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Modeling spatiotemporal data can be a challenge due to the plethora of processes, both
independent and interacting, which may or may not contribute to the measurements.
Characterization can be considered a complement to modeling by helping guide
assumptions about generative processes and their representation in the data. For
high-D signals, Dimensionality Reduction (DR) is a frequently implemented type of
characterization designed to mitigate the effects of the so-called “curse of
dimensionality”. For decades, Principal Component (PC) and Empirical Orthogonal
Function (EOF) analysis has been used as a linear, invertible approach to
dimensionality reduction and spatiotemporal analysis. Recent years have seen the
additional development of a suite of nonlinear DR algorithms, frequently categorized as
“manifold learning”. Here, we explore the idea of joint characterization of spatiotemporal
data manifolds using the PC/EOF approach alongside two nonlinear DR approaches:
Laplacian Eigenmaps (LE) and t-distributed Stochastic Neighbor Embedding (t-SNE).
Starting with a synthetic example and progressing to global, regional, and field scale
spatiotemporal datasets spanning roughly 5 orders of spatial magnitude and 2 orders of
temporal magnitude, we show these three DR approaches can yield complementary
information about the topology of spatiotemporal data manifolds. Compared to the PC/
EOF projections, the nonlinear DR approaches yield more compact manifolds with
decreased ambiguity in temporal endmembers (LE) and/or in spatiotemporal clustering
(t-SNE), compared to the relatively diffuse temporal feature space produced by the PC/
EOF approach. However, these properties are compensated by the greater interpretability
of PCs and EOFs than of the LE or t-SNE dimensions, as well as significantly lower
computational demand and diminished sensitivity to spatial aliasing for PCs/EOFs than LE
or t-SNE. Taken together, we find the joint characterization using the three complementary
DR approaches capable of providing substantially greater insight about the generative
processes represented in spatiotemporal datasets than is possible using any single
approach alone. This parsimonious, complementary characterization of both local
manifold structure and global variance can advance remote sensing time series
analysis by providing important context to constrain and guide design of effective
spatiotemporal models.
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INTRODUCTION

From agriculture to coastal erosion, and from vehicle traffic to
disease transmission, many phenomena on Earth’s surface are
inherently spatiotemporal: that is, variable across both space and
time. But despite the ubiquity of spatiotemporal processes,
meaningful quantitative analysis has been limited for centuries
by observational and computational capacity (Eshel, 2011;
Christakos, 2017). Fortunately, in recent years drastic
reductions in costs to sense, transmit, store, and process
spatiotemporal observations have inverted this centuries-old
paradigm, leading to the dawn of the era of so-called “Big Data”.

The data analysis landscape has thus fundamentally shifted:
today, spatiotemporal observations abound, and scientists are in
need of effective and efficient tools to analyze patterns, inform
modeling, and ultimately discriminate between signal and noise.
This asymmetry between the volume of observations and capacity
of inference tools is imperfectly represented by a comparison of
Google Ngram word usage for” big data” versus “spatiotemporal”
(Figure 1). It is perhaps an illustrative coincidence that the visual
departure of the “big data” usage curve occurs in 2008, the year
the Landsat satellite image archive was made freely available to
the public (Woodcock et al., 2008).

Spatiotemporal processes frequently possess some (or all) of a
suite of challenging properties. Such characteristics include high
dimensionality, possibility of both abrupt and gradual changes
(Verbesselt et al., 2010), spatial and temporal autocorrelation
(Henebry, 1995), and cross-variable coupling (Lotsch et al., 2003).

Together, these factors present formidable analytic challenges
which have driven over a century of development and refinement
of analytic tools (Pearson, 1901; Lorenz, 1956; Ng et al., 2002; van
der Maaten and Hinton, 2008).

Characterization of spatiotemporal signals complements
modeling by informing presuppositions about the number,
identity, and interaction of real-world generative processes
which may be imperfectly represented by a set of observations
(Small, 2012). Accurate characterization can be challenging for
high dimensional (high-D) spatiotemporal signals, due to a range
of properties of high-D spaces popularly deemed the “curse of
dimensionality” (Bellman, 1957). One approach to this
challenging problem of spatiotemporal characterization focuses
on analysis of the temporal feature space (TFS). Here, low-D
projections of high-D spatiotemporal data are visualized and
analyzed to characterize their underlying geometric and
topological structure. Once characterized, this structure can
then be used to design parsimonious, well-posed inverse
models (Small, 2012). Conceptually, geometry implies algebra.

The TFS has been used to produce accurate characterization of
complex spatiotemporal processes as diverse as oak woodland
drought stress (Sousa and Davis, 2020), post-cyclone mangrove
recovery (Small and Sousa, 2019), dynamics of commercial
(Sousa and Small, 2019) and smallholder (Small, 2012)
agriculture, cloud forest phenology and disturbance response
(Sousa et al., 2019), urban development and nighttime light
(Small and Sousa, 2016), and pathogen transmission (Small
and Sousa, 2021). Currently, TFS characterization relies on

FIGURE 1 | Historical word usage for key terms. English usage of the term “spatiotemporal” has gradually increased for decades, while usage of “big data” has
sharply spiked since 2008 (A). Note the timing of the publication of Lorenz’s scientific report on Empirical Orthogonal Functions andWeather Predidication (1956) and the
opening of the Landsat archive (2008). Similarly, the term “principal component” has steadily increased since Karl Pearson’s 1901 publication, but usage of the term
“manifold learning” has been a more recent phenomenon (B).
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estimating the global variance structure of a spatiotemporal
dataset using linear, mutually orthogonal, variance-ordered
basis functions, i.e., Principal Component (PC) and Empirical
Orthogonal Function (EOF) analysis (Pearson, 1901; Lorenz,
1956). For the remainder of the text, we use the term “PC/
EOF” to refer to this approach to both reflect the intrinsic
complementarity between PCs and EOFs, and to be inclusive
of the range of nomenclature used by various subfields
throughout the literature.

While effective in many ways, the linear PC/EOF approach
alone has significant limitations. First, signals that comprise real
spatiotemporal data are rarely truly orthogonal, so observed
signals generally must be represented by linear combinations
of two or more PCs/EOFs. Second, PCs/EOFs are based solely on
overall (global) variance of the entire dataset and do not leverage
potentially important local scale manifold topology and
connectivity structure that may be present in a high-D TFS.

These limitations suggest that the information provided by
PCs/EOFs might be complemented by additional dimensionality
reduction tools which do not require strict linearity and/or are
able to capture local scale feature space topology. These desired
properties suggest the field of manifold learning as a potentially
useful complement to PC/EOF analysis. Manifold learning refers
to a class of nonlinear dimensionality reduction (DR) techniques
specifically designed to preserve the connectivity structure of the
feature space via observations that are deemed proximal
according to a chosen statistical distance metric. The
properties of this local connectivity structure are then
examined, giving information which complements the global
variance information given by PCs and their
corresponding EOFs.

The popularity of nonlinear DR techniques has increased in
recent years with improvements in computational capacity and
open-source software packages like scikit-learn (Pedregosa et al.,
2011). Such techniques are highly general, spanning a wide range
of use cases. In spatiotemporal analysis, examples of nonlinear
DR include Earth system modeling and data assimilation (Safaie
et al., 2017), land cover classification from satellite imagery (Yan
and Roy, 2015; Zhai et al., 2018), hyperspectral imaging
(Bachmann et al., 2005; Gillis et al., 2005), human mobility
(Watson et al., 2020), medical imaging (Kadoury, 2018), face
recognition in video data (Hadid and Pietikäinen, 2009),
and more.

This analysis explores the approach of joint characterization
introduced by (Sousa and Small, 2021) for the case of
spatiotemporal analysis of image time series. The approach
used here focuses on the complementarity of linear and
nonlinear dimensionality reduction algorithms. Each algorithm
emphasizes a different aspect, or variance scale, of signal within a
spatiotemporal dataset. Here, we implement one linear method
(PCs/EOFs) and two nonlinear methods (Laplacian Eigenmaps,
LE; and t-distributed Stochastic Neighbor Embedding; t-SNE).
Because t-SNE has a stochastic element that makes a single
realization effectively non-repeatable, we use a Monte Carlo
approach in which the low order PCs of a number of
independent 2D t-SNE realizations, PC(t-SNE), are used to
characterize consistently recurring structure within the t-SNE

feature spaces (Small and Sousa, 2022). While we focus on these
two nonlinear methods due to their popularity and
complementarity, we note that DR is an active area of
research—new approaches continue to be developed, and
other existing approaches may be more appropriate for a
given application. For these reasons, the purpose of this work
is not to provide a specific methodological recipe, but rather a
general conceptual framework with which to consider analysis of
spatiotemporal processes. Beginning with a synthetic example
and progressing to global, regional, and field scale observational
datasets, we ask the following questions:

1) Which geometric and topological characteristics does each
dimensionality reduction algorithm accentuate or suppress
when producing a low-D representation of the topological
structure of a high-D spatiotemporal dataset?

2) How do the properties of each algorithm map onto strengths
and weaknesses for specific spatiotemporal analysis
applications?

3) In what ways can methods be used together to yield a more
effective characterization than is possible with any single
method alone?

In addressing these questions, we demonstrate a generalized
analytic framework for joint characterization of spatiotemporal
data manifolds. We extend the concept of the temporal feature
space beyond the linear domain, illustrating the potential for
meaningful signal to exist across multiple variance scales within
the same spatiotemporal dataset, and for the ability of
complementary DR approaches to jointly capture that signal.

BACKGROUND

Manifold learning techniques cast the question of
characterization in a fundamentally different light. Here,
statistical similarity is evaluated for pairs (or more generally
n-tuples) of observations, with “similarity” defined according
to the analyst’s distance metric of choice (Van Der Maaten
et al., 2009). One simple metric is Euclidean distance. In the
case of a higher-D dataset, Euclidean distance cannot be
visualized accurately solely on the basis of a single 2-D
scatterplot, and instead takes the form of a higher-D
generalization of the underlying principle. While a wide range
of analytic approaches can be used to characterize the pairwise
statistical similarity structure of a dataset, here we focus on two
nonlinear manifold learning algorithms: t-SNE and LE. These two
algorithms leverage neighborhood connectivity information in
fundamentally different ways.

LE uses a graph theoretic approach, considering the high-D
observations as an interconnected network of nodes and edges.
Connectivity among proximal data points can be considered
using a distance threshold or number of nearest neighbors.
Once the graph of the observations is constructed, its matrix
Laplacian is computed and decomposed into eigenvectors. The
contribution of each Laplacian eigenvector to each data point is
then known and can be used to characterize the data. For more
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information about LE, see (Shi and Malik, 2000; Ng et al., 2002;
Von Luxburg, 2007).

In contrast, the fundamental idea underlying t-SNE is to
minimize the difference between two probability distributions:
one constructed over the given high-D observations and another
constructed over the desired low-D map. The metric used to
evaluate differences between distributions is the Kullback-Leibler
divergence. The t-SNE algorithm introduced by (van der Maaten
and Hinton, 2008) is a variant of the more general stochastic
neighbor embedding (SNE) algorithm of (Hinton and Roweis,
2002). For an excellent practical introduction to t-SNE, see
(Wattenberg et al., 2016).

Elements of the t-SNE output are stochastic. Specifically, the
absolute location of any given observational cluster in the low-D
map produced by t-SNE is essentially random, and potentially
important differences in boundaries among clusters can exist
among different realizations of the algorithm. One commonly
used approach to resolve this limitation is to run multiple
realizations of the algorithm and choose the result with the
minimum divergence (van der Maaten, 2021). Here, following
(Small and Sousa, 2021), we take a different tack. Rather than
choosing the single run with minimum divergence, we stack the
output of multiple t-SNE realizations and compute the PCs of this
stack, to which we refer as PC(t-SNE). This has the effect of
capturing cluster consistency, as observations which routinely
cluster together in t-SNE space plot together in PC(t-SNE) space.
The eigenvalue distribution of the PC(t-SNE) result also provides
information about the global dimensionality of the data
manifold(s) resolved by t-SNE.

TOY EXAMPLE

Methods
We motivate the concept using a highly simplified synthetic
dataset (Figure 2). Here, a 100 × 100 × 100 (x, y, t)
spatiotemporal data cube is created using random linear

combinations of three signals: one sinusoid and two decaying
exponentials with different amplitudes and decay constants.

The generating signals are given by the following functions
(Figure 2A):

s1 � cos( π

25
t)

s2 � e
−t
5

s3 �
⎧⎪⎪⎨⎪⎪⎩

0 for x � [1, 49]
3e

−(t−50)
10 for x � [50, 100]

Within the spatiotemporal data cube of the toy example T, each
synthetic “observation” Tx,y(t) is computed as a linear
combination of the above three signals, with weights chosen
from a uniform random distribution and forced to sum to unity.

The forward model can be expressed as a weighted linear
combination as:

Tx,y(t) � w1s1 + w2s2 + w3s3, such that: w1 + w2 + w3 � 1

The inverse problem involves the identification of the temporal
endmembers (si) and the estimation of their corresponding
weights (wi) for each observed Tx,y(t).

Because the spatiotemporal cube has 100 time steps, each T(x,y)
can be considered a vector residing in 100-D space. However, the
simplicity of the generating functions suggests that the true
dimensionality of the underlying signals is far lower than 100-
D. Geometrically, the data lie on a low-D manifold within the full
high-D space. Topologically, strictly imposed linear mixing
dictates that this triangular manifold is fully interconnected
with sharp corners and straight edges. Such properties of the
low-Dmanifold imply fundamental constraints on the design of a
well-posed inverse problem: geometric and topologic structure
imply algebraic structure. In this case, the inverse problem
amounts to identification of the temporal endmembers
representing the generative processes and estimation of the

FIGURE 2 | Illustration with synthetic data. Linear combinations of sinusoidal (1) and decaying exponential (2 and 3) signals (A) are used to generate a 100 × 100 ×
100 spatiotemporal cube. Weights for each signal are randomly chosen from uniform distributation and forced to sum to unity. PCA-based linear dimensionally reduction
(B) reveals the low order temporal feature space to be occupied by a trigonal planar mixing manifold, with >99% of variance allocated to first two dimensions. PC(t-SNE)
yields a higher dimensionality (88% of variance in first two dimensions) and more clustered topology. Red, green, and cyan clusters identified from the PC(t-SNE)
space effectively identify the signal with dominant weighting in each pixel - at the expense of a clear representation of the mixing continuum (C). Three clusters comprised
of mixtures of signals 1 and 3 form an exception (dark cyan), mapping closer to the signal 1 group PC(t-SNE) space despite slighly higher signal 3 weights. Cluster colors
are applied to the other two spaces for visual comparison. In contrast, the low-order LE dimensions (D) yield amore continuous topology, with sharply defined edges and
rounder but denser apexes than are present in the PC space.
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relative contribution of each temporal endmember to a general
observation potentially containing contributions from one, two
or three of the signals.

The overall joint characterization methodology can be
summarized by the following steps:

1. PC transform Txy(t)
2. Render TFS as orthogonal 2D projections of PCs 1–3
3. Identify tEMs
4. Characterize linearity of binary mixtures
5. Apply LE to Txy(t)
6. Render TFS of LE 1-3
7. Identify LE tEMs and compare to PC tEMs
8. Iteratively apply t-SNE to Txy(t)
9. PC transform compilation of multiple t-SNE realizations
10. Identify clusters from PC(t-SNE) 1-3
11. Back propagate clusters to spatial domain

Results
Through the lens of PC/EOF analysis, the data are decomposed
onto a set of mutually orthogonal eigenvectors which are sorted
on the basis of variance. The power of this approach is illustrated
in Panel B of Figure 2. Here, two dimensions represent T,
together comprising >99% of overall variance in the data. The
algebraic structure imposed by the linear mixing equations above
maps cleanly onto trigonal planar geometric structure
reminiscent of a ternary diagram. Pixels with (nearly) pure
contributions from each one of the three temporal endmember
(tEM) signals occupy one of the three corners of this triangle.
Pixels occupying the sharp linear edges represent binary mixtures
of two EMs; and more generally, pixels in the body of the triangle
have a contribution from each of the three EMs linearly weighted
by Euclidean distance to each corner. The variance partition and
topology of the temporal feature space immediately characterize
the 2D manifold and three temporal endmembers corresponding
to the three input signals.

In contrast, the connectivity structure of LE (Figure 2C)
accurately reflects the generative spatial mixing process. Both
the connectivity structure and bounding endmembers from Panel
B are clearly preserved in LE (Figure 2D). However, the linear
edges and sharp corners are rounded, a characteristic of LE which
can be conceptually considered to reflect the (roughly) analogous
nature of the Laplacian to geometric curvature.

On the other hand, PC(t-SNE) gives a fundamentally different
output (Figure 2D) that is more clustered than PCs/EOFs or LE.
On the one hand, this clustering could be considered a strength:
the relatively well-separated red, green, and blue clusters
accurately identify the dominant input signal contributing to
each observation. On the other hand, the same property could be
considered a weakness, introducing granularity to the low-Dmap
which is not necessarily representative of any underlying
generative process in the spatiotemporal dataset. One question
we seek to address here is the consistency with which t-SNE
clusters resolve known differences among subsets of observations.
While the separability of the t-SNE clusters shown in Figure 2
generally corresponds to the largest endmember fraction in the
mixture, we highlight the exception (in dark cyan).

GLOBAL SCALE EXAMPLE—TERRESTRIAL
CLIMATE

Methods
We now illustrate a joint characterization of a commonly used set
of spatiotemporal observations: gridded terrestrial climate data
produced by the Climatic Research Unit (CRU) at the University
of East Anglia (UEA) (Mitchell and Jones, 2005). Here, we apply
these DR algorithms to 103 years (1900–2002) of monthly
estimates of mean temperature and total precipitation (T + P).
Each pixel time series represents 103 × 12 monthly mean
temperatures and total monthly precipitation estimated for
each 1° × 1° grid cell on land, excluding Antarctica.

Results
The resulting maps (Figure 3A) of the low-D spaces illustrate
complementarities among the DR approaches. Traditional PC/
EOF DR (top) captures broad zonal and longitudinal climatic
patterns, representing the vast majority of points as occupying a
continuum spanning differing endmember climate zones. In
contrast, t-SNE (lower right) represents the global terrestrial T
+ P TFS as an amalgamation of highly discretized subregions,
conceptually resembling a choropleth map. Some features, like the
longitudinal Eurasian dipole, are accentuated in t-SNE that are
either relegated to higher dimensions or represented as a linear
combination of two or more PC/EOF dimensions. LE (lower left)
complements both of these two approaches, representing the global
T + P space as fundamentally comprised of continuous nonlinear
gradients which are notably sharper than present in the PC/EOF
space, but lack the discrete clustering of the t-SNE space. Discrete
physiographic features like the Rocky, Himalayan, and Andean
mountain ranges emerge clearly using PCs/EOFs and LE, but not
in t-SNE. Comparison of PC/EOF, LE and t-SNE also reveals that
even the low order dimensions of PCs/EOFs resolve finer scale, but
physically meaningful, distinctions such as the orographic high
precipitation regions of the Western Ghat in India and the
Chittagong Hill Tracts in Bangladesh. These features are
resolved as distinct clusters in individual t-SNE realizations, but
not in the low order dimensions of PC(t-SNE). They appear within
the continuum of the LE TFS.

Temporal feature spaces derived from each approach
(Figure 3B) illustrate key differences in geometry and topology.
PCs/EOFs (top) represents the majority of grid cells as occupying a
position within a continuum bounded by endmember climates. The
PC1 vs PC2 feature space effectively discriminates between hot and
dry, hot and wet, and cold climatic endmembers, bearing a strong
resemblance to the mean temperature vs precipitation space on
which terrestrial biomes are defined, e.g., in (Small and Sousa, 2016).
Density shading reveals prevalence of linear and nonlinear mixing
relationships, as well as sparse data representation of high variance
patterns with low PC 2 and low PC 3 values. Points with maximum
PC 1 values differentiate along the PC 3 axis between Polar Ice Cap
(Köppen Climate Type EF, Greenland) and Polar—Tundra
(Köppen Climate Type EF, Siberia and northern Canada).

In contrast, the clustering evident in the t-SNE map is clearly
represented in the corresponding low-order TFS (bottom row).
Here, the spatiotemporal data manifold is represented as a
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FIGURE 3 | (A) Joint characterization yields complementary spatiotemporal patterns when applied to a century of gridded global climate data. Characterization of
monthly mean air temperature and total precipitation estimates for 100 years (1900-2000) using linear and nonlinear dimensionality reduction reveals both continuous
gradation and discrete clustering. Linear variance-based decomposition (PCA, top) captures broad bioclimatic patterns. Non-linear approaches produce
complementary maps: Laplacian Eigenmaps (bottom left) accentuates gradients, with clear separation among tropical, arid, temperate, and boreal climates in the
three lowest dimensions. In contrast, a compliation of 100 t-SNE runs captures both connectivity relationships and clearly identifiable geospatial clusters. (B) Joint
characterization yields complementary temporal feature spaces when applied to a century of global climate reanalysis data. The continuous gradation and discrete
clustering observed in geographic space in Fgure Xa maps onto temporal feature space structure. Liner variance-based decomposition (PCA, top row) captures

(Continued )
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discretized nonlinear continuum, with point density spread in a
relatively uniform manner among clusters. Mixing relationships
are similar to those found with PCs/EOFs, but effectively
collapsed onto a narrow manifold rather than diffusely spread
throughout the low-order TFS. It is noteworthy that the
small isolated clusters in the t-SNE space correspond to
geographically isolated locations (e.g., Madagascar, Australia,
Greenland) as well as topographically isolated regions (e.g.,
Altiplano, Anatolia, Tibetan Plateau), providing a clear
physical basis for distinction from the more continuous
climatic gradients. The LE TFS (center row) possesses a
fundamentally distinct geometric structure. Here, the global
terrestrial T + P space is represented as a tight manifold with
a nonlinear continuum spanning a low dimensional surface
bounded by three unambiguous endmembers corresponding to
those bounding the PC1/PC2 feature space. For this popular
spatiotemporal dataset, each of the three DR approaches clearly
provides information that the other two do not, illustrating the
potential complementarity benefits of joint characterization of
the global climate space.

REGIONAL SCALE EXAMPLE—SAHEL
VEGETATION PHENOLOGY

Methods
Next, we investigate the ability of joint characterization to provide
useful information across spatiotemporal scales and generative
processes. Specifically, we explore rainfall-driven vegetation
phenology across the African Sahel. This spatiotemporal cube
is a time series of MODIS Enhanced Vegetation Index (EVI)
vegetation abundance maps in which each pixel time series
represents the aggregate vegetation phenology within a 250 ×
250 m footprint. Relative to the global climate illustration above,
these data are ~2x more frequent (16-day composite) and ~400x
spatially finer (250 m).

Results
The TFS resulting from each DR approach is shown in Figure 4A.
PCs/EOFs identify clear temporal endmembers corresponding to
barren (EM1) and evergreen (EM2) phenologies, connected by a
diffuse helical manifold of seasonal grass/shrub vegetation driven
by latitudinal migration of the InterTropical Convergence Zone
(ITCZ) and associated rainfall. EOF 1 controls the amplitude of the
seasonal vegetation abundance. EOFs 2 and 3 reveal
complementary out-of-phase sinusoids which together combine
to form a phase plane. An additional doublemonsoon signal is seen
in EM3, distinct from the single annual signal.

Nonlinear dimensionality reduction methods identify a much
more compact low-D manifold, emphasizing some parts of the
structure of the linear space in each case. LE collapses the

EM1—EM3—EM2 continuum into a single, well-defined
curvilinear helicoid, with double monsoon EM3 diverging
from the primary manifold near its midpoint. PC(t-SNE)
identifies a similar overall manifold structure, but with much
more defined clustering. Unvegetated pixels form a large, diffuse
cloud in PC(t-SNE) space. PC(t-SNE) also separates coherent
clusters which are not clearly defined using either PC/EOF or LE
methods alone. The stochastic nature of individual t-SNE
realizations is illustrated through the example realizations
shown in the bottom right quadrant of the figure.

The geometry and topology from Figure 4A can then be
leveraged to design a temporal mixture model of the vegetation
phenology. Here, we illustrate a simple linear model constructed
using four temporal endmember phenologies identified from the
TFS characterization (Figure 4B inset). The resulting phenology
map, shown in Figure 4B, is effective at capturing a continuum of
distinct phenological zones, as well as variability within and
among those zones.

FIELD SCALE EXAMPLE—CALIFORNIA
AGRICULTURE

Methods
We next extend the investigation of scale dependence to a study
area relevant to practical land management: field-level
agricultural mapping in California (Figure 5). This extends
our investigation of scale dependence by covering a ~20x
shorter record (1 year) with ~3x more frequent revisit
(3–5 days) and 1,000x finer spatial scale (9 km2) than was
present for the MODIS example above. The study area here is
an orchard-dominated 3 km × 3 km subset of Kern County, the
highest-value crop producing county within California’s
agriculturally diverse Central Valley (Kern County, 2019).
Here, we use subpixel vegetation fraction estimated from 30 m
Harmonized Landsat-Sentinel (HLS) multispectral imagery by
inversion of a linear spectral mixture model using generalized
global spectral endmembers from (Small, 2018).

The area shown here is dominated by two high-value orchard
crops: almonds and pistachios. A publicly available county-level crop
map (Kern County, 2019) provides ground truth of crop type (far
left, top; superimposed on false color reflectance image). Average
vegetation fraction time series of each crop (far left, bottom) show
the almond crop is characterized by earlier, higher amplitude green-
up andmore rapid senescence than the pistachio crop. Twopistachio
fields (white in reflectance image) behave differently, with lower
overall vegetation fraction presumably due to age of orchard.

Results
PCs/EOFs (center left) generally capture these differences, with
almonds and pistachios forming diffuse clusters largely separable

FIGURE 3 | dominant patterns of overall variance across the entire domain, yielding a diffuse point cloud with substructure indicative of regional-scale gradients. Non-
linear approaches produce complementary results: Laplacian Eigenmaps (center row) captures a continuous helicoid manifold that clearly expresses endmember
climate and mixing relations, PC(t-SNE) captures both connectivity relationships and clearly identifiable clusters. Eacg temporal feature space emphasizes different
aspects of the geometric and topological structure of the spatiotemporal data manifolf.
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FIGURE 4 | (A) Complementary temporal feature spaces for Sahel MODIS EVI vegetation phenology. Principal components yield a diffuse continuous helical
feature space in which PC1 controls amplitude while PC2 and PC3 form a phase plane to represent the seasonal shift in greening and senescence following the latitudinal
shift of precipitation. Temporal endmembers (inset) from apexes of the PC cloud form a convex hull bounding the full range of phenologies. Temporal EOFs show the
latitudinal phase shift and isolated double monsoon seen in EM3 AND EM4. Laplacian Eigenmaps yield a much less diffuse, more continuous feature space with
similar structure and EMs. Individual t-SNE spaces vary in shape and orientation but with similar topology, also showing an amplitude continuumwith distinct clusters for
non-vegetated areas and closed shrublands fed by the Somali double monsoon (EM4). PC(t-SNE) of 10 2D t-SNE realizations produces a more compressed helical

(Continued )
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on the basis of PC/EOF 2. The two distinct pistachio fields plot as
a smaller cluster closer to the center of the linear feature space.
However, the diffuse topology of the data in linear feature space
yields ambiguity in the optimal location of decision boundaries.

In effect, within-class variance is accentuated at the expense of
between-class variance.

Nonlinear dimensionality reduction algorithms capture
different aspects of the high-D data structure. Almond and

FIGURE 4 | structure, also varying continuously in amplitude and phase. In comparison to the indiviual t-SNE realizations, the PC(t-SNE) topology shows less divergence
increasing with amplitude along the continuum with more distinct clustering of the double monsoon phenologies. (B) Sahel vegetation phenology map derived from
inversion of a temporal mixture model of MODIS EVI time series. Linear combinations of the temporal endmembers (inset) derived from the temporal feature space in (A)
represent vegetation communities in each 250 m pixel times series as mixtures of evergreen trees, seasonal grasses and shrubs. The latitudinal gradient from evergreen
forest to seasonal grasses and shrubs is a result of seasonal variation in precipitation following the north-south oscillation of the InterTropical Convergene Zone. The Niger
inland delta and Nile River Valley phenologies contrast their surroundings because the seasonality of catchment discharge is delayed relative to downstream precipitation
timing. The 4 endmember temporal mixture model represents 95% of the MODIS EVI time series with <10% misfit.

FIGURE 4 | (Continued).

FIGURE 5 | Dimensionality reduction techinques capture complementary aspects of crop phenology. Other than roads and structure, a 3 km × 3 km subset of
Kern County, CA is entirely comprised of almond and pistachio orchards (upper left; image date 23 March 2020). Mean time series of all pixels from each crop (lower left)
reveals similar phenology, but with earlier and greener leaf-on maximum, and more rapid senescence, for almonds (A) than for pistachios (P). Each technique resolves
spatially coherent (top) patterns which resolve variance both within and among classes. The locus of convergence on PC(t-SNE) space corresponds to the top apex
in LE space, which features s lower amplitude phenology indicative of a younger orchard with smaller, less full canopies.
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pistachio fields are sharply distinct as well-separated
(Transformed Divergence = 2.0) apexes in LE space, with the
two distinct pistachio fields forming a third well-separated apex at
high LE 2. In contrast, PC(t-SNE) captures a continuously
varying nonlinear data manifold. Almonds and pistachios
form opposite ends of this manifold, with the two indistinct
fields plotting near the lengthwise center of manifold.

DISCUSSION

Strengths and Limitations
Any low-dimensional representation of a high-dimensional space
will generally result in retention of some subset, and loss of some
other subset, of the total high-D information. The analysis
presented here illustrates complementarity among three
philosophically differing approaches to achieving such low-D
representations, focusing on the special case of spatiotemporal
characterization. Depending on the application, the subset of
information retained by each approach may be more or less
useful. In many cases, comparative analysis facilitated by joint
characterization using multiple DR approaches may prove to be
more useful than the sum of its parts.

Specifically, important differences among algorithms manifest
as differential sensitivities to scales, geometries, and topologies of
variance. Perhaps the broadest difference is between the global
and local scales of operation between the linear and nonlinear DR
approaches. The linear (PC/EOF) approach implemented here
operates on the overall global variance structure of the
spatiotemporal dataset, allowing each observation explicit
contextual representation in terms of the global space, but
sacrificing potentially important local structure for generality.
In contrast, both of the nonlinear approaches (LE and t-SNE)
focus on local statistical similarity at the expense of
downweighing global structure. This difference in formulation
of the DR problem maps directly onto geometry and topology of
each low-order Temporal Feature Space. The linear, global TFS
yields relatively diffuse point clouds due to its strict orthogonality
requirement and usage of a metric of global dispersion (variance).
In contrast, the low-order TFS for each nonlinear algorithm
yields a visibly tighter manifold, with decreased ambiguity in
temporal endmembers (LE) and/or in spatiotemporal clustering
(t-SNE)—a direct result of optimizing metrics focused on local
structure at the expense of global structure.

However, neither algorithmic strengths nor limitations occur
in isolation. For instance, the diffuse nature of the PC/EOF TFS
poses a challenge, but is compensated by the explainable
connection between spatial and temporal dimensions provided
by explicit EOF time series associated with each PC spatial
pattern. This relative ease of interpretability is not a feature of
LE or t-SNE. Similarly, the unambiguous clustering relations
identified by t-SNE are in some sense a feature, for instance
allowing clear determination of decision boundaries for discrete
classification; but can also be a limitation by artificially
introducing clustering that may not be present in the
generative processes, as observed in the synthetic example of
Figure 2. As the degree of clustering can be influenced by the

perplexity parameter chosen, in some cases a sensitivity analysis
may be warranted to quantify the persistence of specific clusters.
Similarly, LE is effective at removing ambiguity in endmember
spatiotemporal patterns, but is limited in explainability. Further,
because both t-SNE and LE operate on statistical similarity
relations among observations, both are considerably more
sensitive to spatial aliasing than PCs/EOFs, which treat each
observation as independent of all others. Notably, this is not
necessarily true for temporal aliasing, as the symmetry between
spatial and temporal dimensions in broken in LE and t-SNE.

Broad Efficacy
The global, regional, and field scale examples shown above span
roughly 5 orders of magnitude spatially and 2 orders of magnitude
temporally, illustrating the ability of joint characterization to
provide useful information at global, local, and regional scales.
In particular, the approach is shown to be effective in both
characterizing processes occurring at scales coarser than pixel
resolution (field-level agriculture, broad climate gradients) and
their associated subpixel spatial mixing processes (smallholder
Sahel agriculture). Further, joint characterization is shown to
yield useful results for disparate biogeophysical spatiotemporal
processes including climate as well as natural and human-managed
vegetation. This broad efficacy suggests considerable potential for
relevance to other non-spatiotemporal but high-D data types, for
instance to the field of imaging spectroscopy as recently suggested
in (Small and Sousa, 2022).

Synthesis
The concept of the temporal feature space was initially introduced
as the basis for characterization of high dimensional
spatiotemporal data to inform the feasibility and design of
temporal mixture models. By providing a model-agnostic
projection of the temporal feature space, the combination of
eigenvalue variance partition, temporal EOFs and spatial PCs, the
Singular Value Decomposition of spatiotemporal data informs
the 1) spatiotemporal dimensionality, 2) linearity (or lack thereof)
and 3) temporal endmember selection (Small, 2012). While
individual temporal EOFs can be informative, it is their linear
combinations that represent the actual data. Individual EOFs
almost never act alone. As such, the temporal endmembers
identified from the TFS that provide a more physically
meaningful set of basis functions on which to project the
higher dimensional spatiotemporal data. If a TFS structure can
be accurately represented (as quantified by model misfit to
observation and positivity of EM fractions) with a relatively
small number of temporal EMs, a temporal mixture model
can provide a useful abstraction of high dimensional
spatiotemporal data. In addition, the variance partition given
by the eigenvalues of the covariability matrix can provide a basis
for distinguishing between deterministic and stochastic
components of the spatiotemporal data (Lorenz, 1956; Small,
2012). The only assumptions implicit in the use of Principal
Components and EOFs are that global variance corresponds to
information content and that correlation corresponds to
redundancy. While these are often valid assumptions, they also
bias the projection of the temporal feature space accordingly. The
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potential value of supplementing the global variance structure
given by the PCs/EOFs with nonlinear manifold learning tools
lies in the preservation of low variance information content that
may be lost in the higher order dimensions of the PCs/EOFs. In
other words, the assumptions implicit in some nonlinear
manifold learning approaches are complementary to the
assumptions on which PC/EOF analysis is based. As shown in
the examples presented here, LE and t-SNE are complementary in
that the LE spaces are simpler, less diffuse and more continuous
than the PC-based TFS, while the t-SNE (and PC(t-SNE)) spaces
can be both continuous and clustered with verifiably meaningful
clusters not resolved by the PC-based TFS (Small and Sousa,
2021; Sousa and Sousa, 2021).

Practical Considerations
Even if an approach is highly effective, practical limitations can
severely limit its widespread adoption. Fortunately, code
facilitating each of the DR algorithms used in this study is
freely available from numerous open source web repositories,
most notably Python’s scikit-learn. But despite code availability,
computational limitations remain a key chokepoint for easy
adoption, especially for the nonlinear algorithms. Both
mathematical elegance and decades of computer science have
facilitated algorithms enabling efficient PC/EOF analysis of
datasets with millions of spatial observations, each with
hundreds of time steps, on typical personal computing
hardware. The same is unfortunately not (yet) true of t-SNE
and LE. Because of the nature of such manifold-based
approaches, computational resources scale roughly with the
square of the number of spatial—but not temporal—samples.
The key limitation is generally sufficient RAM to store large
matrices of pairwise (or n tuple-wise) metrics. For reference, a
Lenovo laptop running x64 Linux with 32 GB of RAM and scikit-
learn version 0.24.2 was able to compute both LE on datasets with
a maximum of roughly 25,000 spatial samples, and t-SNE on
datasets with a maximum of roughly 250,000 spatial samples.
Temporal depth was not found to be a limitation for either
algorithm for the datasets examined here.

Notably, other linear and non-linear DR approaches are also
worthy of consideration: e.g., ISOMAP, Locally Linear Embedding,
Hessian Eigenmapping, Local Tangent Space Alignment, metric
and non-metric multidimensional scaling, UMAP, and more.
Because the purpose of this work is to introduce the idea of the
joint characterization for spatiotemporal data manifolds, rather
than present a thorough intercomparison of all available methods,
we defer detailed examination of these other approaches to future
work. However, we do note that in some sense PCs/EOFs,
Laplacian Eigenmaps, and t-SNE can be argued to represent
endmember DR philosophies and thus span a substantial subset
of the current DR landscape.

For some applications, algorithm automation is a primary
concern. We note here that in a fundamental sense, the joint
characterization approach is inherently non-automated. This is
because joint characterization requires the scientist to utilize

visual perception and critical thinking in exploratory data
analysis and interpretation of geometric and topological TFS
structure. That being said, the information provided by joint
characterization can then be used to design parsimonious inverse
models which could potentially be fully automated.

CONCLUSION

This analysis explores the utility of joint characterization of
spatiotemporal data using synthetic, reanalysis, and satellite
datasets. Joint characterization is implemented using a set of
three linear and nonlinear approaches to dimensionality
reduction: Empirical Orthogonal Functions, Laplacian
Eigenmaps, and t-distributed Stochastic Neighbor Embedding.
The three approaches are shown to yield complementary
characterizations for a variety of generative processes at global,
regional, and field scales. The results of this analysis suggest that
joint characterization can provide a useful framework to visualize
the geometric and topologic structure of high dimensional
spatiotemporal data manifolds to assist with the design of
effective and parsimonious inverse models, as well as
improved class separability for discrete thematic classifications.
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