing
factors. We distinguish between moderate and low spatial
resolution based on the implicit definition of “moderate” (M)

1We pass on the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the
OrbView-2 (a.k.a. SeaStar) satellite mission, from 1997 to 2010. Its channel 7
(745–785 nm) covers the O2 A-band but it was never exploited for atmospheric
scattering. In fact, the O2 absorption was a minor impediment for the targeted
ocean color sensitivity that was eventually “corrected” out of the signal (Wang,
1999).
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resolution used by MODIS (MODerate resolution Imaging
Spectro-radiometer), namely, pixels that are on the order of
1 km in scale. By this standard, sensors with “low” (L)
resolution have pixels on the order of 10 km in scale, and
“very low” (VL) resolution sensors have pixels that are several
10s of km.We also distinguish “low,” “moderate” and “very high”
(VH) spectral resolutions: respectively, ~2-to-5, ~10s, ~1000s of
spectral samples across the (~10 nm wide) A-band, all of which
are useful. Alternatively, there is the “two-channel” (2C) strategy,
typically in-band and out-of-band channels from which a single
DOAS ratio can be formed; however, it can also be implemented
with a narrow/in and broad/in-and-out pair of channels, as was
done for POLDER (POLarization and Directionality of the
Earth’s Reflectances). Either way, in the 2C scenario, it is
important to know if there are single or multiple views.
Table 1 displays satellite missions with DOAS capability that
we have identified over the past two-and-a-half decades,2 with
some key defining characteristics and a reference for more
information. Five clusters emerge.

EPIC’s DO2AS capability is new and unique in at least two
respects in the realm of technology. First, it has an extreme
standoff distance of ~1.5 106 km to the Lagrange-1 point. From
there, the sensor sees almost all of the sunlit hemisphere all the
time, i.e., there is no down-time. Additionally, EPIC uses a special
spectral sampling strategy based on both the A- and B-bands of
the di-oxygen molecule. The advantage in this is not, as we will
see in the next section, that these bands have different absorption

strengths. Rather, the surface albedo is low, hence less
confounding for cloud probing, in at least one of these bands:
over water, in both; over vegetated land, in the B-band.

The future of DO2AS in space is bright, especially in Low-
Earth Orbit (LEO). There will be two more OLCI/Sentinel-3
launches in the late 2020s, followed by ESA’s TROPOMI/
Sentinel-5 series (Veefkind et al., 2012)—with a precursor
mission already launched in 2017. EUMETSAT will have a
multi-angle/multi-spectral/multi-polarization imager (3MI)
(Manolis et al., 2013), with POLDER (hence A-band) legacy,
on all of its future MetOp second-generation satellites, starting in
2024. Moreover, EUMETSAT’s Sentinel-4 series (Meteosat Third
Generation, MTG), due to be launched in 2023 and 2030, will
carry the S4 UVN Multispectral Spectrometer (Riedl et al., 2019)
to Geostationary orbit (GEO), with the O2 A-band covered at
0.12 nm resolution. Back in LEO, NASA/JPL’s Multi-Angle
Imager for Aerosols (MAIA) mission (Diner et al., 2018) will
have a 2C/multi-angle take on the A-band at moderate spatial
resolution. NASA’s Plankton, Aerosol, Cloud ocean Ecosystem
(PACE) mission (Werdell et al., 2019) will cover the A-band with
two of its three sensors at relatively low spectral resolution:

• GSFC’s Ocean Color Instrument (OCI) (Meister et al.,
2019), with a moderate spatial resolution, and

• SRON’s SPEXone (Rietjens et al., 2019), with a somewhat
lower spatial resolution but offering multiple views and
polarization across all wavelengths.

MAIA and PACE are scheduled to launch in the October
2024 – March 2025 timeframe. Last but not least, as part of
NASA’s next generation of Earth observing satellites, the
Atmospheric Observing System (AOS) implements the 2017
Decadal Survey’s ACCP element; it will include a UV-VIS
imaging spectrometer in polar orbit that covers the O2 A-band
at low spectral and moderate spatial resolutions, with a launch
date in the late 2020s.

TABLE 1 | Compendium of satellite missions with DOAS capability ordered chronologically and clustering sensors with similar characteristics. To the best of our knowledge,
SCIAMACHY is the first instrument with an operational DO2AS-based cloud product (Kokhanovsky et al., 2005), followed by the POLDER series (Buriez et al., 1997;
Vanbauce et al., 1998) and EPIC (Yang et al., 2019). Research cloud property retrievals have been developed for these missions, e.g., MOS-A (Preusker et al., 2007),
POLDER-3 (Ferlay et al., 2010), and others, most recently, OCO-2/3 (Richardson et al., 2017; Richardson and Stephens, 2018; Richardson et al., 2019; Richardson et al.,
2020). Such experimental retrievals can and have been transitioned into fully operational elements in the data processing pipeline.

Sensor Developed Platform Agency Dates Spatial Spectral Multi- Reference
Name by . . . resolution Sampling view?

GOME DLR ERS-2 ESA 1995–2011 VL M n Burrows et al. (1999)
MOS-A DLR IRS-3 ISRO 1996–2004 M M n Thyagarajan et al. (1996)
SCIAMACHY SRON Envisat ESA 2002–2012 VL M n Bovensmann et al. (1999)
GOME-2 DLR MetOp-A/-B/-C EUMETSAT 2006-/2012-/2018- VL M n Callies et al. (2000)

MERIS ALCATEL Envisat ESA 2002–2012 M 2C n Rast et al. (1999)

POLDER CNES ADEOS I NASDA 1996–1997 L 2C y Deschamps et al. (1994)
POLDER-2 CNES ADEOS II NASDA 2002–2003 L 2C y
POLDER-3 CNES PARASOL ESA 2004–2013 L 2C y

OCO-2 JPL NASA 2014- M VH n Crisp et al. (2008)
OCO-3 JPL ISS NASA 2019- M VH n Eldering et al. (2019)
OLCI ACRI-ST Sentinel-3A/B ESA 2016-/2018- M M n Nieke et al. (2012)

EPIC GSFC DSCOVR NASA + NOAA 2015- L 2C (A,B) n Marshak et al. (2018)

2At first glance, Table 1 seems to show that NASA was the last space agency to
develop and launch satellite missions with DO2AS capability as late as the mid-
2010s. That is, however, far from true. Both NASA/JPL’s CloudSat and the joint
NASA/LaRC - CNES CALIPSO (co-launched into the A-train in 2006) were
originally planned to have A-band imagers that were later descoped. With their
inherent sensitivity to CTH, these A-band cameras would have extended at least
CTH detection from the actively-probed sub-track “curtain” into the across-track
direction.
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3 INFORMATION CONTENT OF THE
PATHLENGTH DISTRIBUTION

We contend that EPIC not only blazed a new path into the
observational technology of DO2AS from space, but also in the
associated remote sensing science, which we view as enabling
Earth system science via remote sensing. To make this point, we
briefly revisit a series of papers motivated by EPIC’s two pairs of
DOAS channels for the A- and B-bands.

Even before the DSCOVR launch, Yang et al. (2013) devised a
method for extracting two cloud properties from EPIC’s two
DO2AS ratios, namely, cloud top height (CTH) and cloud
geometric thickness (CGT). Specifically, the authors used the
sum and difference apparent cloud heights from both ratios,
where “apparent” refers to the fact that in-cloud propagation and
scattering are not accounted for. However, the fact that they are
different is precisely because of the finite pathlength cumulated
inside the cloud and the different strengths of the A- and B-bands.
Two-entry (CTH,CGT) look-up tables (LUTs) were therefore
generated to retrieve the two cloud properties, much like how the
Nakajima and King (1990) algorithm delivers cloud optical
thickness (COT) and cloud particle effective radius given two
reflected radiances, one VIS (with dominant sensitivity to COT)
and one SWIR (with dominant sensitivity to particle size).

After the DSCOVR launch and EPIC’s first light, it became
clear to the cloud product team that it is important to factor into
their algorithms the sensor’s finite radiometric signal-to-noise
ratio (SNR). Davis et al. (2018b) therefore followed the well-
beaten path of optimal estimation (OE) theory (Rodgers, 2000) to
do that. OE is, in essence, a formalism grounded in probabilistic
information theory and linear algebra that relates measurement
(Level 1) error and any prior/Baysian knowledge to retrieval
(Level 2) error. OE has, at its core, a forward RT model that is
either linearized or run at sufficient numerical precision to
compute accurate Jacobian matrices by finite differencing.
However, once implemented in code, the mathematical
expressions of OE feel like a “black box” procedure that just
has to be trusted. The authors concluded from their formal OE-
based cloud information content analysis of EPIC’s two DO2AS
ratios that CHT can be inferred with useful accuracy, but
not CGT.

It is rare to have a second opinion on the assessment of
geophysical information content of some set of measurements
that is more transparent in nature, but this did occur for EPIC’s
two DO2AS ratios. Indeed, Davis et al. (2018a) derived from first
principles a model simple enough to be expressed in closed form,
yet realistic enough to capture the main radiative processes
unfolding from source to sensor. The authors used this
physics-based approach to assess the sensitivities of EPICs
DO2AS ratios to CTH and CGT, bearing in mind the finite
amplitude of the sensor noise, and they again found a strong
response to CTH and a weak one to CGT.

In hindsight, the series of three papers published in the Journal
of Quantitative Spectroscopy and Radiative Transferweave a story
about adjusting expectations to sensor and algorithm realities. In
the case, it is about EPIC’s ability to probe clouds: cloud top from
O2 absorption channel ratios and COT from the radiometrically-

calibrated continuum channels, assuming either liquid or ice
particles (cf. Yang et al., 2019), but unfortunately not cloud
base height via CTH.

That is not however the end of EPIC’s influence on the remote
sensing science of O2 absorption observations in application to
cloud profiling. By happenstance, EPIC’s DO2AS research team
was alerted by N. Ferlay, an expert in POLDER’s A-band
information content, about a powerful invariance property of
mean pathlength 〈L〉 cumulated inside a scattering optical
medium of arbitrary shape and internal structure: 〈L〉 = 4V/S,
where V is the volume of the medium and S is its surface (Blanco
and Fournier, 2003). This remarkable result is predicated on
uniform and isotropic illumination of the medium, which clashes
with the cloud-illuminated-by-the-sun scenario, and integration
over all possible escape positions and directions, which conflicts
with single direction sampled in remote sensing. There is
nonetheless a strong message: once reduced to just in-cloud
paths, 〈L〉 informs us directly about the size of the medium.
For plane-parallel media, where V and S are infinite, 〈L〉 = 2H,
with H being the geometrical thickness of the slab.3

FIGURE 1 | Pathlength moments 〈L〉 and Var[L](τ) are plotted versus τ in
log-log axes. Symbols mark the Monte Carlo simulation results, while diffusion
model outcomes are solid lines. The invariance of 〈L〉 is verified exactly.
Furthermore, the diffusion-theoretical prediction that Var[L](τ) = (1 − g)τ/
2χ (with extrapolation scale factor χ set to 2/3) becomes very accurate at
τt = (1 − g)τ ~4. Two phase functions were investigated: g = 0 (isotropic
scattering) and g = 0.85 (forward-peaked Henyey and Greenstein (1941)
scattering). Adapted from Davis et al. (2021), where 〈L〉 is denoted 〈ct〉.

3Picture a finite cylinder with radius R and thickness H: V = H×(π R2) and S = 2×π
R2 + H×(2πR). As R → ∞, 〈L〉 = 4V/S → 2H.
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This begs the question about what pathlength variance
Var[L] = 〈(L − 〈L〉)2〉 = 〈L2〉 − 〈L〉2 brings to the table in
terms of cloud information. Blanco and Fournier (2006) show that,
unlike the mean, higher-order statistical moments of L depend on
the opacity of the medium: if σ is the mean extinction coefficient,
then 〈Lq〉 ∝ 〈L〉/σq−1, q = 1,2,3,/ , as σ → ∞ (i.e., RT diffusion
limit). The cloud remote sensing implication is that knowledge of
both 〈L〉 and Var[L] for in-cloud pathlength L can be used to infer
both the bulk size and mean opacity of the cloud;. In plane-parallel
cloud geometry, that translates to both CGT H and COT τ = σH,
irrespective of the value of the latter. In other words, we are no
longer limited to the range of COT where there is enough
sensitivity in (continuum) reflected radiance to distinguish a
change in COT from a fluctuation in the noise, i.e., up to a few
10s.4 Moreover, while the use of reflected radiance calls for absolute
radiometric calibration, inference of moments of L, being based on
DO2AS, only requires a relative calibration across spectral
channels.

Figure 1 is adapted from a forthcoming paper by Davis et al.
(2021) where a new derivation of the invariance law for 〈L〉 is
presented along with a specific prediction for Var[L](τ) in the
diffusion limit for plane-parallel geometry. Numerical validation of
the diffusion-theoretical predictions for 〈L〉 and Var[L](τ) is
performed. Figure 1 shows both moments as a function of τ
for both isotropic and Henyey and Greenstein (1941) phase
functions, assuming that asymmetry factor g = 0.85 in the latter
case. As anticipated, the agreement is exact for 〈L〉 across all
COTs, and the diffusion-based prediction for Var[L](τ)
becomes excellent as the scaled COT τt = (1 − g)τ exceeds
~4 (τ ≳ 25). At any rate, given 〈L〉 and Var[L](τ), one can
infer H and τ at any value above ~ 1/(1 − g), which is precisely
when cloud reflectivity in the continuum starts to loose
sensitivity to τ.

In-cloud pathlength L is a random variable, and its moments
are emerging here as key intermediate quantities in DO2AS that
can be inferred from spectroscopic data at sufficiently high
resolution (Davis et al., 2021). Figure 1 indeed shows that,
given 〈L〉(H) and Var[L](H, (1 − g)τ), we can infer H and τ,
knowing that g hardly deviates from 0.85 in liquid clouds.
MUltiple Scattering Cloud Lidar (MUSCL) (Davis et al.,
1999a; Davis A. B. et al., 1999b; Davis et al., 2009) is another
emerging technology in cloud remote sensing from above or
below (Cahalan et al., 2005; Polonsky et al., 2005; Davis, 2008)
where the whole distribution of in-cloud pathlengths is measured
directly. This is done by temporal binning the return times (i.e., L/
c) of photons injected into a cloud using a pulsed laser beam.
Now, the signal in each time bin can be noisy, but the statistical
moments 〈L〉 and Var[L] are robust. As different as are their
instrumental implementations, it is clear that DOxAs and
MUSCL share the same fundamental signal physics grounded

in time-dependent RT. Interestingly, DO2AS is an inherently
daytime observation while MUSCL operates strictly at nighttime
since the steady sunlight diffusely reflected or transmitted by the
cloud would overwhelm the laser light in every time-bin (Davis,
2008). DO2AS and MUSCL are therefore the ideal pair of
instruments for a satellite mission for pathlength-based cloud
observation that would deliver CTH, CGT, COT and possibly a
measure of internal variability from turbulence (Davis et al.,
2009).

4 SUMMARY AND DISCUSSION

In this PERSPECTIVE article, we above all celebrate space-
based remote sensing using O2 absorption to track clouds in
the vertical dimension above every pixel. To that effect, we
survey the relevant literature emphasizing theory up to 2010,
which is roughly when there were enough space assets
delivering O2 A-band observations of clouds to see the
research become predominantly data-driven. We hope to
see others write the important literature review about post-
2010 studies of clouds from space-borne O2 absorption
observations. Another worthwhile review would focus on
ground-based cloud studies with O2 absorption
spectroscopy, and yet another should focus on using O2

absorption spectroscopy from above or below to locate
aerosol layers in the vertical dimension.

Building on our limited-scope literature survey, we support
the viewpoint that EPIC/DSCOVR has been a pathfinder in O2

absorption-based cloud remote sensing. Several other satellites
carry sensors with O2 absorption capability, EPIC however has
by far the largest standoff distance and is also unique in its
spectral sampling strategy: “in-band” and “continuum” pairs of
channels each for the A- and B-bands. Another hallmark of
EPIC’s use of O2 absorption to probe clouds is the impetus it has
generated for progress in the associated remote sensing science
that is centered on the concept of pathlength cumulated by
sunlight, from source to sensor, between every scattering event
along the way. To substantiate this claim, we revisited three
papers in the Journal of Quantitative Spectroscopy and Radiative
Transfer that directly address EPIC’s characterization of clouds
using O2 absorption, and previewed a key result from a
forthcoming one.

Determination of cloud structure in the third dimension is a
goal shared by O2 absorption spectroscopy and other emerging
techniques in cloud remote sensing, for instance, 3D
computational cloud tomography (CCT). CCT has, so far,
been demonstrated on data with small pixel scales that are
readily achievable with airborne multi-view sensors, whether
imaging (Levis et al., 2015; Levis et al., 2017; Levis et al., 2020;
Levis et al., 2021) or not (Alexandrov et al., 2021). When dealing
with such fine pixels, in the 10s of meters, there are necessarily
significant radiative fluxes crossing pixel boundaries, thus
requiring 3D RT forward modeling. There has been recent
progress toward 3D CCT from space using moderate (~100s
of meters) resolution multi-angle data from the likes of MODIS
and MISR/Terra. On top of the 3D RT effects, this effort has to

4Indeed, an opaque cloud’s reflectivity R(τ) can be approximated by
1/(1 + 2χ/(1 − g)τ), with χ = 2/3. Maximum sensitivity to τ on a %-scale is
realized when (d/d log τ)2 R = 0, which occurs in the above diffusion
approximation at τ = 2χ/(1 − g) ≈ 9 for the canonical value of g = 0.85 for
liquid clouds.
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deal with complications from the larger pixels (optically thick,
potentially with high internal heterogeneity) and accordingly
larger clouds (Forster et al., 2021).

Looking ahead, we know that O2 absorption observation is
typically implemented in spectroscopy, and the more channels
in the absorption band the better since the diversity in
absorption coefficient ensures probing different depths into
the cloud. However, this key ability can also be obtained
using a single absorption channel, as for either of EPIC’s O2

absorption bands, in a multi-view angle collection. POLDER
(2004–2013) pioneered the multi-view O2 absorption
observation strategy, and that path will be followed in short
order by MAIA, SPEXone/PACE and 3MI. Spectroscopy-based
O2 absorption is also heading into a bright future, starting with
OCI/PACE and NASA’s upcoming Atmospheric Observing
System (AOS). Someday, we may see the deployment of
DSCOVR follow-on missions at Lagrange-1 and Lagrange-2
(Valero et al., 2021). At any rate, it will be interesting to see how
future synergistic retrievals will blend O2 absorption
spectroscopy with other passive sensing modalities, such as
multi-view imaging and CCT, thus enabling robust 3D cloud
property retrievals on a global scale.
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