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Mangrove forests are an important indicator of blue carbon storage and biodiversity and
provide several benefits to the environment. This study showed the first attempt to apply
the canonical correlation forest (CCF) model to classify mangroves and monitor changes in
the mangrove forests of the entire region. The CCFmodel obtained a satisfactory accuracy
with an F1 score of more than 0.90. Compared to Sentinel-2, Landsat 8 exhibited good
temporal resolution with relatively little mangrove details. The resultant mangrove maps
(1990–2020) were used to monitor changes in mangrove forests by applying a threshold
value ranging from +1 to −1. The results showed a significant increase in the UAE
mangroves over the period from 1990 to 2020. To characterize soil in mangrove
forests, a set of interpolated maps for calcium carbonate, salinity concentration,
nitrogen, and organic matter content was constructed. The results showed that there
is a positive relationship between mangrove distribution and the calcium carbonate,
nitrogen, salinity, and organic matter concentrations in the soil of the mangrove
forests. Our results are of great importance to the ecological and research community.
The new maps presented in this study will be a good reference and a useful source for the
coastal management organization.
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1 INTRODUCTION

Mangrove forests are extensively distributed in the estuary and intertidal zones, and their forests
cover thousands of hectares along with the coastal areas (Boto el al., 1984; Sherrod and McMillan,
1985; Field et al., 1998; Feller et al., 2003; Stringer et al. 2016). They form an essential component of
the coastal ecosystem consisting of salt-tolerant plants with aerial breathing roots that supply a
microenvironment to several marine species (Snedaker, 1982; Upadhyay and Mishra, 2008).
Mangrove forests provide several benefits to the environment and the economy as they play a
vital role in ecology. They provide a safe breeding ground and suitable environment for fish species
and birds nesting (Fry and Cormier, 2011; Giri et al., 2011; Inoue et al., 2011; Barua et al., 2014).

Globally, mangrove forests are in deterioration due to coastal development, oil spill, aquaculture,
climate change, and many other anthropogenic impacts (Ellison, 2000; FAO, 2007; Polidoro et al.,
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2010). In spite of this fact, the mangrove forests of the United
Arab Emirates seem to have increased to some extent over the last
2 decades (Loughland et al., 2007; Elmahdy et al., 2020a). This is
due to localized planting activities, water flow patterns, and
conservation efforts (FAO, 2007). Particularly, terrain
characteristics are one of the most significant factors that have
a direct impact on the spatial distribution and productivity of the
mangrove forests. The most common mangrove species in the
UAE is Avicennia marina or gray mangrove, and its protection is
consequently an urgent conservation priority (Figure 1).

Several studies reported that the soil texture was clay loam,
rich with nitrogen and organic matter content and salinity (Datta
and Deb, 2017; Ukpong, 1997). Locally, most of the previous
studies have been conducted based on field surveys and
measurements over a local scale with manual screen digitizing
(Moore et al., 2015; Alsumaiti, 2014). However, the recent
development of machine learning and the wide availability of
free charge remote sensing data have demonstrated the efficiency

of mapping and monitoring mangrove changes over multiple
scales (Elmahdy and Mohamed, 2018; Elmahdy et al., 2021a,b).
These tools could provide valuable information for natural
resources specialists and ecologists (Li et al., 2018).

Mapping and monitoring changes in mangrove forests over a
regional scale based on terrestrial measurements are economical
and time-consuming and therefore not regularly updated. Cloud-
free Landsat images, with a spatial resolution of 30 m and a higher
temporal frequency, are particularly suitable for monitoring the
mangrove forest changes over a regional scale comparing with
Sentinel-2 and the Moderate Resolution Imaging
Spectroradiometer (MODIS) images that are not available
before 2001 (Holben, 1986; Vogelmann et al., 2016; Elmahdy
and Mohamed, 2018; Li et al., 2018; Elmahdy et al., 2020a;
Elnabwy et al., 2020a). One possible solution is the use of
multitemporal Landsat images with a spatial resolution of
30 m. These images provide an efficient, economical, and
consistent way to map and monitor changes in mangrove

FIGURE 1 | RGB 541 band combination of Landsat image of the UAE showing the spatial distribution of the UAE mangroves along the western coast of the UAE.
Blue and white squares highlight NUAE and Abu Dhabi mangrove locations, respectively (A), and Abu Dhabi National Park (pink polygon). Red points highlight the spatial
distribution of soil sample and validation locations (B).

Frontiers in Remote Sensing | www.frontiersin.org March 2022 | Volume 3 | Article 7828692

Elmahdy and Ali Remote Sensing and Machine Learning of Mangrove

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


forests over a regional scale (Running et al., 1994; Cracknell, 1999;
Marfai et al., 2008; Elmahdy and Mohamed, 2013; Pham et al.,
2018; Elmahdy et al., 2020a).

There is a long history of using Landsat imageries for local and
regional scales (Wulder et al., 2008; Kesgin and Nurlu, 2009; Hu
et al., 2016; Li et al., 2018). These historical images offer a
perspective into the past and assess the spatiotemporal portal
pattern of change in the coastal system. Using this type of remote
sensing data to map and monitor changes in LULC requires
precise classifiers (Elmahdy et al., 2020a). For mapping and
monitoring changes in mangrove forests, the common
problems of misclassification are usually associated with the
influence of seawater and a mixture of mangrove and non-
mangrove areas within the study area (Elmahdy and
Mohamed, 2013). To overcome the limitations, precise and
overfitting of traditional classifiers are required (Gumusay
et al., 2019; Pham et al., 2019). Locally, several researchers
have studied and estimated the mangrove forests of the UAE
from satellite images using manual screen digitizing (Embabi,
1993; Althausen et al., 2003; Saenger et al., 2004; Loughland et al.,
2007; Alsumaiti, 2014). However, these techniques introduce bias
and errors. Globally, several studies have been applied to map
mangroves and seagrass.

Logistic model tree (LMT), weight majority voting (Mohamed
et al., 2018), random forest (RF) (Elmahdy et al., 2020b,c),
support vector machine (SVM) (Traganos and Reinartz, 2018;
Poursanidis et al., 2019), artificial neural network (ANN) (Bonin-
Font et al., 2016), AdaBoost rotation forests (RoF), and canonical
correlation forests (CCFs) (Ha et al., 2020) are examples used till
date for mangrove and seagrass mapping. The later classifiers

have the ability to reduce the variance and overfitting and
produced maps with an accuracy of over 90%. Among these
classifiers, the canonical correlation forest (CCF) model was used
to map and classify mangrove forests based on their density using
Landsat data. It does not require optimal parameterization, which
makes the model easy to use for mapping and classifying
mangroves and seagrass (Ha et al., 2020). Thus, this study
aims to monitor and classify mangrove forests using the CCF
model over a regional scale. This study also aims to investigate the
relationship between the spatial distribution of the mangrove
forests and the physical and chemical properties and topography
of the soil. The results of this study help in planning a suitable
action of controlling the perfect ecosystem and future mangrove
forest cultivation.

2 DATASETS AND METHODS

2.1 Study Site
The study site, which stretches like a strip in shape, starts from
Ras Al Khaimah in the northeast to Al Sal’a near the border with
Saudi Arabia. It can be divided into three main parts. The first
part is the Northern Emirates, which includes the Emirates of
Dubai, Sharjah, Ajman, Umm Al Quwain, and Ras Al Khaimah,
and has an area of about 2,622 km2 (Figures 1A, 2).

The second part includes the Emirate of Abu Dhabi, which
comprises three regions: the Abu Dhabi region, which includes
the nation’s capital Abu Dhabi; the eastern region, where Al Ain
City lies; and the western region, where Liwa village lies. Here, our
interest focuses on the coastal area of the capital of Abu Dhabi

FIGURE 2 |RGB 651 band combination of Landsat 8 image zooms enhanced by applying contrast starched showing the spatial distribution of the UAEmangroves
in Ras Al Khaimah (A), Ajman–Al Hamriya (B), Umm Al Quwain (C), Ras Al Khor of Dubai (D), Ras Ghanada (E), Abu Dhabi–Al Saadiyat–Shelilah–Hanioura strip (F), Abu
Dhabi–Al Dhabiya (G), and Al Dhabiya–Abu Al Abyad (H). White square highlights the location of Abu Dhabi National Park.
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and the western region (Figures 1A, 2). Geomorphologically, the
study site comprises evaporites and salt ponds in the west, alluvial
deposits in the middle, and low sand dunes in the east. The
mangrove forests are distributed in the intertidal parts of the
Sabkha islands, Khor, ports, and tidal channels and assist in the
conservation of the blue carbon ecosystem (Moore et al., 2015;
Elmahdy et al., 2020d).

According to Alsumaiti (2014), there are three mangrove
habitat types reported across the coastal area of the UAE:
fringes, overwash, and basins. Fringe habitats are the coastal
edge of the land and sea in the back bay that are subject to daily
high tides where mangroves are relatively tall, and mature trees
form a continuous linear band of mangrove forests. Fringe
habitats also included shrubs and immature trees forming the
same linear band of forests. Basin habitats occur in the interior of
larger mangrove stands and frequently remain flooded for
extended periods. These habitats were detected in the Emirates
of Ajman and Fujairah, while the basin formation in the Emirate
of Dubai is marginal.

These basins are characterized by stand height ranging from 3
to 5 m and percent cover from 68 to 90%. Overwash habitats were
reported in the capital of Abu Dhabi, the Emirates of Sharjah
(Khor Kalbah), Umm Quwain, and Ras Al Khaimah. These
habitats are the shortest and least dense habitats. The latter
habitats are the most exposed and regularly flooded, with
stands regularly comprising particularly few trees.

2.2 Data and Image Preprocessing
Two remotely sensed data were used in this study. The first
dataset was the Landsat Thematic Mapper (TM) acquired on 23
August 1990, the Landsat Enhanced Thematic Mapper (ETM+)
acquired on 23 August 2000 and 19 August 2010, and the
Operational Landsat Imager (OLI) Landsat 8 acquired on 15
August 2020 (Path 160, rows 42 and 43). We used the Landsat
images due to their suitability spectral and spatiotemporal
resolutions, free of charge, easy accessibility, and time-series
availability (Chander et al., 2009; Irons et al., 2012; Elmahdy
and Mohamed, 2018; Milani, 2018; Toosi et al., 2019). Moreover,
Landsat images are provided in an orthorectification format at a
lower level of cloud cover (Darvishsefat et al., 2011; Elmahdy
et al., 2020a).

The second dataset includes the QuickBird images with a
spatial resolution of 0.6 m acquired on 22 August 2020 and
Sentinel-2 images with a spatial resolution of 10 m acquired
on 13 August 2020. These various datasets were downloaded
via the USGS Earth Resources Observations and Science (EROS)
Center through the Global Visualization Viewer (www.glovis.
usgs.gov). We used these various datasets for visual verification of
the obtained mangrove maps and compared the textural features,
mapped from Landsat images against those mapped from
Sentinel-2 images using the CCF model.

Three types of remote sensing data were used in the study. The
first type was a tile of cloudless Landsat 8 satellite images dating

FIGURE 3 | High-level demonstration of the CCT training process for a classification task (Rainforth and Wood, 2015).
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23 August 2020 with a spatial resolution of 30 m. The second
dataset was a single QuickBird image with a spatial resolution of
0.6 m acquired on 21 August 2020. The third dataset was the
Sentinel-2 dating 13 August 2020. We used these various datasets
to collect training datasets as input to the classifiers and visual
verification of the obtained mangrove maps, and compare the
textural features (mangrove and non-mangrove areas) mapped
from Landsat images against those mapped from Sentinel-2 using
CCF algorithm. These datasets were downloaded via the USGS
Earth Resources Observations and Science (EROS) Center
through the Global Visualization Viewer (www.glovis.usgs.gov).

As a first step of preprocessing, all bands were stacked, and the
images were re-projected to UTM datum WGS zone N 40 and
registered as an image to image with an RMSE of less than 0.6,
followed by an atmospheric correction (Holben, 1986). The
atmospheric correction was performed by Fast Line-of-Sight
Atmospheric Analysis of Hypercubes (FLAASH) implemented
in Envi v.4.6 software. This process consists of radiometric
calibration and dark subtraction. In radiometric calibration
and beta nought calibration, all DN values were converted
into the top of the atmosphere (TOA). TOA was performed
using four parameters, namely, calibration type (reflectance),
output interleave (BSQ), output data type (float), and scale
factor value of 1. In dark object subtraction, TOA was
converted into surface reflectance (SR) using band minimum.

2.3 Methods
2.3.1 Field Data and Training Data Collections
We conduct field data collection by laying elementary sampling
20 × 20 m2 grid to report information on the soil in mangrove
forests with geolocation of the center of each elementary unite
sampling (Figure 1B). The field observation was conducted in the
small portion of the National Park of the Emirate of Abu Dhabi
(Figure 1B). The training data collection is a very important step
in producing a higher quality of classification, especially when the
classifiers are trained using training datasets with higher spatial
resolutions (Elmahdy and Mohamed, 2018). To identify the end-
members of pure mangrove in the training samples, the hourglass
analysis method was performed.

The training datasets were collected from QuickBird images
with a spatial resolution of 0.6 m (August 2020) using a straight
random sampling or proportional method, which reduces error
and bias. This method divides the population into homogenous
groups and produces training sample sizes that are directly
related to the size of the classes. We used this method due to
its ability to reduce bias and errors (VanNiel et al., 2005; Elmahdy
and Mohamed, 2018).

Random sampling collection was performed using Envi v.4.5
software. The frequency of collected samples was related to the
30 m pixel size of Landsat images and varied according to the
spatial distribution and density of mangroves. The number of
collected samples was 5–7 per pixel for meadow of high density of
mangrove and decreased to 1–3 per pixel for patches of low
density. The mangrove forests were classified into two classes: 1)
dense mangroves which cover more than 80% of ameadow and 2)
disperse mangroves which cover less than 80% of a meadow. A
total of 536 samples were collected, with 420 and 116 for dense

and disperse mangroves, respectively. The collected samples were
divided into 375 (70%) for training and mangrove mapping and
161 (30%) for validation of this study. The collected training
datasets were inspected using visual interpretation and
knowledge and background of the authors and where they live.

2.3.2 Mangrove Mapping and Classification
To map mangroves in an accurate way over multiple scales, it is
important to employ an ensemble of machine learning (ML)
algorithms (Liu et al., 2019; Walsh, 2015; Dietterich, 2000;
Elmahdy et al., 2020a; Elmahdy et al., 2021a). The canonical
correlation forest (CCF) model, which is used in the literature,
was applied. CCF generates a number of canonical correlation
trees (CCTs) using canonical correlation analysis (CCA). The
CCA (Hotelling, 1936) is a deterministic technique designed for
calculating pairs of linear projections that maximize the
correlation between the input data and the selected labels.

CCF starts with a root node comprising all the training data
and each time a new split is nominated. This produces two new
child nodes with each data points passed down to either the left or
right child depending on what side of the split the data point falls.
The model represents a supervised learning approach and thus
requires training using labeled input pairs. During the training
process, each tree in a CCF is trained independently by a self-
similar and top down procedure using the full dataset. Once the
model is trained, prediction can be carried out at arbitrary input
points (Rainforth and Wood 2015).

In other talks, a random subset of the features is taken, but
CCA with projection bootstrapping is used first to project the
features into canonical space, with the set of split candidates
corresponding to the unique partitions in the projected space
(Figure 3). The selected partition then infers a hyperplane split
that can be used directly at test time. The training of CCF has four
parameters of node: the number of tree L, the number of features
to sub-sample at each node λ, the impurity measure g, and the
stopping criteria c. The model can be used for multiple output
problems such as multivariate regression and can also deal with

FIGURE 4 | Precision, recall, and F1 scores for the Landsat image (23/
08/2020) using the CCF model.
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categorical inputs and missing data. The CCF overcomes the
limitations and problems in random forest and rotation forest
models by using carefully selected hyperplane splits instead,
leading to a powerful classifier without parameter tuning that
integrates correlation between the features. The CCF was chosen
due to its high accuracy and does not require optimal
parameterization (Ha et al., 2020). It offers similar accuracy
with a lower number of trees, and thus can consume less
processing time for the training step (Rainforth andWood, 2015).

Here, the CCF model was operated with 50, 100, 200, and 500
trees, and an optimal value was chosen based on the lowest rate of
misclassification and the highest value of accuracy. The
parametrization and performance of the CCF model were
applied and tested in the MATLAB and R packages using the
source codes of Rainforth and Wood (2015) and Elmahdy et al.
(2020e). The CC outputs were converted to a CSV format for
model validation.

2.3.3 Accuracy Assessment and Model Performance
Evaluation
To assess and evaluate the model performance, three methods
were performed. First, the textural features from the Landsat
image (23 August 2020) maps were compared against those from
Sentinel-2 images (13th August 2020) with a spatial resolution of
10 m. This method was applied to Umm Al Quwain natural
reserve. Second, an accuracy assessment was performed using F1
score by converting the CC outputs (23/08/2020) into a CSV
format. After that, all mangrove maps were standardized and
compared based on a pixel by pixel producing numerical values
for mangrove class commission, class omission, total incorrect
pixels, percentage of incorrect pixels, precession, recall, and F1
score (Congalton et al., 1983; Raschka, 2018; Raschka and
Mirjalili, 2019; Elmahdy et al., 2020a). These parameters were
calculated based on true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). Accuracy, precision, recall,
and F1 score were calculated via the following equations:

Accuracy � TP + ( TN/TP) + FP, (1)
Kappa � po − pe/1 − pe, (2)

where po is the observed agreement ratio and pe is the expected
agreement

Precision � TP/TP + FP, (3)
Recall � TP/TP + FN, (4)

F1 � 2 × precision × recall/precision + recall, (5)
where TP is the true positive, FP is the false positive, and FN is the
false negative.

Third, each classification map (1990, 2000, 2010, and 2020) was
assisted using a confusion matrix implemented in Envi. v.4.5
software. The confusion matrixes were built using regions of
interest (ROIs) collected from QuickBird images (23 August
2020). These training datasets were divided into three different
training data by subtracting training dataset of 2010 from 2020,
2000 from 2010, and 1990 from 2000, respectively. After that, a
kappa, user’s, and producer’s accuracies were then calculated and
kappa analysis was analyzed (Congalton et al., 1983; Congalton,
1991; Jensen, 1996; Foody 2002; Altan et al., 2004). These different
methods can be considered an alternative method of field
observation, especially when the mangrove forests are located in
remote and inaccessible areas (Elmahdy and Mohamed, 2013;
Elmahdy and Mohamed 2018; Estoque et al., 2018).

2.3.4 Change Detection
Among several change detection techniques, the image difference
algorithm (ID) was chosen to monitor mangrove changes. The ID
algorithm was chosen due to its ability to locate the changes in
mangroves within each class (dense and sparse) (Mishra et al.,
2017; Elmahdy and Mohamed, 2018). The threshold values are
evenly spaced between (−1) and (+1) for simple difference (the
initial state image is subtracted from the final state image). The
positive changes (positive value) represent the first (n/2) classes,
while the negative changes represent the last (n/2) classes. The
no-change class ((n/2) +1) represents the middle class and
normalizing the images (raster maps) by subtracting the image
minimum. Monitoring the UAE mangrove changes was
performed using a change detection tool implemented in the
Envi v.4.5 software.

TABLE 1 | Confusion matrices of the resulting mangrove maps (1990–2020).

Class Prod. accuracy (%) User Acc. (%) Kappa coefficient Overall accuracy (%)

1990

Dense mangrove 97.22 93.39 0.84 88.12
Disperse mangrove 88.75 84.83

2000

Dense mangrove 98.04 91.54 0.85 89.06
Disperse mangrove 89.84 96.31

2010

Dense mangrove 99.61 96.43 0.87 90.12
Disperse mangrove 94.62 88.63

2020

Dense mangrove 99.90 99.50 0.94 96.15
Disperse mangrove 95.41 93.10
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2.3.5 Characterizations of Soil in Mangrove Forests
To characterize mangrove forests, the National Park of Abu
Dhabi (NPAD) was chosen (Figure 6). The main objective of
terrain characterization is to investigate and understand the
spatial relationship between the spatial distribution of
mangrove forests and the topography and physical and
chemical properties of soil. These characteristics include soil
texture, organic matter content, soil salinity, nitrogen content,
and calcium carbonate. This information was derived from soil
analysis of 60 samples collected between 5 and 25 August 2020
using field measurements across the Mangrove National Park of
Abu Dhabi, and provided from different sources such as the Civil
and Environmental Department of College of Engineering and
Environmental Agency of Abu Dhabi (https://www.ead.gov.ae)
and previous studies (Alsumaiti, 2014). These various types of
information were then imported into a GIS environment and
converted into a raster format using the inverse distance weighted
(IDW) algorithm implemented in ArcGIS v.10.5 software. The
algorithm is an interpolator that has been widely used in several
geological and hydrological studies. It determines the values of
points based on a weighted combination of a group of selected
points and takes into account the points closer to each other than
the other distant points (Shepard, 1968). We employed the IDW
interpolator because of its ease of use and containment of its
outputs on a few errors (Shepard, 1968). The interpolated maps
include soil texture, soil salinity, nitrogen content, organic
content, and calcium carbonate content. The interpolated
maps were then draped over mangrove maps extracted from
2020 Landsat images and spatial analysis was performed.

3 RESULTS

3.1 Evaluation of the Performance
In the graph of evaluationmetrics (Figure 4), the precision, recall,
and F1 score for dense mangrove class values of the CCF model
were high, more than 0.9, and greater than sparse mangrove class
values. This may be appearing due to mixed sparse mangrove and
seagrass in some portions near the Abu Dhabi–Al Dhabiya area.

The accuracy assessment showed that the 2010 and 2020
mangrove maps yield overall accuracies of 90.12% and 96%
and are much more than those of 1990 and 2000 (Table 1).
This appears to be due to the greater quantization, enhanced
signal-to-noise and sensitivity characteristics, and the lifetime of
ETM+ and OLI detectors (Elmahdy and Mohamed 2018).

Generally, the mangrove classification maps of 2020 are the
best maps, which clearly exhibit the classification for each
mangrove class with an overall accuracy of 96% by comparing
textural features from Landsat images against those extracted
from Sentinel-2 images with a spatial resolution of 10 m
(Figure 5).

The results exhibit a strong agreement between textural
features in Landsat images and those in Sentinel-2 with more
details in Sentinel-2 due to differences in pixel size and
characteristics of the two sensors.

3.2 Mapping and Classification of the NUAE
Mangroves
Maps of mangrove classification obtained from the Landsat
images using the CCF model with 200 trees as an optimal
value for the CCF model are shown in Figures 8–12. Each
map consists of two color codes to enhance visual
interpretation. The maps exhibit that the mangroves are
mostly spatially distributed along the edges of creeks, ports,
and tidal channels of the western coastal area of the UAE,
which represent about 90% of the total area of the UAE
mangroves (Elmahdy and Mohamed, 2013; Elmahdy et al.,
2020a). The classified mangroves extend successfully detected
areas of mangroves that were increased in the map of Elmahdy
et al. (2020a).

Over the period from 1990 to 2020, disperse mangroves were
much more than dense mangroves. In the NUAE (Figures 6–8),
the highest spatial distribution of mangrove forests was observed
in Ras Al Khaimah (RAK), covering an area ranging from 40 km2

in 1990 to more than 40 km2 in 2020 (Figures 6A, 8). The
smallest spatial distribution of mangroves was observed at
Ajman–Al Hamriya and Ras Al Khor of Dubai covering an

FIGURE 5 | Mangroves extracted from the Sentinel-2 image (A) and those extracted from Landsat image (B) for the year 2020.
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area ranging from 170 m2 in 2000 to 1.7 km2 in 2020 (Figures 7A,
8). In RAK, there is a gradual increase in dense and disperse
mangroves over the period from 1990 to 2020. The estimated
dense mangrove increased from 3.94 km2 in 1990 to 11.41 in 2020
(Figures 6A, 8). Similarly, the dispersed mangroves increased
from 1.64 km2 in 1990 to 27.55 km2 in 2020. In Umm Al Quwain
estuarine, dispersed mangroves occupied an area of 4.20 km2 in
1990, 4.8 km2 in 2000, and 8.28 km2 in 2020 (Figures 6B, 8).

Similarly, the dense mangrove that occupied an area of
2.14 km2 in 1990 increased to 3.71 km2 in 2000, 6 km2 in
2010, and 7.49 km2 in 2020. In 2020, the total area of
mangroves (dense and dispersed) increased, occupying an area
of 15.77 km2. In Ajman and Al Hamriya Creeks, there were no
mangroves observed in 1990 (Figure 7A). Between 1990 and
2000, the mangroves were observed, occupying an area of
0.43 km2 (Figures 7A, 8). In 2010, dense and dispersed

FIGURE 6 | Spatiotemporal variation of mangrove forests on the coastal area of RAK (A) and Umm Al Quwain (B) for the years from 1990 to 2020.

FIGURE 7 | Spatiotemporal variation of mangrove forests on the coastal area of Ajman–Al Hamriya creeks (A) and Ras Al Khor of Dubai (B) for the years from 1990
to 2020.
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mangroves occupied an area of 0.26 and 0.71 km2, respectively.
Similar to the Ajman–Al Hamriya area, no patch of mangroves
has been observed in Ras Al Khor of Dubai in 1990 (Figures 7B,
8). Since 2000, mangroves have gradually increased from
0.42 km2 in 1990 to 1.77 km2 in 2020 (Figures 7B, 8).

In the NUAE, the mangrove area was extremely small in
Ajman–Al Hamriya in the 4 years, with values of 00,0.42, 0.64,
and 1.77 km2 in 1990, 2000, 2010, and 2020, respectively (Figures
6–8). In Abu Dhabi (Figures 9, 10), the largest spatial
distribution of mangrove forests was observed in the strip

FIGURE 8 | Annual rate of the NUAE mangrove growth (classes and total area in km2) during the period from 1990 to 2020.

FIGURE 9 | Spatiotemporal variation of mangrove forests on the coastal area of Ras Ghanada (left) and Abu Dhabi–Saadiyat–Shlelia strip (right) for the years
from 1990 to 2020.
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stretches from Ras Ghanadah to the city of Abu Dhabi, covering
an area of about 173 km2 (Figures 9A, 11). In Ras Ghanadah,
dense mangroves increased from 0.36 km2 in 1990 to 13.77 and
15.49 km2 in 2010 and 2020, respectively (Figures 9A, 11).
Similarly, disperse mangroves increased from 1.43 km2 in 1990
to 31.81 and 33.3 km2 in 2010 and 2020, respectively. The
smallest spatial distribution of mangroves was observed at the
strips of Abu Dhabi–Al Dhabiya and Al Dhabiya–Abu al Abyad
in the west, covering an area of 57 km2 (Figures 10A, 11).

The estimated total area increased from 1.79 km2 in 1990 to
48.79 km2 in 2020. In the strip of Abu Dhabi–Shelilah, the largest
area of mangroves (dense and dispersed) across the UAE was
observed (Figures 9A, 11).

Densemangroves increased from 6.39 km2 in 1990 to 124.69 km2

in 2020. Dispersed mangroves increased from 30 km2 in 1990 to
91.86 and 110.53 km2 in 2010 and 2020, respectively (Figure 8).

In the Abu Dhabi–Al Dhabiya strip, the linear mangroves and
the smallest area of mangroves in Abu Dhabi were observed.

FIGURE 10 | Spatiotemporal variation of mangrove forests on the coastal area of Abu Dhabi–Al Dhabiya strip (A) and Al Dhabiya–Abu Al Abyad strip (B) for the
years from 1990 to 2020.

FIGURE 11 | Annual rate of Abu Dhabi mangrove growth (classes and total area in km2) during the period from 1990 to 2020.
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Dense mangroves increased from 0.4 km2 in 1990 to 16.23 and
16.73 km2 in 2010 and 2020, respectively (Figures 10B, 11).
Further to the west, where the cultivation of mangroves
increased in Abu al Abyad island, mangroves increased from
4.72 km2 in 1990 to 35 km2 in 2020 (Figures 10B, 11).

3.3 Mangrove Changes Detection
The differences of the four images (1990, 2000, 2010, and 2020)
for the NUAE mangroves and their graphical representation can
be seen in Figures 12, 13A. Mangrove areas along the coastal strip
of the NUAE were estimated to be about 11.92, 28.06, 39.54, and
57.41 km2 in 1990, 2000, 2010, and 2020, respectively (Figures
12A, 13). Particularly, the strip exhibited a gradual increase of
about 16.14, 11.48, and 17.87 km2 over the periods 1990–2000,
2000–2010, and 2010–2020, respectively.

The highest rate of mangrove changes was observed in the
RAK and UmmAl Quwain areas (Figures 12A,B, 13). From 1990
to 2020, a net increase of about 33.38 km2 mangroves was
observed in RAK (north). In Umm Al Quwain natural reserve,
a net increase of about 9.43 km2 mangroves was reported during
the period from 1990 to 2020 (Figures 12B, 13).

Moving to the Abu Dhabi mangrove forest, the highest rate of
mangrove changes was observed in the Abu Dhabi–Shelilah strip
and Ras Ghanadah (Figures 12E,F, 13), while the lowest rate of
mangrove changes was observed in the Abu Dhabi–Al Dhabiya
strip (Figures 12G, 13). The moderate changes in the mangrove
forests were observed in Al Dhabiya–Abu al Abyad (Figures
12H, 13).

FIGURE 12 | Mangrove pattern change between 1990 and 2020 for the natural reserves of RAK (A), Umm Al Quwain (B), Ajman–Al Hamriya (C), Ras Al Khor of
Dubai (D), Ras Ghandah (E), Abu Dhabi–Saadiyat–Shlelia strip (F), Abu Dhabi–Al Dhabiya strip (G), and Al Dhabiya–Abu Al Abyad strip (H).

FIGURE 13 | Graphical representation of the mangrove forests of the
NUAE forests (A) and Abu Dhabi extent from 1990 to 2020 (in km2).
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In the Abu Dhabi–Shelilah strip, mangroves increased about
5.98, 55.4, and 26.92 km2 during the periods 1990–2000,
2000–2010, and 2010–2020, respectively (Figures 12F, 13).
Over the period from 1990 to 2020, the mangrove increased
by about 88.3 km2. In Al Dhabiya–Abu al Abyad, where the
localized plantation activities are high, the mangrove increased by
about 3.65 km2 from 1990 to 2000, 2.66 km2 from 2000 to 2010,
and 24.04 km2 from 2010 to 2020 (Figures 12H, 13).

The lowest rate of mangrove changes was observed in
Ajman–Al Hamriya and Ras Al Khor of Dubai with a net of
1.51 and 1.77 km2 mangroves, respectively (Figures 12C,D, 13).
In the NUAE, the spatial pattern of mangrove forests distribution
transformed from fragmented to aggregated.

3.4 Characterization of Soil in Mangrove
Forests
The results of soil and terrain analysis indicated that dense
mangroves are concentrated at an elevation of about 2 m (a.s.l)
of the mudflats, while dispersed mangroves are distributed at an
elevation of about 1 m (at the edges of the mudflats) (Figure 14).
The results also show that the mangroves are spatially distributed
among tidal channels with a slope of about 35° (Figures 15A,B).
The spatial patterns of tidal inundation further influence soil
characteristics that control the spatial distribution of soil salinity
andmangrove forests (Saha andChoudhury, 1995). As the number
of tidal channels increases, the spatial distribution of mangroves
increases (Figure 15B).

The texture of mudflats, where the mangroves are distributed,
is spatially changing from clay loam and light clay at the topsoil to
sand at the bottom soil. In other words, the common soil texture
ranges from light clay and clay loam at depth of up to 50 cm,
while at 50–100 cm depth, loamy sand and sand are the main

types of soil texture (Loughland et al., 2007; Alsumaiti, 2014;
Shahid et al., 2014; Lacerda et al., 2016). Soils with loamy clay and
light clay textures have very high porosity and low permeability.

This low permeability keeps the seawater in soil for a long
period of time. Mangrove forests are frequently enclosed and
protected environments with low-energy waters, which is
favorable for the sedimentation of clay particles (Cintron and
Schaerffer-Novelli, 1983).

The results of the chemical analysis of soil indicate that the
CaCO3 percentage in mangrove soil is extremely high and ranges
from 68 to 88%. This may be due to the high accumulation of
seashells and marine organisms’ skeletons. The high
concentration of CaCO3 in mangrove soil means that this soil
can absorb more acid, which leads to high buffering capacity and
stabilizes the pH. Furthermore, the concentration of CaCO3 in
mangrove soil leads to losing most of it through volatilization
(Jones, 2007). The importance of pH structure of mangroves has
been investigated by Wakushima et al. (1994a,b).

By comparing the map of mangrove classes, the result exhibits
that there is a positive relationship between mangrove density
and CaCO3 concentration in soil (Figure 15C). The soil salinity
of mangroves in the study area is extremely saline (>40 dSm−1)
and changes slightly at depth, which may restrict the mangrove
growth (Figure 15D). There is a positive spatial relationship
between dense mangroves and soil salinity. It is observed that
tidal inundation influences soil salinity in mangrove forests. Abu
Dhabi mangroves have a very high salt tolerance, can absorb
higher concentrations of salts, and adapt to harsh environmental
conditions (Alsumaiti, 2014).

The total nitrogen content in mangrove soil ranges from 0.004
to 0.13 mg kg−1 (Figure 15E). This nitrogen is very important for
mangrove growth and can be spatially associated with organic-
rich mud (Galitz et al., 2021). The low nitrogen content was found

FIGURE 14 | Zoom of the QuickBird image for Abu Dhabi mangrove (A), shaded relief generated from the ALOS DEM (B), and topographic profile (C) showing the
spatial relationship between topography of mudflat and distribution of mangroves.
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to be in non-mangroves because the area tends to be sandy soil
and it has low nutrient content (Bengen et al., 1995). Total
nitrogen content values observed ranged from 0.09 to 0.97%
(Rambok et al., 2010). In the same context, organic matter
contents of the mangrove soils are spatially varied in Abu
Dhabi mangrove forests, with the organic matter content
values ranging from 2 to 6%. Areas with the highest mangrove
population have the highest organic matter and nitrogen content
(Figures 15E,F). Globally, organic matter in soil of some
mangrove forests has been found to be more than 10%
(Sukardjo 1994; Rambok et al., 2010), indicating the peaty
nature of the soil. However, less than 1% of organic matter
reflects the poor nutritional condition of the soil in some
mangrove forests (Hossain et al., 2012).

4 DISCUSSION

So far, this study is the first attempt to classify and monitor
mangrove changes and characterize the soil of the UAE

mangroves. The resulting maps yield high precision and recall.
High recall means that the CCF classifier is able to find all possible
mangroves, while high precision means the classifier is able to
discriminate the pixels of mangroves precisely. The final values of
recall and precision can be given using the F1 score to evaluate a
classifier’s performance. Overall, the accuracy assessment
demonstrates that CCF is a good performer with a high F1
score and confirms the robustness of machine learning in
comparison to the traditional classifiers. This classifier
required full atmospheric correction.

Among several values of trees, the value of 200 trees is an
optimal value for mapping and classifying mangroves. This value
introduces very low computational time-consuming and testing
runs. The overall accuracy using the confusion matrix exhibited
that the CCF classifier performs better on Landsat 8 (OLI) much
better than those of TM and ETM+. The estimated overall
accuracy was more than 95%. In another mangrove study, the
estimated overall accuracy was 86% using the support vector
machine (SVM) classifier applied to Landsat TM (Elnabwy et al.,
2020a).

FIGURE 15 |Mangrove classes of the study site (A), tidal channels in mangrove forest (B), interpolated maps showing the spatial variation of CaCO3 and salinity
concentrations (C,D), and nitrogen and organic matter content (%) in soil mangrove forests (E,F), respectively.
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Ensemble machine learning classifiers involve canonical
correlation forests (CCFs) with more traditional classifiers
such as maximum likelihood and support vector machine
(SVM) (Ha et al., 2020). Comparing to the other machine
learning classifiers such as random forest (RF) and boosted
regression tree (BRT), the CCF model showed the highest
accuracy (Elmahdy et al., 2020a; Ha et al., 2020). The CCF
classifier based on several studies achieved to compare the
performance of the CCF against other model applications in
the groundwater potential mapping, land subsidence, and flash
floods (Elmahdy et al., 2020d,e; Elmahdy et al., 2021a,b).

The results revealed a significant increase in mangrove
forests of RAK and Umm Al Quwain (in the NUAE) and
Abu Dhabi–Saadiyat–Shlelia strip and Ras Ghanadah (in
Abu Dhabi). This appears due to localized plantation
activities and increased public awareness and conservation
efforts during the last decade (FAO, 2007; Loughland et al.,
2007; Elmahdy et al., 2020a). Moreover, the physical and
chemical properties of soil in mangrove forests play a vital
role in these rapid changes over 30 years. The soil in mangrove
forests is graded soil that starts with fine grains at the top such as
loamy clay and light clay and ends with coarse grains at the
bottom such as sand. This finding agrees well with Lacerda
(2002), who reported that the soil in mangrove forests is a result
of mud development over a long period in different phases
under tidal effects and deposition of wind-borne materials. This
soil is characterized by a high concentration of the salts
resulting from high frequency and duration of tidal
inundation, very high temperature, high rate of evaporation,
and very low precipitation in the study area (Shahid et al., 2014).
In general, there is a spatial variation in texture, soil salinity,
nitrogen, and organic content at different depths (Ferreira et al.,
2010). Most of the mangrove species had an optimum pH range
except Avicennia marina, which occurred in varied pH
conditions (Joshi and Ghose 2003).

Despite a lower accuracy of the dispersal than dense mangrove
classification, the CCF exhibits a powerful model for mapping
and classification of mangroves in an arid region. Our resulting
mangrove maps attest to the reliable application of the CCF
classifier for precise mapping of the UAE mangroves over a
regional scale with low-cost and time-consuming manners. The
use of free-of-charge remote sensing data and open source
machine learning algorithms in PythonTM and MATLAB
environments is reliable in mapping over a regional scale. Our
results greatly help ecologists and environmental engineers for a
better understanding of the spatial relationship between
mangrove distribution and physical and chemical properties of

soil in mangrove forests. Future work will be carried out to map
and monitor changes in mangroves using deep learning
approaches and very high spatial resolution images such as
QuickBird (0.6 m) and WorldView (0.3 m) or 1-m resolution
DEM derived from ALS LIDAR data (Pham et al., 2019).

5 CONCLUSION

The current study presents an integrated approach, which uses
remote sensing and GIS to classify, monitor changes, and
characterize soil in mangrove forests. The CCF classifier was
chosen to map and classify mangroves for the first time. The
resulting mangrove maps were then used to monitor changes in
mangrove forests using image difference algorithm implemented
in Envi v.4.5 software. The results revealed that a significant
increase in mangrove forests was observed over the period from
1990 to 2020. The largest portions of mangroves were observed in
RAK and Umm Al Quwain (in the NUAE) and Abu
Dhabi–Shelilah strip and Ras Ghanadah (in Abu Dhabi).
These appear to be due to localized plantation activities and
increased public awareness and conservation efforts. The
topography and physical and chemical properties of soil in
mangrove forests have an important impact on the spatial
distribution of mangroves. The dense mangroves grow in the
area between tidal channels and edges of mudflats. The results
revealed that there is a positive relationship between mangrove
distribution and N, CaCO3, salinity, and organic matter
concentrations in the soil of mangrove forests.
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