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We update the parameterization capturing the variation of parameters that

describe how cloud occurrence (layer cloud fraction) and layer cloud optical

depth (COD) distributions overlap vertically. Our updated analysis is motivated

by the availability of a new dataset constructed by combining two products

describing the two-dimensional extinction properties of liquid and ice phase

clouds (and their mixtures) according to active cloud observations by the

CloudSat and CALIPSO satellites. As before, cloud occurrence overlap is

modeled with the decorrelation length of an inverse exponential function

describing the decay with separation distance of the relative likelihood that

two cloudy layers are overlapped maximally versus randomly. Similarly, cloud

optical depth distribution vertical overlap is described againwith a decorrelation

length that describes the assumed inverse exponential decay with separation

distance of the rank correlation between cloud optical depth distribution

members in two cloudy layers. We derive the climatological zonal variability

of these two decorrelation lengths using 4 years of observations for scenes of

~100 km scale length, a typical grid size of numerical models used for climate

simulations. As previously, we find a strong latitudinal dependence reflecting

systematic differences in dominant cloud types with latitude, but substantially

different magnitudes of decorrelation length compared to the previous work.

The previously used parameterization form is therefore updated with new

parameters to describe the latitudinal dependence of decorrelation lengths

and its seasonal shift. Similar zonal patterns of decorrelation length are found

when the analysis is broken down by different cloud classes. When the revised

parameterization is implemented in a cloud subcolumn generator, simulated

column cloud properties compare to observations quite well, and so do their

associated cloud radiative effects, but improvements over the earlier version of

the parameterization are marginal.
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1 Introduction

As long as climate and other Earth system models have grids

that are large enough to compel the use of cloud schemes

producing fractional cloudiness, i.e., as long as subgrid cloud

variability exists implicitly without being explicitly resolved, the

vertical overlap of cloud condensate has to be taken into account.

This includes both the simple overlap of cloud occurrence at

different vertical levels (aka “cloud fraction overlap,”) and also

the overlap of the horizontal distribution of condensate amount.

Assuming that cloud particle size is horizontally homogeneous

(admittedly, a simplification) the latter overlap is practically

equivalent to the overlap of cloud optical depth (COD) at

different levels. Needless to say, that in the unrealistic case of

no horizontal variability of condensate, i.e. horizontally

homogeneous clouds, this type of overlap is no longer a concern.

Cloud fraction overlap and its impact on the transport of

atmospheric radiation has been studied for many years. Prior to

the 2000s the most prevalent description of cloud fraction

overlap was the so-called “maximum-random” paradigm

where contiguous cloud layers were assumed to overlap

maximally, while non-contiguous layers (separated by

cloudless layers) were assumed to overlap randomly. How

exactly maximum-random overlap was perceived and

conceptually implemented in practice varied widely. One

variant due to Geleyn and Hollingsworth (1979) allowed for

random overlap not only of cloudy layers separated by clear

layers (non-contiguous cloud situations), but also of the parts of

layers belonging to vertically contiguous cloud entities that

extend beyond the coverage of a less cloudy intervening layer.

Another variant assumes that all cloud layers within broad

atmospheric layers, even when non-contiguous, form “blocks”

where overlap is maximum, while these blocks overlap randomly

(Chou et al., 1998). Regardless of the maximum-random overlap

flavor, accounting for cloud fraction overlap in radiative transfer

calculations is not trivial, especially in the shortwave part of the

spectrum where a large fraction of the downwelling radiation is

backscattered. This recognition motivated the introduction of the

concept of “subcolumns.” Radiative calculations are manageable

when the number of blocks is small: for example, when only three

cloud blocks are allowed throughout the atmospheric column,

only eight distinct permutations of cloudy subcolumns can exist

(Chou et al., 1998). In the longwave part of the spectrum, as long

as scattering is not explicitly resolved, any given conceptual

implementation of maximum-random overlap allows the

calculation of the fraction of upward and downward clear-

line-of-sight for radiation propagation (Chou et al., 1999).

Our insight into cloud overlap changed greatly thanks to the

seminal work of Hogan and Illingworth (2000) who used ground

radar observations to show that the overlap of the area occupied

by two cloud layers should not be viewed as the binary outcome

of either maximum or random overlap, but rather as a

continuum between the two possibilities that depends on the

separation distance of the two layers (a more formal description

will be presented in the next section). Not too long after

(Räisänen et al., 2004; Pincus et al., 2005), the realization that

cloudy layers are not horizontally homogeneous underscored the

need for a description of how parts of a cloud layer with different

amount of condensate or optical extinction relate (overlap) to

those of another cloud layer. That this type of overlap also

matters is rather obvious for strongly non-linear processes

such a radiation transport which depend greatly on whether

thin and/or thick parts tend to align or be displaced at various

degrees of random alignment. This led to the concept of the

correlation between ranks within distributions of layer

condensate or extinction, which can be quantified by a rank

correlation coefficient (Räisänen et al., 2004; Pincus et al., 2005).

The characteristics of cloud fraction/occurrence and

condensate distribution overlap have been studied by

analyzing simulated (e.g., Oreopoulos and Khairoutdinov

2003; Hillman et al., 2018) and observed (e.g., Oreopoulos

and Norris 2011) cloud fields that resolve cloud vertical

structure or directly associated quantities. All these studies

have found a clear dependence of overlap on cloud layer

separation distance, but with varying details about the exact

nature of the dependence. For example, the dependence can

change geographically (Barker 2008a; Shonk et al., 2010) and also

with cloud height (Räisänen et al., 2004).

Taking advantage of the availability of a dataset constructed

from the latest versions of CloudSat products and which was used

to study the performance of two cloud subcolumn generators

(Oreopoulos et al., 2022, hereafter O22), we are motivated to

revisit the characteristics of cloud overlap at global scales. This is

because one of the generators evaluated employed a

parameterization of decorrelation lengths that is now more

than 10 years old (Oreopoulos et al., 2012, hereafter O12), and

is thus ripe for re-examination with a new and improved

(CALIPSO-enhanced) CloudSat datasets. We are now better

positioned to examine in more detail dependences of overlap

on cloud vertical location and cloud regime (Section 3.3.1 and

Section 3.3.2). Moreover, we now have the additional capability

to examine how overlap parameterizations ultimately affect the

distribution of vertically projected cloud fraction in the widely-

used phase space defined by the pressure of the highest cloud top

and the integrated extinction (i.e., joint histograms of cloud top

pressure and optical thickness), as well as associated cloud

radiative effects via cloud radiative kernels (Zelinka et al., 2012).

2 Dataset and methodology of
overlap calculation

2.1 Dataset

The dataset used to perform the present overlap analysis is a

4-year (2007–2010) version of the 2D cloud optical depth (COD)
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field described in O22. COD is resolved vertically (240 m) and

along the direction of the satellite track (~1.1 km), and comes

from the 2B-CWC-RVOD CloudSat dataset for liquid phase

clouds and from the CALIPSO-enhanced 2C-ICE product for ice

phase clouds. Because the first product is constrained by Aqua-

Moderate Resolution Imaging Spectroradiometer (MODIS)

vertically-integrated (total) optical depth (TAU), which is

available only during daytime, the strict daytime availability

applies also for the merged COD dataset. Comparisons with

the 2B-CLDCLASS-LIDAR product showed missing retrievals

for about 20% of liquid phase clouds. Those missing retrievals

correspond mainly to thin liquid clouds detected by CALIPSO

only in the 2B-CLDCLASS-LIDAR product and missed in the

2B-CWC-RVOD product. O22 describes how these values were

filled, namely using coincident MODIS TAUs, and CODs of

neighboring cells. We will examine below whether the

specific COD filling procedure employed in O22 affects

overlap findings.

2.2 Calculation details for vertical overlap
parameters

For cloud occurrence overlap we use the generalized

overlap framework first introduced by Hogan and

Illingworth (2000), hereafter HI2000. According to this

framework, the combined vertically-projected cloud

fraction of two layers with cloud fractions C1 and C2

(expressed in this work either as fractional coverage from

0 to 1 or as percentage between 0 and 100), which are part of a

contiguous cloud entity and are separated by a vertical

distance Δz, is the linear combination of the combined

cloud fractions of the two layers corresponding to the

maximum (Cmax) and random overlap (Cran) assumptions.

The relative contribution of Cmax and Cran to the combined

generalized cloud fraction is regulated by a weighting

parameter α:

Cgen � αCmax + 1 − α( )Cran (1)

whereCmax � max(C1, C2) andCran � C1 + C2 − C1C2. Because

Cmax < Cran alpha is positive when Cgen < Cran, with α = 1 for the

special case of maximum overlap, and α = 0 for the special case of

random overlap. Negative α which occurs when Cgen > Cran

indicates that cloud occurrence overlap is less than random,

i.e., tending towards minimum overlap. HI2000 found that the

overlap of cloud layers that have intervening clear layers is very

nearly random, i.e., α ≈ 0 even at small separation distances Δz, a
result we also found when analyzing the current dataset

(discussed later). For contiguous cloud layers,

HI2000 parameterized α as an exponentially decaying function

of separation distance with a decorrelation length Lα:

α � exp −Δz/Lα( ) (2)

Because this function does not produce negative values, such

a parameterization implicitly assumes that cloud overlap cannot

be less than random. Maximum overlap corresponds to Lα = ∞,

while random overlap to Lα = 0.

For overlap of cloud condensate (cloud optical depth)

horizontal distributions, we are interested not as much in how

absolute values of members of the distribution are correlated, but

rather in how relative values are. Namely, for two cloud layers

that may have very different grid-mean optical depth or water

contents, we are interested in how the thinner, intermediate, and

thicker parts of the layers align vertically, in other words in how

their subgrid optical depths overlap in a relative sense. This can

be captured by Spearman’s rank correlation coefficient ρ between

the two distributions. While α is theoretically unbounded on the

negative side, and has maximum value of unity, ρ values remain

within ±1. This means that parameterizing its variation as an

exponentially decaying function of separation distance with a

second decorrelation length Lρ (distance to the 1/e value), so that

ρ � exp −Δz/Lρ( ) (3)

captures only positive rank correlations. When ρ = 1, then the

ranks of the COD values that are vertically aligned are correlated

maximally which corresponds to Lρ = ∞, while when ρ = 0 they

are correlated randomly which corresponds to Lρ = 0.

In this work, we calculate the variation of α and ρ as a

function of cloud layer separation distance for scenes consisting

of 100 consecutive “rays” (subcolumns). The scenes have an

approximate length of 110 km (while the along track size of the

rays of the merged CloudSat-CALIPSO dataset is about 1.7 km,

sampling is performed at 1.1 km scales because of the spatial

overlap between adjacent rays). Our overlap results in this work

are therefore specific to this scale. Tompkins and Di Giuseppe

(2015) conducted an analysis of the dependence of cloud

occurrence overlap on scene size (“scale length,”) but such

dependence is not investigated here. Our chosen scene size is

as in O22, mirroring typical grid sizes of numerical models used

for climate simulations.

We elected to calculate these two parameters for layers with

0.05 < C < 0.95 and ignore the cloud state of the intervening

layers (i.e., whether some or all the layers are clear or cloudy).

Layers with very low values of cloud fraction are not used because

they contribute little to the combined cloud fraction and make

Cmax ≈ Cran; once a layer becomes nearly overcast on the other

hand, its complete overlap with another layer is almost assured,

rendering quantification of degree of overlap meaningless. The

value of the upper C threshold used in cloud overlap calculations

was a major focal point in Tompkins and Di Giuseppe (2015)

who showed that it is intricately related to scene size. While these

authors recommend using a rather low value for the upper

threshold to suppress the dependence on scene size, this

should not necessarily be in our view the predominant

criterion. First, the objective in a climate model application is
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to parameterize overlap at scale lengths of interest and not at

arbitrarily small or large scales. Second, when we examined

several randomly chosen individual scenes, we discovered that

setting a low C threshold, such as 0.5 suggested by Tompkins and

Di Giuseppe (2015), completely distorted their character. Third,

since we also wish to calculate COD distribution overlap via rank

correlations, preferably from the same data sample, it does not

seem prudent to remove the layers with the largest numbers of

points of non-zero COD, and therefore the presumably most

robust estimates of rank correlation.

Finally, our calculations of α and ρ include all cloudy layers

regardless of whether clouds occur in-between. We choose to do

so even though differences in overlap between contiguous and

non-contiguous clouds are conspicuous (Figure 1).We ignore the

distinction between contiguous and non-contiguous clouds in

our analysis for several reasons: First, the decorrelation lengths

we derive are meant for use in the “Raisanen” generator

(Räisänen et al., 2004) which produces subcolumns using a

flavor of generalized overlap that ignores the distinction

between contiguous and non-contiguous clouds. Second, non-

contiguous clouds are quite rare at small separation distances

(Figure 1), so including them at these small distances is not

impactful. On the flip side, at large separation distances cloud

occurrence overlap approaches random behavior anyway

regardless of whether the layers are part of contiguous or

non-contiguous cloud entities. Third, rank correlation

coefficients may be biased in unpredictable ways when

making such a contiguous/non-contiguous discrimination,

which again, is ignored in the way the Raisanen generator

employs rank correlations.

Our analysis process is as follows. We first calculate α and

ρ profiles for individual scenes. For two arbitrary cloud

layers at levels n and m that are apart by a separation

distance Δzn,m, the scene’s α for these two layers is

calculated from:

αn,m � Cn,m − Cran
n,m

Cmax
n,m − Cran

n,m

(4)

where Cn,m is the true combined cloud fraction of layers n, m,

calculated from the binary cloud fraction values (0 or 1) of the

portion of the layer contained in subcolumn k.

Cn,m � ∑K
k�1ck,n,m
K

(5)

K is the number of subcolumns in the scene (K = 100, in our case)

and ck,n,m = 1 if either or both of n, m layers of the subcolumn are

cloudy and ck,n,m = 0 when both are clear.

Spearman’s rank correlation coefficient ρ is calculated from:

ρm,n � 1 − 6∑L
l�1 rn,l − rm,l( )2
L L2 − 1( ) (6)

where L is the number of subcolumns where both layers n andm

have cloud, and rn,l and rm,l are the COD ranks of layers n and m

for the l th subcolumn.

The separation distance Δz is resolved at 240 m, thus all

separation distances are multiples of 240 m. Values for the same

separation distance are averaged regardless of the vertical

location of levels n and m, and we therefore drop henceforth

layer subscripts from α, ρ, and Δz.

3 Overlap analysis

3.1 Cloud occurrence vertical overlap

Once α “profiles” (variations vs. Δz) are calculated at the

scene level, they are averaged into multi-annual seasonal

profiles at 4° latitudinal resolution by appropriate averaging

the scene data by latitude φ. Figure 2 compares the zonal

profiles of α from the O22 COD fields and from the 2B-

CLDCLASS-LIDAR product. We show separately results for

two seasons, DJF and JJA. Since our filling procedure by

design increases the consistency of the cloud mask

(occurrence) implied by the COD field with that in 2B-

FIGURE 1
Globally-averaged α, the weighting (overlap) parameter
regulating the mixing of maximum and random cloud occurrence
overlap of two cloudy layers (α = 1: maximum overlap; α = 0:
random overlap; α < 0: minimum overlap), as a function of
separation distance Δz, derived from the O22 COD cloud fields.
We show results for two cases, one where cloud is also
encountered in all intervening layers (“contiguous cloud,” solid
blue curve and circle symbols), and one where the intervening
layers can contain clear skies (“non-contiguous cloud,” solid red
curve and circle symbols). The number of data points used to
derive the profiles for each case are shown with the dotted curves
using the same color convention and square symbols.
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CLDCLASS-LIDAR (O22), the agreement is not surprising

(seen also in Figure 3, discussed later). Still, one should be

reminded that the 2B-CLDCLASS-LIDAR dataset does not

have a true vertical resolution of 240 m since it resolves

clouds as distinct “objects” based on whether horizontally

contiguous sequences of rays and vertically contiguous layers

belong to the same cloud type. For a consistent calculation of

α across datasets we therefore replicate the 2B-CLDCLASS-

LIDAR mask to create a resampled 240 m vertical resolution.

Despite this oversampling, the α(φ, Δz) distributions of the
two datasets look very similar.

The prominent zonal dependence of α and the expected

decrease with separation distance are immediately apparent in

Figure 2. At the highest separation distance α approaches zero

(random overlap) and can even become negative (some degree of

minimum overlap). One should keep in mind that sampling

becomes progressively poorer the greater the separation distance

(cf. Figure 1), so results become noisier, but the tendency towards

FIGURE 2
Zonal variation of mean α as a function of separation distance Δz for DJF (December - January-February), left panels, and JJA (June-July-
August), right panels. The upper panels come from calculations using the O22 COD fields and the bottom panels from 2B-CLDCLASS-LIDAR. The
latitudinal resolution is 4° and the vertical resolution used for the plot is 480 m.

FIGURE 3
(Left panel): Zonal variation of the cloud occurrence decorrelation length parameter Lα, modulating the exponential decay of α vs. separation
distance according to Eq. 2, for DJF and JJA from the O22 COD dataset; we also show Gaussian fits (dotted curves) corresponding to Eq. 7 with µ
parameters provided on the top right corner for January 1st and July 1st. (Right panel): as the left panel, but from the cloudmask provided by the 2B-
CLDCLASS-LIDAR product.
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zero or negative values is clear and consisted with all previous

overlap studies. The geographical dependence of α, with the

higher values at low latitudes progressively decreasing at high

latitudes is also consistent with previous works (Shonk et al.,

2010; O12) where it was interpreted as indicative of the greater

vertical alignment in cloud types encountered most frequently at

low latitudes. Tompkins and Di Giuseppe (2015) casted however

doubts on this interpretation arguing instead that the observed

behavior rather reflected latitudinal changes in cloud scales (also

related to latitudinally-varying frequencies of cloud types)

relative to the fixed size of the scene for which α is calculated

(~110 km in our case).

A seasonal dependence of α is also apparent when comparing the

DJF (December-January-February) and JJA (June-July-August)

panels. The most distinguishing feature is the movement of high α

values northward and the expansion of the latitude-height phase space

area occupied by positive values of α in the summer hemisphere.

Basically, at a given separation distance, there is greater chance to find

a higher value of α in the summer hemisphere than the winter

hemisphere. This reflects a tendency of greater likelihood of

occurrence of vertically developed (and apparently more vertically

aligned) clouds in the summer hemisphere than the winter

hemisphere. In the tropics, the movement of the Intertropical

Convergence Zone (ITCZ) is similarly reflected by higher values of

α north of the equator during JJA.

The seasonal variation of α becomes more apparent when

expressed in terms of decorrelation length. From the zonal profile

of α, the zonal variation of its decorrelation length Lα can be

calculated by applying a linear regression fit to lnα vs.–Δz data for
which 1/Lα is simply the slope (Figure 3). This type of fit has been

previously employed by Mace and Benson-Troth (2002) and

Naud et al. (2008), among others, and results in a different Lα
than the “effective” decorrelation length of Barker (2008b) and

Jing et al. (2016) which is only meaningful at the scene level.

Appropriate sampling weights are used in the regression fit to

account for the fact that fewer values are available for larger Δz’s.
Again, we show separate curves of Lα for DJF and JJA from the

two datasets, the filled COD field (left panel) and 2B-

CLDCLASS-LIDAR (right panel). To obtain the results shown

in Figure 3, we actually calculated an Lα zonal curve separately for

each year’s season (i.e., instead of calculating the seasonal average

across 4-years) and then averaged the four year-specific Lα curves

of each season. We opted to do this in order to suppress the over-

smoothing of α profiles caused by extensive averaging (cf.

Figure 1). The extreme flipside would have been to calculate

Lα from very noisy α profiles of individual scenes (of which there

are about four million) and averaging across the very large Lα
population. The two methods, namely zonal Lα from fits to

zonally-averaged α profiles and zonal Lα from averaging

individual scene Lα’s yield different results. We do not opt for

the second method because of the poor regression fits of

individual scenes and the distorting effects a few extreme

values can have. But even in our method which first conducts

extensive averaging to α before calculating Lα, the quality of the

regression has some dependence on latitude.

Zonal and seasonal contrasts in cloud occurrence overlap

become the most apparent when overlap is expressed in terms of

decorrelation length (Figure 3, solid curves). The peak values in

Lα reach ~5 km at the northern (JJA) and southern (DJF) edge of

the tropics and drop quite rapidly towards mid and high

latitudes. The contrast in Lα between the two seasons is much

more pronounced in the NH than the SH. The two seasonal Lα
zonal curves, the one coming from O22’s COD field (left panel of

Figure 3), and the one from the standard 2B-CLDCLASS-LIDAR

product (right panel of Figure 3) are very similar.

The magnitude of peak values of Lα is generally higher than

in previous studies, although a direct comparison can only be

conducted with O12. The reasons for the discrepancy with

O12 are not entirely clear, but the different nature of the

underlying dataset likely plays a significant role: α and Lα
values in O12 were derived from a dataset based solely on

CloudSat measurements, specifically a cloud mask inferred

from 2B-GEOPROF reflectivities deemed to come from cells

identified as cloudy according to predetermined thresholds. Here

we use a daytime COD field, from combined CloudSat and

CALIPSO measurements, and with retrievals available only

when the algorithm converges to a solution. It is doubtful that

the daytime aspect of the COD field explains the rather

substantial discrepancy of decorrelation length values. Missing

COD values being filled, and the specific method used to achieve

this in O22 does not seem to be a factor either (left panel of

Figure 4). Actually, had we not filled missing COD values we

would have obtained even higher peak Lα values: because the

filled values correspond to low (liquid) clouds, the chances of

creating occurrences of overlap with high clouds increases; such

overlaps tend towards random and correspond to lower Lα.

For a practical use of the observed Lα values, the latitudinal

and seasonal variability should ideally be captured by a

parameterization. We follow here on the footsteps of

O12 who used time-varying Gaussian functions whose

parameters vary with Julian date (J), namely:

L � μ1 + μ2 exp − φ − μ3( )2
2μ24

[ ] (7)

(we drop the subscript from L because this parameterization is also

applied for COD overlap) where μ1, μ2, μ4 are constants, while μ3
varies with day of the year according to the equations below

controlling the latitude at which the decorrelation length peaks:

μ3 � −4μ3,0 J − 272( )/365when J> 181
μ3 � 4μ3,0 J − 91( )/365when J≤ 181 (8)

Such a parameterization can be easily incorporated in a

climate model that has a cloud subcolumn generator

(Räisänen et al., 2004), as shown in O12. Figure 3 (dotted

curves) shows the Gaussian curves for January 1st and July
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1st and includes the parameters of the Gaussian fit. The

present parameterization has the exact same functional form

as the one introduced by O12 and encapsulates the migration

of the most vertically aligned (and presumably developed)

clouds (those with the highest value of Lα) northward

(southward) during boreal summer (winter). The new

parameters produce higher values of Lα (more maximum

overlap) at low latitudes and smaller values (more random

overlap) at high latitudes, compared to O12. In Section 4 we

present an implementation of this parameterization to assess

scene and grand-average simulated cloud properties and

average cloud radiative effects and to evaluate the impact

of transitioning from O12’s to the current Gaussian fits.

3.2 Cloud optical depth vertical overlap

The “profiles” (Δz dependences) of rank correlation coefficient ρ
of COD distributions are calculated and averaged similarly to

profiles of α. Figure 5 provides a visualization of the zonal

dependence of ρ profiles for DJF and JJA as in Figure 2. We see

a similar pattern for ρ(φ, Δz) as for α(φ, Δz), namely decrease with

height and latitude, and shift toward higher values in the summer

hemisphere. Negative values below −0.1 are virtually non-existent

for ρ values that have been averaged extensively overmultiple scenes;

this suggests that the inability of the inverse exponential to yield

negative values is likely inconsequential in estimates of Lρ. Values

greater than 0.7 are quite rare and limited to Δz ≤ 480 m.

Estimates of Lρ are obtained by regressing ln(ρ) against -Δz,
similarly to how we calculated Lα; namely by performing again a

regression on each year’s seasonal zonal profiles, and averaging

seasonal values across the 4 years. The zonal variation of Lρ for

DJF and JJA is shown in Figure 6 (solid curves). The zonal pattern is

very similar to that of Lα even though the cloud fraction overlap

parameter and the rank correlation of COD are distinct physical

parameters describing different aspects of cloud vertical structure. A

model-oriented parameterization vs. latitude and day of the year is

again accomplished with a Gaussian function of the same type as for

FIGURE 4
(Left panel): Zonal variation of Lα for DJF and JJA from the two versions of the O22 COD dataset, one unfilled (straight merging of 2B-CWC-
RVOD and 2C-ICE COD fields) and one filled (to make consistent with 2B-CLDCLASS-LIDAR mask). (Right panel): as the left panel, but for Lρ.

FIGURE 5
Zonal variation of mean ρ, the correlation coefficient of COD ranks between cloudy layers, as a function of their separation distance Δz, for DJF
(left panel) and JJA (right panel) from the filled COD O22 dataset.
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Lα (Eq. 7), with parameter values included in Figure 6 which shows

parameterized curves for January 1st and July 1st (dotted curves).

Because our COD filling procedure assigns equal values of

liquid COD to cells when they belong to rays (cloudy

subcolumns) where TAU from MODIS is available to be used

as constraint, a tendency to overestimate ρ might have been

expected. Such a potential overestimate implies higher values of

Lρ which is however not seen; in reality the unfilled COD fields

imply somewhat higher rank correlations (right panel of

Figure 4). First of all, one should keep in mind that equal

COD values in two different layers do not necessarily have

the same rank. Second, the lower rank correlation of the filled

COD field may be explained by the fact that many cells are filled

by a secondary procedure that utilizes the available COD of

neighboring liquid cells, and this process may actually increase

randomness and therefore decrease rank correlations. Third,

lower rank correlations can also result from an increase in the

frequency of distant cloud layer pairs after filling, and such pairs

are expected to have COD distributions that are more

uncorrelated.

The peak magnitudes of Lρ at low latitudes are somewhat

smaller than those of Lα, but at some higher latitudes the values of

Lρ surpass those of Lα. This behavior differs from that in

O12 where Lρ < Lα was universal, but with Lρ calculated

directly from radar reflectivities of cloudy cells, and not actual

cloud retrievals, and in Oreopoulos and Norris (2011) who used

cloud condensate retrievals from ground-based radar. In an

analysis of cloud resolving model (CRM) fields Pincus et al.

(2005) found that Lρ > Lα is possible depending on the subset of

clouds used and the method of calculation. Räisänen et al. (2004)

in their own analysis of different CRM fields find Lρ < Lα

consistently. O22 found that halving the magnitude Lα while

at the same doubling the magnitude of Lρ compared to the

original parameterization of O12 did not have serious undesired

consequences on the radiative effects of cloud fields constructed

by the Raisanen cloud subcolumn generator, which implies that

Lρ > Lα is plausible and not necessarily unphysical.

3.3 Overlap dependences

3.3.1 Height of upper layer
In the previous analysis we derived a single decorrelation

length for the entire atmospheric column. This is because we

averaged α and ρ over all identical separation distances Δz
regardless of cloud layer heights. Räisänen et al. (2004) on the

other hand showed height-dependent decorrelation lengths

(their Figure 3) obtained by solving Eqs. 2, 3 for adjacent

layers, implying that overlap can be different for the same

separation distance Δz at different parts of the atmosphere.

Here we also attempt to resolve the dependence of the overlap

parameters and their corresponding decorrelation lengths on

height, but rather coarsely only. Specifically, we derive the zonal

variation of decorrelation lengths for three different standard

layers by segregating the calculations of α and ρ from Eqs. 4, 6

according to the location of the top of the upper cloud layer. The

three standard layers are delineated by the 680 hPa and 440 hPa

pressure levels separating clouds into low (L) when their cloud

FIGURE 6
Zonal variation of the decorrelation length Lρ of the
correlation coefficient ρ of COD ranks Lρ, modulating the
exponential decay of ρ vs. separation distance according to Eq. 3,
for DJF and JJA alongwith Gaussian fits according to Eq. 7 for
January 1st and July 1st.

FIGURE 7
Zonal variation of Lα (top panels) and Lρ (bottom panels) for
DJF (left panels) and JJA (right panels) when α and ρ are segregated
according to the height category of the top layer (see text for
details).
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top pressure (CTP) is greater than 680 hPa, middle (M) if

440 hPa < CTP <680 hPa, and high (H) when CTP <440 hPa,
as in the convention established by the International Satellite

Climatology Project (ISCCP, Rossow and Schiffer 1999). CTPs

were obtained from geometrical top heights with the help of the

ECMWF-AUX CloudSat dataset. The range of possible Δz’s is
highest when the top layer is H, and lowest when the top layer is

L. This is because H clouds can be overlapped with H, M, and L

clouds, and L clouds with only other L clouds; M clouds can be

overlapped with other M clouds as well as with L clouds.

Figure 7 shows the zonal curves for both Lα and Lρ, for two

seasons as before and segregated by cloud category according to

the vertical location of the upper cloud layer. Aside from the

previously noted seasonal zonal shifts, we also see a stronger

dependence on the category assignment of the top cloud for

cloud occurrence overlap (Lα) than COD overlap (Lρ). But even

for Lα, the dependence on cloud category is more pronounced at

low latitudes than high latitudes. More random overlap for the

cases where the upper cloud isHmakes sense because the overlap

samples include higher separation distances for which overlap

tends more towards random. But the same expectation based on

this argument does not extend to the M vs. L comparison where

separation distances are smaller, and where therefore less

random overlap is expected, when the upper cloud layer

belongs to the L category. It thus looks like there is an

underlying physical reason (yet unknown) for more maximum

overlap of cloud occurrence (and to a smaller degree of random

correlation in COD ranks) within M clouds and for M clouds

over L clouds.

The breakdown of overlap according to the H,M, L category

convention described here is simple enough to be included in a

model that uses a subcolumn generator. Basically, the type of

Gaussian fits previously discussed can be applied to the three

broad cases where the upper cloud belongs to one of the three

categories. Whether this additional level of nuance is called for

instead of the simpler approach of obtaining decorrelation

lengths without a height distinction would require testing.

3.3.2 Cloud regime
While the path to a relevant parameterization that can be

applied to GCMs may turn out to be impractical and the ultimate

impact small, it is worth pursuing a deeper understanding of

cloud overlap by examining its dependence on cloud regime

(CR). To accomplish this, we derived the zonal variation of

decorrelation length by compositing separately within 4° latitude

bands α and ρ for scenes coinciding with one of the AquaMODIS

CRs of Cho et al. (2021) which represent the dominant mixtures

of clouds at 1° daily scales according to CTP-TAU joint

histograms. Because many CRs have considerable geographical

preference (see Cho et al., 2021 for CR descriptions and

FIGURE 8
Annually averaged zonal curves of Lα and Lρ for groups of cloud regimes (CRs) from theO22 filled CODdataset; global average values are shown
in each panel. These results are obtained by identifying the coincident Aqua-MODIS CR for each of our scenes and then deriving decorrelation
lengths from zonal values of α and ρ for each CR group. The dotted curve indicates the zonal Relative Frequency of Occcurrence (RFO, in %, right
ordinate) of the CR group.
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characteristics), sampling is not adequate across all latitudes,

especially when the analysis is broken by season, as we have done

so far. To improve sampling, we therefore combine some CRs

into groups and create appropriate annual zonal averages of α

and ρ before applying the regressions that yield Lα and Lρ; as

before, the four annual values are averaged. The results of this

procedure are shown in Figure 8; each panel also includes the

zonal relative frequency of occurrence (RFO) of the combined

(when applicable) CRs (dotted curves). The RFO curves reveal

the geographical preference of CRs: CR1 and CR2 stand mainly

for deep convection and cirrus, and are predominantly tropical

cloud regimes, while CR3 and CR4 represent storms in both

tropics and midlatitudes; CR5-CR6 (extratropical ocean storms

and mid-level clouds often associated with orography) and CR7-

CR9 (mostly oceanic stratus and stratocumulus) dominate mid

and high latitudes, the low cloud fraction CR10 (oceanic shallow

convection) is encountered mostly in the tropical/subtropical

domain, while the even lower cloud fraction CR11 (mixture of

low and high clouds) is omnipresent, and with a prominent peak

in the southern polar regions. Decorrelation lengths are not

calculated where sampling is poor. This is most notable for

CR1-CR2 which do not have decorrelation lengths outside of

FIGURE 9
Comparison of the performance of the O12 (panels is left column) and the present (panels in right column) decorrelation length
parameterization at the level of individual scenes simulated with the Raisanen subcolumn generator. Occurrence frequencies are shown for
combinations of observed and simulated vertically projected scene cloud fraction CF (top row), the logarithm of vertically integrated optical depth
log (TAU) (middle row), and the variance of the vertically integrated optical depth var (TAU) (bottom row).
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30° S-N, and for CR7-CR9 for which the decorrelation lengths

have a gap north of the equator.

For regimes where a near-full zonal distribution of decorrelation

length can be calculated (all CRs except CR1 andCR2), the previously

seen zonal behavior re-emerges, namely higher decorrelation lengths

at low latitudes (tropics and subtropics). With regard to peak values,

the CRs seem to be broadly separated into two groups, one with peak

values of Lα around 5–6 km (CR1+CR2, CR10, CR11) and one with

peak values roughly 2 km lower (CR3-CR9), although in the case of

CR5-CR9 the peaks also correspond to the lowest number of samples.

Thefirst class is dominated by either deep or high clouds (CR1+CR2)

or scenes of small cloud fraction (CR10 and CR11). The second class

(CR3-CR9) encompasses all remaining storm and low clouds. Despite

the uneven sampling, these results suggest that the low latitude

members of cloud systems deemed to belong to the same family

as their extratropical brethren based on resemblance of CTP-TAU

histograms (the measure of similarity in MODIS cloud regime

classification) exhibit nevertheless distinct overlap behavior. This

result seems to counter the Tompkins and Di Giuseppe (2015)

argument that overlap metrics are skewed by the relative sizes of

cloud objects and domain sizes. Here, for a fixed domain size and

cloud objects presumably of similar size given theirmembership to the

same CR (a plausible, but not rigorous assumption), we see vertical

overlap to differ quite substantially between low and high latitudes.

The correlation of COD ranks expressed in terms of Lρ seems

to also follow the zonal pattern seen previously and to trace

closely Lα, but at slightly smaller magnitudes, per the earlier

results. The global values of the two decorrelation lengths

included in the Figure 8 panels reaffirm the close proximity

noticed earlier. CR1 + CR2 assume the greatest decorrelation

FIGURE 10
Comparison of the performance of the O12 and the present decorrelation length parameterization at the scene level. Average Euclidean
Distance (ED) as a function of scene CF (binned in 5% intervals, (left panel); occurrence frequency of pairs of ED values obtained from the O12 and
current parameterization of decorrelation lengths (binned in 1% intervals, (right panel).

FIGURE 11
Grand-average of CTP-TAU oceanic CF histograms from observations (O22 COD filled, left panel), simulated with the Raisanen simulator using
the decorrelation length Gaussian fits of O12 (middle panel) and the new Gaussian fits of this paper (Figures 3, 6) (right panel).

Frontiers in Remote Sensing frontiersin.org11

Oreopoulos et al. 10.3389/frsen.2022.1076471

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.1076471


length magnitudes, and CR5-CR9 the lowest. The large gap in

magnitude between these two broad cloud groups is a striking

indicator of how varied the cloud overlap of the planet’s clouds

can be, and how much detail is missed when the analysis is

performed indiscriminately on all clouds.

4 Performance of parameterized
overlap

In this section we discuss practical implementations of

the findings of the preceding overlap analysis. Specifically,

we use the updated decorrelation length parameterizations

(Eq. 7) in the “Raisanen generator” (Räisänen et al., 2004) to

produce for each 100-ray scene subcolumns that are then

filtered through the COSP [CFMIP (Cloud Feedback Model

Intercomparison Project) Observation Simulator Package,

Bodas-Salcedo et al., 2011] MODIS simulator to produce for

each scene a simulated 2D COD field that is consistent, to the

extent possible, with MODIS retrievals of TAU (vertical

integral of subcolumn COD) and CTP (pressure of what

MODIS would consider the cloud top of the subcolumn). As

part of this process, subcolumns with TAU <0.3 are

discarded and scene cloud fraction is resolved in terms of

CTP-TAU joint histograms as in O22.

We first assess the performance of the generator with the

new decorrelation length parameterization at the scene level

(for reasons explained in O22 only oceanic scenes are used)

and also compare with results obtained using the

O12 parameterization. For each scene, values of Lα and Lρ

FIGURE 12
SW (top row) LW (middle row) and total = SW + LW (bottom row) CRE discretized by combinations of CTP-TAU bins when using CF joint
histograms from observations, and the Raisanen generator with either the O12 decorrelation length parameterization or the parameterization of this
paper. The colors in the left column correspond to the actual CRE binned values numbers while in the other two columns to differences from
observations.
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are calculated from the parameterization using the center

latitude of the scene and the Julian date on which it was

observed. Results are shown in Figure 9 which employs

density plots to contrast observed scene vertically

projected cloud fraction, mean logarithm of TAU and

variance of TAU (also from the MODIS simulator) against

two versions of their simulated counterparts, one using O12’s

parameterization of decorrelation lengths and another using

the updated version of this paper in the Raisanen generator.

Figure 9 reveals that the new parameterizations of

decorrelation lengths (the parameterization of layer COD

variance remains the same as in O12, namely a beta COD

distribution with variance parameterized as a function of

layer cloud fraction) do not yield tangible improvements

over the old parameterization. While the performance in

terms of mean values is slightly better (as indicated by the

smaller mean errors provided in the panels), correlations and

RMSEs are either the same or slightly inferior.

A performance comparison of decorrelation length

parameterizations was also conducted in terms of CTP-

TAU joint histograms. The scene level results are shown

in Figure 10. The left panel shows Euclidean Distances (EDs,

square root of the sum of squared bin CF differences)

between the joint histograms of observed and simulated

scenes composited in terms of scene cloud fraction. The

smaller the ED, the more similar the observed and

simulated joint histograms are (i.e., better performance).

The mean ED of the new parameterization is slightly

larger indicating a marginally worse performance. The

density plot of scene level ED values (right panel) is

nearly symmetric around the line of perfect agreement

indicating that the performance of the two

parameterizations is practically equivalent.

A more straightforward comparison is that of grand-

averages of observed and simulated joint histograms. This is

shown in Figure 11 and confirms the slight edge of the new

parameterization on average. The grand-averaged joint

histogram of the new parameterization is slightly more

similar to its observed counterpart as evidenced by a

smaller ED and a closer to observations vertically

projected cloud fraction (albeit still substantially far from

the observed value).

FIGURE 13
Mean CF errors discretized in CTP-TAU bins (i.e., joint histogram errors) for four combinations of extreme Lα and Lρ. Zero values correspond to
random vertical overlap of cloud fraction and COD ranks, while infinite values correspond to maximum cloud fraction overlap and perfect
correlations of COD ranks.
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Does the marginal improvement brought by the new

parameterization in a mean sense matter radiatively? We

found that it does not. We examined this in the same way as

O22 by converting joint CTP-TAU histograms to shortwave

(SW), longwave (LW) and total = SW + LW Cloud Radiative

Effect (CRE) resolved in CTP-TAU space using observation-

based Cloud Radiative Kernels from the Clouds and the

Earth’s Radiant Energy System (CERES) FluxByCldTyp

product (Sun et al., 2022); details of the methodology can

be found in O22. Results are shown in Figure 12 and once

again reaffirm how negligible the performance differences

between the two parameterizations are. The most important

conclusion actually does not pertain so much to differences

between the two parameterizations, but rather to how well

the implementation of this type of parameterization into the

Raisanen generator reproduces CREs on average, both in

terms of the overall value, but also in terms of the

distribution itself of average binned CRE.

5 Conclusion and perspectives on
cloud vertical overlap

Taking advantage of the availability of new datasets from

CloudSat’s radar and CALIPSO’s lidar, we have re-evaluated

parameters used to describe vertical cloud overlap at ~ 100 km

scales. Specifically, we used COD fields created in recent work

(Oreopoulos et al., 2022). When expressing the vertical overlap of

cloud occurrences and of COD distributions in terms of

decorrelation lengths as is common in the cloud overlap

literature, we found larger peak values than in previous work

also based on CloudSat and CALIPSO observations (Oreopoulos

et al., 2012). We also took the opportunity to extend that work by

examining overlap in more detail for different cloud classes. In

particular, we examined how overlap contrasts among broad

categories of high, middle, and low clouds, but also among more

finely-defined cloud categories based on passive observations,

known as cloud regimes. All such overlap breakdowns showed an

unambiguous zonal pattern for both cloud occurrence and cloud

optical depth overlap decorrelation lengths with clear peaks at

low latitudes indicating more aligned vertical structures, possibly

due to stronger large-scale vertical motions and less wind shear

(Di Giuseppe and Tompkins 2015) in the tropics and subtropics.

They also showed that an analysis that ignores cloud classes

conceals a great amount of diversity in how the planet’s clouds

overlap.

For a practical use of our overlap analysis we applied the

same type of Gaussian fits to the observed zonal curves of the two

decorrelation lengths as in O12 and then implemented the

updated parameterization in the “Raisanen generator”

(Räisänen et al., 2004) to produce subcolumns that form

simulated scenes. From these subcolumns, COSP’s MODIS

simulator generates subcolumn CTP and TAU values as well

as subgrid distributions of cloud fraction in terms of CTP-TAU

joint histograms. These quantities were then be compared with

their observational counterparts obtained by similarly passing

the observed COD field through the MODIS simulator. This

exercise showed no notable performance enhancements

compared to the case where O12 decorrelation length

parameterizations were used.

The above major finding raises the question of how sensitive the

performance (as evaluated here) of subcolumn generation is to

extreme values of decorrelation length. We tested this by

implementing unrealistic maximum and random overlap

(decorrelation lengths of infinity and zero, respectively) for both

cloud occurrence and COD distribution overlap, specifically the four

possible combinations of purely maximum and purely random

overlap for the two types of overlap. Results are shown in

Figure 13. We see that neither maximum nor random overlap

works in any combination, as it yields large errors in CTP-TAU

histograms. As expected, random cloud occurrence overlap produces

big overall estimates of cloud fraction, which are more extreme when

COD overlap is also random because in that case the likelihood of

TAU <0.3 decreases. An overall overestimation in total projected

cloud fraction (CF) does not mean that CF is overestimated in every

histogram bin. This is because random overlap also decreases the

likelihood of extensive vertical alignment that creates optically thick

clouds. When on the other hand Lα = ∞, i.e., cloud occurrence

overlap is maximum, overall CF is underestimated, less so than when

COD overlap is random, because of more TAU >0.3 subcolumns.

Again, individual histogram bins that go against the underestimation

expectation exist. This is because maximum overlap also creates

pockets of more populous than observed optically thicker clouds.

While puremaximumandpure randomoverlap perform very poorly,

when combined as in the original maximum-random paradigm

described in the introduction and implemented in COSP’s SCOPS

(Subcolumn Cloud Overlap Profile Sampler) subcolumn generator,

performance is acceptable, albeit inferior to that of generalized overlap

(see O22).

A survey of the overlap literature exploring generalized overlap

since 2000 when the Hogan and Illingworth (2000) work was

published, reveals that decorrelation length magnitudes capturing

the decay of the parameter α controlling themixing of maximum and

random overlap occupy an enormous range that makes convergence

towards universally accepted values for GCM parameterization

purposes challenging (rank correlation of distributions of

condensate or optical depth have been studied much less).

Magnitudes of decorrelation length depend on exact definitions

(e.g., the “effective” decorrelation length of Barker 2008b, while

similar, does not have the same meaning as in the original

definition adopted here); the type of dataset used (cloud fields

simulated by a cloud resolving model, ground-based radar, space-

based radar, combined space-based radar-lidar observations); the size

of the reference domain (scene); the cloud fraction threshold used to

weed out non-meaningful calculations of overlap; types of clouds

examined or retained for overlap calculations; whether only
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contiguous or all cloudy layers are used, or whether only adjacent

cloud layers are used; and how the values of either α and Lα are

sampled, averaged, fitted, and composited. Given this multitude of

dependences and some degree of insensitivity to Lα in the end values

of cloud and radiation statistics, one is left wondering how modelers

can chose the most appropriate decorrelation length values. Our

results show that both the Oreopoulos et al. (2012) and the new

parameterization derived here are viable, at least in a mean sense

(substantial errors at the scene level are still not universally

suppressed). They also make apparent that a latitudinal

dependence of decorrelation length is an essential aspect of a

parameterization, preferably also accounting for seasonal variation.

If GCMs still perform long integrations with rather coarse grids in the

near future, cloud vertical overlap remains an important observable

that should be periodically revisitedwith improved active observations

and cloud products such as those expected in a few years from

NASA’s Atmospheric Observing System (AOS) and ESA’s EarthCare

mission.
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