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Snow albedo, a measure of the amount of solar radiation that is reflected at the snow
surface, plays a critical role in Earth’s climate and in regional hydrology because it is a
primary driver of snowmelt timing. Satellite multi-spectral remote sensing provides a
multi-decade record of land surface reflectance, from which snow albedo can be
retrieved. However, this observational record is challenging to assess because
discrete in situ observations are not well suited for validation of snow properties
at the spatial resolution of satellites (tens to hundreds of meters). For example, snow
grain size, a primary driver of snow albedo, can vary at the sub-meter scale driven by
changes in aspect, elevation, and vegetation. Here, we present a new uncrewed
aerial vehicle hyperspectral imaging (UAV-HSI) method for mapping snow surface
properties at high resolution (20 cm). A Resonon near-infrared HSI was flown on a
DJI Matrice 600 Pro over the meadow encompassing Swamp Angel Study Plot in
Senator Beck Basin, Colorado. Using a radiative transfer forward modeling approach,
effective snow grain size and albedo maps were produced from measured surface
reflectance. Coincident ground observations were used for validation; relative to
retrievals from a field spectrometer the mean grain size difference was 2 μm, with an
RMSE of 12 μm, and the mean broadband albedo was within 1% of that measured
near the center of the flight area. Even though the snow surface was visually
homogenous, the maps showed spatial variability and coherent patterns in the
freshly fallen snow. To demonstrate the potential for UAV-HSI to be used to
improve validation of satellite retrievals, the high-resolution maps were used to
assess grain size and albedo retrievals, and subpixel variability, across 17 Landsat
9 OLI pixels from a satellite overpass with similar conditions two days following the
flight. Although Landsat 9 did not capture the same range of values and spatial
variability as the UAV-HSI, on average the comparison showed good agreement, with
a mean grain size difference of 9 μm and the same broadband albedo (86%).
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Introduction

It is critical to quantify the timing and magnitude of seasonal snowmelt from the world’s
mountains. Seasonal snowmelt from mountain headwaters dominates downstream hydrology
and provides water to billions; controlling water availability, flood potential, agriculture,
hydroelectric generation, and water quality (Barnett et al., 2005; Mankin et al., 2015). The
energy for snowmelt in most mountain environments predominantly comes from net solar
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radiation, the biggest contributor of snowpack’s energy balance, which
is primarily controlled by snow albedo (Marks and Dozier, 1992;
DeWalle and Rango, 2008). Therefore, inaccuracy in the estimation of
snow albedo constitutes the major source of uncertainty in calculating
the energy balance of the snowpack. Additionally, limited knowledge
of snow albedo, and trends over space and time in the Arctic, forested
regions, and tundra directly propagates to uncertainty in the controls
that snow has on climate, ecology, and phenology.

Despite the importance of snow albedo, there are very few in situ
measurements of it, and those that do exist are rarely representative of
the surrounding terrain, especially in mountains. There are relatively
long satellite records of multispectral surface reflectance from
satellites, but retrieving snow albedo, which differs from land
surface albedo when the pixel is not fully snow-covered, is
complicated by topography and frequency of mixed pixels in
complex terrain. Currently, there is not a publicly distributed
global remotely sensed snow albedo product suitable for snow in
mountains, although estimates have been made for fractional snow-
covered products from the Moderate Resolution Imaging
Spectrometer (MODIS) for some regions (Bair et al., 2019). Given
the importance of snow albedo it is likely that retrievals will be
developed for finer scale multispectral satellites, like Landsat’s
Operational Land Imager (OLI), but the coarseness of satellite data,
spatially or temporally, relative to snow process scales means that
products are challenging to assess. Nevertheless, given the challenges
of in situ measurements’ representativeness and inaccessibility of the
terrain, satellite remote sensing is the only practical way to consistently
observe mountain snow and understand how it is changing over space
and time.

This motivates the development of methods that can fill the gap
between sparse non-representative point measurements and coarse
satellite observations that could be used for validation or downscaling
and to quantify patterns and spatiotemporal variability. Here, we
present a new uncrewed aerial vehicle hyperspectral imaging (UAV-
HSI) method for mapping effective snow grain size and albedo at high
resolution (20 cm) over Swamp Angel Study Plot in Senator Beck
Basin, San Juan Mountains, CO. To demonstrate the utility of UAV-
HSI snow property retrievals, the maps were resampled to the spatial
resolution of Landsat 9 OLI (30 m) and then used to assess the
multispectral grain size and albedo retrieval and subpixel
variability. Spectral imaging is becoming increasingly suitable for
UAV deployment as instruments decrease in size and increase in
data quality, but to date, no studies have used UAV-HSI to carry out
quantitative snow property retrievals or to assess coarser multispectral
satellite retrievals.

Background

Snow albedo

Snow albedo is defined as the ratio of incoming hemispherical
(direct and diffuse) solar radiation to that of reflected radiation at the
snow surface in all directions (bi-hemispherical). A significant body
of work has refined models and measurements of snow and ice
optical properties, and the spectrally varying controls on albedo are
well understood (Warren and Wiscombe, 1980; Wiscombe and
Warren, 1980; Warren, 1982; Grenfell and Warren, 1999; Warren
and Brandt, 2008; Gardner and Sharp, 2010). In the visible

wavelengths ice is transparent, and due to scattering between
grains, clean snow reflects up to 99% of incoming light. Decreases
in visible snow albedo occur when light-absorbing particles (LAPs)
are present at or near the surface, which increases the likelihood of
light absorption (Warren, 2019). In the near- and shortwave-
infrared ice is increasingly absorptive and snow grain size is the
primary driver of snow albedo. As snow grains grow, typically a
gradual process over time, the path length of ice increases, which
increases the likelihood of absorption. Steep temperature gradients
and melt-freeze cycles can cause rapid grain growth and therefore
accelerate albedo decline.

Comparison of multiple scattering radiative transfer models
and empirical measurements have shown that the spectral albedo of
clean snow (no LAPs) can be well-simulated by representing snow
as a collection of ‘equivalent spheres’, expressed as either as an
effective grain radius or as the specific surface area (Grenfell and
Warren, 1999; Painter and Dozier, 2004; Domine et al., 2006;
Picard et al., 2009). Hereafter, the term effective grain radius
will be simplified and referred to as grain size. The relationship
between grain size and albedo has led to the development of
different grain size retrieval methods from measured surface
reflectance, which offers a pathway to retrieve albedo from
optical remote sensing.

Although sometimes the terms are used interchangeably, it is
important to distinguish between albedo and reflectance measured
from a remote sensing instrument, such as a satellite- or airborne
imaging spectrometer. Generally, passive optical sensors measure a
hemispherical-conical reflectance factor (HCRF) meaning that it only
senses a portion of the light reflected back towards the instrument,
while albedo is a measure of reflected light integrated over all angles
(Schaepman-Strub et al., 2006). Because snow is preferentially forward
scattering, and instantaneous reflectance measurements do not
capture all of the relevant light interactions, modeling is required
to translate HCRF to albedo by accounting for viewing and solar
geometry (Painter et al., 2009).

FIGURE 1
Spectral reflectance factors for snow having an effective grain
radius of 100, 250, and 750 μm. An example of the scaled band area grain
size retrieval method is shown on the 100 μm spectra across the ice
absorption feature centered at 1030 nm. The spectral resolution of
the NIR-HSI (orange arrow), field spectrometer (gray arrow), and Landsat
9 OLI (between dashed lines) are indicated on the plot.

Frontiers in Remote Sensing frontiersin.org02

Skiles et al. 10.3389/frsen.2022.1038287

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.1038287


Previous work

The band placement of current multispectral satellites is not ideal
for retrieving snow properties because there are limited bands in the
near infrared (NIR) and the resulting ‘step’ like spectra do not resolve
snow reflectance features (Landsat 9 OLI example in Figure 1). Still,
snow property retrieval algorithms have been developed. A NIR band
ratio has been used to calculate the normalized difference grain size
index (NDGSI) for MODIS (Painter et al., 2012). This approach
implicitly assumes pixels are fully snow-covered. For pixels that are
not fully snow-covered, spectral unmixing can be used to
simultaneously retrieve the snow-covered fraction and the grain
size within that fraction, which is the approach used by Snow
Property Inversion from Remote Sensing (SPIReS; Bair et al., 2020)
and MODIS Snow-Covered Area and Grain Size solution
(MODSCAG; Painter et al., 2009). A clean snow albedo product,
derived from the grain size, is also provided by MODSCAG. Because
making accurate in situmeasurements at the scale of satellite retrievals
(e.g., 500 m for MODIS) is challenging, ground validation assessment
of these products is scarce. For example, the reported uncertainty for
MODSCAG grain size is 64 μm, with a bias of 30 μm, based on only
12 manual measurements of observable grain size with a hand lens
(Painter et al., 2009), which is not representative of the “effective”
particle size that is being retrieved.

Snow products are most well developed for MODIS because of the
record length (>20 years), near daily temporal resolution, and
radiometric resolution make it the best available option for
mountain snow. At 30 m spatial resolution Landsat would seem
better suited for monitoring snow processes, but historically, the
radiometric resolution of Landsat sensors resulted in saturation
over snow (Rittger et al., 2021), and the temporal repeat was coarse
(16 days), limiting snow applications to seasonal assessment of snow
extent. In research applications Landsat data has been used to assess or
downscale the coarser scale MODIS retrievals, but only for limited
spatial and temporal subsets (Durand et al., 2008; Rittger et al., 2012).
Suitability for snow property retrievals changed with the launch of the
OLI on Landsat 8 in 2013, a modern push broom sensor with better
radiometric resolution and signal-to-noise ratio. The launch of
Landsat 9 OLI in 2021 further increased Landsat’s suitability for
snow because the orbit is offset from Landsat 8, cutting the
temporal repeat in half to 8 days. The current USGS snow product
available for Landsat is fractional snow extent (Level 3 product), but
there is not yet a snow grain size or snow albedo product.

Airborne imaging spectrometers, also referred to as hyperspectral
sensors due to their high number of continuous bands, have been used
to retrieve grain size by relating characteristics of spectrally resolved
ice absorption features to simulated values. This has been done using
the scaled band area method (Figure 1), which integrates under the
continuum line (red line, Figure 1) for the full ice absorption feature
(gray shaded area, Figure 1) centered at 1030 nm (Nolin and Dozier,
2000), spectral slope method calculated from the shoulder to the base
of the 1030 nm ice absorption feature (Skiles et al., 2018b), spectral
best fit (Seidel et al., 2016), or optimal estimation (Bohn et al., 2021).
Spectral snow albedo can then be modeled from grain size using the
per-pixel illumination and viewing angle, and further integrated to
broadband albedo through the convolution of spectral irradiance and
spectral albedo (Painter et al., 2013; Seidel et al., 2016; Skiles et al.,
2018b). These algorithms are more accurate than satellite retrievals
because they leverage the continuous spectral signature of snow in

each pixel, and the higher spatial resolution (2–20 m) reduces the
frequency of mixed pixels. The limitation of this approach is
infrequent collections due to cost and logistics associated with
crewed aircraft.

Increasingly, UAVs are being used for snow applications. Many
have focused on differential snow depth mapping using UAV based
photogrammetry or lidar (Harder et al., 2016; Miziński and
Niedzielski, 2017; Redpath et al., 2018; Harder et al., 2020; Jacobs
et al., 2021). There have been case studies, though, that have
demonstrated mapping of broadband albedo in snow-covered
environments. These studies have used paired pyranometers
mounted in upward- and downward-looking configurations
(Webster and Jonas, 2018; Sproles et al., 2020; Mullen et al., 2022)
or a single downward-looking pyranometer on the UAV and a
stationary upward-looking pyranometer within the flight area (Levy
et al., 2018). These measurements return a single spectrally integrated
value for incident and reflected radiation, from which broadband
albedo can be calculated. If care is taken to fly only over snow, this
would be an effective snow albedo (Mullen et al., 2022), otherwise,
snow cannot be separated from other land surface types with a
spectrally integrated measurement. Rather, the goal is to measure
mixed land surfaces to understand heterogeneity when snow is present
with other land surface types (Webster and Jonas, 2018). The
measurements are referred to as effective because the measured
ratio of outgoing to incoming solar radiation is relative to the
illumination and the upward- and downward-looking spatial
footprint at time of measurement, which is in flux during the UAV
flight due to the instruments 180° field of view.

At ground-based scales similar methods have been applied to map
snow grain size along vertical snow profiles at the laboratory and
snowpit scale from spectral reflectance measured with a near infrared
hyperspectral imager (NIR-HSI). These retrievals were based on the
same concept as airborne imaging spectroscopy, using per-pixel scaled
band area (Donahue et al., 2021), or best fit to simulated NIR
reflectance (Donahue et al., 2022). These retrievals established the
feasibility of mapping grain size from a relatively inexpensive and
compact NIR-HSI, as well as demonstrating an application for
interpreting radar remote sensing retrievals (Donahue and
Hammonds, 2022). This motivated the current study, which has
two primary goals; 1) validate quantitative retrievals of snow grain
size, and albedo, from UAV-HSI measured reflectance, and 2)
demonstrate the utility of these retrievals for assessing per-pixel
values of grain size and albedo, and sub-pixel variability, from
Landsat 9 OLI.

Methods

Study site

The UAV overflight took place on 31 May 2022, at Swamp Angel
Study Plot (SASP; 37.906914°N, −107.711,322°W; 3368 m), located
within Senator Beck Basin Study Area (Landry et al., 2014). Senator
Beck Basin (Figure 2A) is a small (~3 km2) study basin in the San Juan
Mountains of southwest Colorado, United States that has been
operating since water year 2004, and has been previously used as a
primary ground validation site for multiple airborne snow imaging
spectroscopy efforts (Painter et al., 2013; Seidel et al., 2016; Skiles et al.,
2018b). SASP, located in an open meadow (~18,000 m2) below tree
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line near the basin pour point, is an accessible well-instrumented study
plot within the basin boundary (Figure 2). The study plot contains an
instrumentation tower situated within a roped-off area (~200 m2) to
limit snow disturbance.

The tower measurements that were used in this study to put the
snow conditions and snow property retrievals in context were snow
height, air temperature, and snow albedo, which is calculated from
incoming and outgoing solar radiation. The data from Senator Beck is
posted at the end of the water year (September 30th), which was not
yet available for this study. Real time data was used instead, which was
provisional (MesoWest Site ID: CASWP). To fill in a data gap in the

provisional record for snow height, the quality assessed end of day
values were filled in using the nearby RedMountain Pass SNOTEL site
(Site 713).

In addition to the UAV-HSI data collection presented here, a
UAV lidar with RGB camera was flown over SASP on the same day.
This data is not described in detail, as it is not a part of the analysis
presented here, but the orthomosaic of the RGB imagery and the 1 m
snow surface DEM from the lidar are helpful to visualize conditions
at time flight (Figures 2B, C). The meadow gently slopes upward
from the southeast corner and is bounded by a hill on the northern
edge and the creek on the southern edge. On the day of flight, the

FIGURE 2
(A)Overviewmap of Senator Beck Basin, Colorado, United States (B) Swamp Angel Study Plot with RGB orthomosaic from day of flight. (C) The UAV-HSI
flight area with day of flight lidar derived snow surface digital elevation model (DEM).

FIGURE 3
Photographs of (A) UAV-HSI system and (B) reference tarp at the field location.
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snow surface slope across the majority of the meadow ranged
between 1 and 4°, with a mean snow surface elevation of 3,363 m
(2.75 m standard deviation).

Field collection

UAV near infrared hyperspectral imaging
In this study a Resonon Pika NIR-320 hyperspectral imager was

directly mounted to a DJI Matrice 600 Pro Hexacopter (M600) in a
nadir-looking configuration (Figure 3A). The NIR-320 is a line-scan
(i.e., push broom) imager with 168 continuous spectral bands,
measuring spectral radiance between 900–1700 nm at 4.9 nm
bandwidth and 14-bit radiometric resolution. The output data
product is a spectral data cube, which has two spatial dimensions
(x,y) and a spectral dimension (λ = 168), with each spatial pixel
containing the at-sensor spectral radiance signature. The imager
weighs 2.6 kg and is 11.0 × 29.6 × 8.9 cm in size. To track the
location and movement during flight, an inertial measurement unit
(IMU) and global navigation satellite system (GNSS) receiver was
mounted to the side of the imager, which was used to georectify the
imagery postflight.

The flight consisted of three flight lines with 20% overlap; the first
line started at 11:29:46 and the last line completed at 11:33:21 local
time, with a total flight time of approximately four minutes. At the
time of flight, which took place within two hours of solar noon (13:
15 local time), the solar zenith angle was 41° and the snow surface was
fully illuminated. There was high, light, cirrus clouds but they were not
obscuring the sun. The flight altitude was 20 m above ground level
(3388 m agl), producing imagery at 20 cm pixel-resolution. Areal
coverage was ~13,250 m2, which included the roped-off study plot
and most of the surrounding meadow (Figure 2). A reference tarp
made up of three spectrally flat reflectance gray panels (11%, 32%,
54%), which was used in post-processing, was placed in the flight area
prior to the flight (Figure 3B).

Field spectroscopy
For assessment and validation of the UAVmeasurements, discrete

point measurements of surface spectral reflectance factors were
collected in situ with an ASD® FieldSpec4 field spectrometer. The
FieldSpec 4, designed for fast and precise spectral measurements,
contiguously samples the spectral range 350–2500 nm, with
contiguous bands that are 3 nm (at 700 nm) to 10 nm (at 1400 and
2100 nm) at full width half maximum. The spectra are resampled and
splined to 1 nm resolution and the wavelength reproducibility and
accuracy is 0.1 and 0.5 nm, respectively. There were 20 total reflectance
measurements within the flight area, to limit snow disturbance the
measurements were collected over undisturbed snow adjacent to the
existing ski track used to access the study plot (Figure 3B).
Measurements took place just prior to the flight, between 11:
12 and 11:26 a.m. local time. The reflectance transects began with
a measurement of a Spectralon® white reference panel for calibration,
proceeded by snowHCRFmeasurements at regular intervals along the
transect in a nadir-looking configuration using a pistol grip and 8° field
of view narrowing fore optic. With each measurement collected ~1 m
above the snow surface, the measurement spot size was ~28 cm. Each
measurement location was recorded with an Emlid RS2 RTK GNSS
receiver, coupled with a stationary Emlid RS2 base station. During the
flight, the field spectrometer was also used to measure incoming

spectral solar irradiance (W m−2) using a level upward-looking
remote cosine receptor.

Data processing

An overview of the data collection and processing workflow is
shown in Figure 4. Each flight line was georectified using
Spectronon processing software, provided by Resonon, using the
location data and instrument parameters. The flight lines were then
mosaiced using ENVI® image processing and analysis software,
which uses the georeferencing information to align individual lines,
and interpolates across the overlapping regions using cubic
convolution. Due to location error, some identifiable features
(trees, tree shadows, and ski tracks) did not initially align
perfectly and the mosaic was corrected by manually shifting the
flight lines to align the features.

The remainder of the workflow was developed and carried out in
MATLAB®. First, the HCRF was calculated for each NIR-HSI pixel
radiance using the center panel (32%) of the gray reference tarp. To
reduce noise in the spectral reflectance curves a least-squares Savitzky-
Golay filter (Savitzky and Golay, 1964) was applied with a polynomial
degree of 5. Using a 35% reflectance threshold within the ice
absorption feature (1029 nm), pixels containing non-snow and
shadows were masked out of the NIR-HSI map, including trees
and the reference tarp.

Then, for each NIR-HSI pixel and field spectrometer point
measurement the scaled band area (Ab) was calculated for the ice
absorption feature centered at 1030 nm (Nolin and Dozier, 2000). The
scaled band area is the area between the measured reflectance (Rsnow,λ)
and continuum reflectance (Rcont,λ; shown as the red line in Figure 1),
scaled by Rcont,λ, integrated over the 27 bands between the two
shoulders centered at 962 and 1092 nm.

Ab � ∫
λ�1092 nm

λ�962 nm

Rcont,λ − Rsnow,λ

Rcont,λ
dλ (1)

The grain size was retrieved by relating the measured scaled band
area to theoretical scaled band areas from directional-hemispherical
reflectance factors (DHRF) simulated using the Snow, Ice, and Aerosol
Radiative Transfer Model (SNICAR-ADv3; Flanner et al. (2021)). A
scaled band area lookup table was generated for effective grain radii
ranging from 30 to 1500 μm at 1 μm increments and a direct solar
illumination corresponding to the sun geometry at the time of flight
(41° solar zenith angle). The comparison of the measured HCRF with
the simulated DHRF is a suitable approach because they are nearly
identical at nadir viewing angles (Dumont et al., 2010), which was the
case for the NIR-HSI and field spectrometer over the flat meadow.

To assess the UAV retrievals, the NIR-HSI reflectance signatures
and grain sizes were compared to those from the field spectrometer,
which was used as the reference measurement. There was some
uncertainty in the absolute and relative locations of the NIR-HSI
pixels, due to a combination of GNSS uncertainty and the manual
alignment of flight lines. Therefore, field spectrometer point
measurements that were located inside of the ski track were
manually moved (at most 10 cm) outside of the ski track because
all measurements were taken over undisturbed snow. To account for
this, and the larger spot size of the field spectrometer (28 cm) relative
to a UAV-HSI pixel (20 cm), the comparison included the NIR-HSI
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pixel containing the field spectrometer point location and the
surrounding nearest neighbor pixels (9 pixels total).

Following the initial comparison there was a consistent low bias in
the grain sizes, discussed in more detail in Vicarious Calibration
Section. To address this bias, one of the field spectrometer
reflectance measurements was used to carry out a vicarious
calibration (Richter et al., 2001; Secker et al., 2001; Milton et al.,
2009) on the NIR-HSI imagery. This calculates a per-band correction
factor, forcing the NIR-HSI spectral reflectance to match the field

spectrometer, and then applies that correction factor to every pixel in
the scene. In this instance, the 9-pixel average reflectance factor was
used to represent the NIR-HSI spectral reflectance. The vicarious
calibration point, measurement point #14 (Figure 5A), was selected
because 1) it was in the overlapping region between two flight lines, 2)
the nine neighboring pixels were well matched with low variability,
and 3) the reflectance signatures were similar in magnitude to the ASD
but had variation in the shape of the ice absorption feature. This
resulted in correcting the scaled band area, as opposed to reflectance

FIGURE 4
Overview of UAV-HSI and field spectrometer processing steps.

FIGURE 5
(A) NIR-HSI pre- and post-vicarious calibration using the field spectrometer point measurement #14. (B) Field spectrometer point #2 and the pre- and
post-vicariously calibrated NIR-HSI spectra at the same location.
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magnitude, which is shown in the example pre- and post-calibration
UAV-HSI pixels at field spectrometer point #2 (Figure 5B).

Finally, broadband snow albedo was mapped per-pixel using the
post-calibration grain sizes and illumination geometry. Spectral
bihemispherical snow albedo (α(r, λ)) was simulated using
SNICAR for retrieved grain sizes (r) in each pixel. Spectrally
weighted broadband albedo (α(r)) between 350 and 2500 nm was
calculated using the SNICAR simulated albedo in each pixel and the
spectral irradiance (E(λ)) measured in situ with the field spectrometer
by dividing the integral of the product of irradiance and albedo by the
integral of irradiance:

α r( ) � ∫ 2500 nm

λ�350 nmE λ( )pα r, λ( )Δλ
∫ 2500 nm

λ�350 nmE λ( )Δλ
(2)

We note that this approach is based solely on grain size and does
not account for albedo reduction due to surface darkening by LAPs,
and therefore would be considered a ‘clean’ snow albedo. For this case
study, this is a reasonable approach because the snowwas freshly fallen
and clean. If the snow were not clean, measurements of snow
reflectance in the visible wavelengths would be needed, in addition
to the NIR, to quantify the observed snow albedo.

Landsat 9 OLI

The Landsat 9 overpass occurred two days after the UAV-HSI
flight, on April 2nd at 11:50 a.m. Parts of the scene were obscured by
clouds, but SASP was cloud free. Although the overpass was not
coincident with the UAV flight, the comparison is suitable given that
conditions were similar for the Landsat 9 overpass, with fresh snow at
the surface and collection time <30 min after the UAV-HSI flight
(solar zenith angle 38°). The Landsat 9 Level-2 surface reflectance
scene (L2SP, Path: 035, Row: 034, Tier 1) was first subset to the
bounding box of the NIR-HSI flight. Then, pixels with less than 25%
NIR-HSI areal coverage were excluded, and 17 pixels remained that

overlapped with the NIR-HSI flight area. To retrieve grain size, the
NDGSI was calculated using band 5 (850–880 nm) and band 6
(1570–1650 nm):

NDGSI � band5 − band6

band5 + band6
(3)

Grain size, which scales logarithmically with the index value (see
Figure 1 in Painter et al., 2012), was retrieved by matching the Landsat
NDGSI to theoretical NDGSI values based on SNICAR simulated
spectra for a range of grain sizes at 38° direct illumination. The
corresponding broadband albedo in each pixel was then calculated
using the retrieved grain size and illumination geometry as previously
described using Eq. 2. To compare the two datasets, the NIR-HSI grain
size and albedo were resampled from 20 cm to Landsat 9 resolution
(30 m). To quantify the sub-pixel variability within each 30 m pixel,
zonal statistics for grain size and albedo were calculated for each
Landsat pixel from the NIR-HSI imagery using the native 20 cm
resolution. The statistics used to characterize and interpret the
variability were percent coverage, standard deviation, and range
between the highest and lowest values.

Results

Field conditions and UAV flight parameters

The day of the flight (March 31st) was preceded by cloud cover
and precipitation; between March 28th and March 31st 25 cm of new
snow fell. The peak snow height of 174 cm at the instrumentation
tower occurred at 4 a.m. local time on the day of flight, after which
skies began to clear. At the time of flight snow height had settled to
171 cm (Figure 6). The air temperatures were near the freezing point;
the night prior to the flight the temperature reached a low of −10°C
and reached just above 1°C during the flight. A snow pit excavated near
the study plot showed that the top 10 cm of the snowpack was

FIGURE 6
Swamp Angel Study Plot air temperature and snow height between March 29 and April 2. The gap in snow height during the storm prior to March 31st
shows midnight values, as red stars, from a nearby SNOTEL site.
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unconsolidated new snow made up of small and decomposing
precipitation particles, on top of a new, but more consolidated,
snow layer. The temperature of the surface snow layer was 0°C, but
had fallen on snow which retained cold content, with the coldest
temperature of −1°C at 70 cm height. Winds were light, less than 1 m
s−1, typical in the protected meadow, and were coming from the east in
the morning, shifting to the south at 9 a.m. The prevailing wind
direction at SASP is southwest (Landry et al., 2014).

During flight, the UAV was relatively stable and consistent in
terms of pitch, roll, and yaw, which was recorded along each flight line
during imagery collection from the IMU (Figure 7). This is important
because the sensor was directly mounted to the UAV, as opposed to
being on gimbal. The mean roll angle, or movement side to side, was
0.6° and was higher during flight lines 1 and 3. The mean pitch angle,
or movement up or down, tended to be slightly ‘down’ (negative) for
flight lines 1 and 3, and slightly ‘up’ (positive) for flight line 2, with an
overall mean pitch of −1.4°. The yaw, or heading, was also consistent
per flight line. Overall, the flight parameters provide confidence that
the imager was generally nadir-looking during flight, with only minor
deviations due to the movement of the UAV.

Grain size retrieval

Pre-vicarious calibration
The UAV-HSI grain size value distributions were relatively small,

consistent with expectations for freshly fallen snow. Across the full
scene (Figure 8A), made up of 296,864 pixels, the mean grain size was
79 μm (Figure 8B). The range in grain sizes extended from 30 to
250 μm, and the distribution was slightly skewed toward smaller grain
sizes, with a standard deviation of 21 μm. The grain size map showed
spatial variability across the meadow, with distinct patterns across the
snow surface. Notably, the ski track used to access the study plot and
around the meadow, used to take field spectrometer measurements,
had distinctly larger grains due to ski compaction of the new snow.
Larger grains, and the widest variability in values, were found around
trees in the western portion of the meadow and in the upper northeast
corner. Undisturbed snow in the open meadow had the smallest

grains. Visually this area was the most consistent, but the grain
size map shows interesting and distinct patterns in the new snow
that likely relate to microtopography due to wind and settlement of the
new snow on the old snow surface.

For the initial retrieval, the NIR-HSI grain sizes were biased low
compared to the reference grain size retrieved from the field
spectrometer at the 20 discrete measurement locations, with an
RMSE of 24 μm. The field spectrometer measurements had a
higher mean value (98 μm) and the bias was consistent across the
scene; for nearly all points (1–20) the values were higher than the
interquartile range from the neighborhood of surrounding NIR-HSI
pixels (Figures 8C, D). As discussed in methods (Data Processing
Section), measurement point #14 was selected to vicariously calibrate
the UAV-HSI spectra (gray star in Figure 8A), and the reasons why a
calibration may be needed are discussed further in section 5.2.1.

Vicarious calibration
The vicarious calibration factors, determined from the comparison

at point #14, were applied to the whole scene. The magnitude of
reflectance at the longer wavelengths was adjusted down, closer to
what would be expected for snow, which is absorptive past 1500 nm
(Figure 5A). Overall, though, the result of the calibration was not a
distinct shift in NIR reflectance magnitude but rather adjustments to
the shape of the spectral curve, demonstrated for Point #2 in Figure 5B.
For example, the distinct ‘pull down’ feature at the shortest
wavelengths, not a feature of snow absorption but an artifact of the
sensor itself, was no longer present. Additionally, the absorption
feature was slightly deepened and broadened on the right side,
which resulted in an increase in the scaled band area, and
therefore, grain size.

The calibration did not change the grain size patterns (Figure 9A),
but rather the result was an overall increase in grain sizes across the
scene, improving the comparison to the reference field spectrometer
values. Following the calibration, the mean grain size was 100 μm, an
increase of 26 μm relative to the pre-calibration value. The overall
histogram (Figure 9B) maintained its shape, with a slight skew toward
the smaller grains and a small increase in the standard deviation from
21 to 23 μm. The update in grain sizes brought the values closer in line

FIGURE 7
Roll, pitch, and yaw of the UAV during the flight collected from the inertial measurement unit (IMU).
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with the reference values from the field spectrometer; the reference
values were brought closer to the interquartile range of the
neighboring pixels (Figure 9C), and the consistent low bias was no
longer present (Figure 9D). The post calibration comparison showed
values falling both above and below the 1:1 line with the RMSE
reduced to 12 μm. As would be expected, the calibration point itself fell
on the 1:1 line (red star in Figure 9D).

Albedo

The albedo retrieval from the vicariously calibrated grain sizes
(Figure 10A) showed high values, also consistent with what we could
expect from freshly fallen snow. The range of albedo was 83%–89%
with a mean albedo of 86% (Figure 10B). This is a close match to the
albedo measured at the instrumentation tower, which was 87% at
11 a.m. and 85% at 12 p.m. (data was reported at hourly intervals).
Using the incoming solar radiation at time of flight from the field
spectrometer, 633 W m−2, the corresponding mean reflected solar

radiation was 543 W m−2, with a range from 525 to 563 W m−2. The
complement of snow reflection is snow absorption, or net solar
radiation, the primary variable of interest for snow energy balance
modeling. The mean net solar radiation was 90 Wm−2, with a range of
70 and 108 W m−2.

Because the albedo retrieval is based on the grain size retrievals, the
overall patterns across the snow surface were similar between the two.
Albedo was lowest along the ski track and most variable around the
trees, with lower variability and higher albedo in the open portion of
the meadow. Although the range of values was relatively small, the
map demonstrates distinct coherent patterns in snow albedo that
appear to relate to vegetation and landscape features, or in the open,
follow the long fetch of the meadow. High resolution maps like this
demonstrate the high amount of variability that can be present in new
snow, even though it would appear visually homogenous due to the
high consistent reflectance in the visible wavelengths. This also shows
how a relatively small difference in snow albedo can result in a
relatively large differences in net solar radiation at small
(submeter) scales.

FIGURE 8
Pre-vicarious calibration UAV-HSI grain size retrievals compared to the in situ field spectrometer point measurements. (A) Effective grain size map
retrieved from UAV-HSI and the location of the field spectrometer points. (B) Histogram of the UAV-HSI effective grain sizes across the map in (A). (C) The
effective grain size for each field spectrometer point measurement (blue circles) compared against the box plot distribution of UAV-HSI grain sizes in the
9 neighboring pixels (D) One-to-one plot comparing the average (mean) grain size from 9 neighboring UAV-HSI pixels to that from the field
spectrometer.
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FIGURE 9
Vicariously calibrated UAV-HSI grain size retrievals compared to the in situ field spectrometer point measurements. (A) Effective grain size map retrieved
fromUAV-HSI and the location of the field spectrometer points. (B)Histogramof theUAV-HSI effective grain sizes across themap in (A). (C) The effective grain
size for each field spectrometer point measurement (blue circles) compared against the box plot distribution of UAV-HSI grain sizes in the 9 neighboring
pixels. (D) One-to-one plot comparing the average (mean) grain size from 9 neighboring pixels to that from the field spectrometer.

FIGURE 10
(A) Map of UAV-HSI derived broadband albedo across Swamp Angel Study Plot. (B) Histogram of broadband albedo in all pixels contained in the map
from (A).
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Landsat 9 OLI

The conditions on April 2nd, the day of the Landsat 9 overpass, were
similar to those on the day of the UAV-HSI overflight on March 31st
(Figure 6). Between collections, the air temperatures remained below
freezing overnight, a low of −7°C on the 31st and a low of -10°C on the 1st,
with highs around 5°C during the day. Skies were clear the afternoon of
the 31st, with cloud cover and snowfall on the 1st. Snow reached a peak
depth of 180 cm around 1 p.m. local time on the 1st. Skies began to clear
again on the 2nd, with snow settling to 170 cm at the time of the Landsat
9 overpass. The NDGSI grain sizes across the 17 Landsat 9 pixels were
relatively small and representative of new snow and compared well to the
resampled scaled band area UAV-HSI grain size values (Figures 11A, B).

The mean Landsat 9 grain size was 97 μm (2.7 μm standard
deviation) and the mean resampled UAV-HSI grain size was 106 μm
(8.4 μm standard deviation). This result indicates that NDGSI is a

suitable approach for mapping snow grain size from Landsat 9 for these
conditions; flat terrain, and primarily snow-covered pixels. However,
Landsat 9 showed overall less variability compared to resampled UAV-
HSI. The largest grain sizes and variability from UAV-HSI were on the
edges of the scene where pixels containing the masked trees and tree
shadows are seen in the full high resolution map (Figure 9A). These
pixels also had the largest difference (42 and 31 μm) relative to Landsat
(Figure 11C), but conversely, these pixels also had the least coverage
(<30%; Figure 12A). The differences are likely related, at least in part, to
the partial coverage by the UAV-HSI, but other factors may also play a
role, which is discussed further in Comparison to Landsat 9 Section.

Because grain size is the baseline retrieval from snow reflectance,
the Landsat 9 subpixel variability analysis for grain size is presented

FIGURE 11
Comparison of (A) resampled (downscaled) NIR-HSI grain size map
to (B) Landsat 9 OLI NDGSI map, with the difference map shown in (C).

FIGURE 12
Landsat 9 NDGSI zonal statistics based on high resolution UAV-HSI
effective grain size retrieval; (A) percentage of UAV-HSI pixel coverage in
each Landsat pixel, (B) standard deviation of effective grain size per
Landsat 9 pixel based on UAV-HSI, and (C) the range of effective
grain size per Landsat 9 pixel based on UAV-HSI.
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here in Figures 11, 12. Corresponding plots for snow albedo can be
found in Supplementary Figure S1. The albedo results were similar to
those from grain size, with a good comparison between Landsat 9 and
UAV-HSI. The mean values were 86.0% and 85.7%, respectively. On
April 2nd the incoming solar radiation at time of overpass was 659 W
m−2, calculating the net solar radiation from this value would result in
a difference of only 2 W m−2 between Landsat 9 and UAV-HSI. The
overall patterns were also similar to grain size, with the largest
difference in albedo values at the edges of the compared area.

Although the mean values compared well between Landsat 9 and
the UAV-HSI, the sub-pixel grain size and albedo distributions
showed relatively high variability (Figure 12 for grain size,
Supplementary Figure S1 for albedo). There were five Landsat
pixels with 100% coverage, encompassing ~22,500 UAV-HSI pixels.
The high coverage pixels were found in the center of UAV-HSI scene,
over the open fetch of the meadow where snow grain size was least
variable, and albedo was highest (Figure 12A). The standard deviation
in UAV-HSI grain size in the Landsat 9 pixel footprints were between
8 and 13 μm, and the range between minimum and maximum grain
size per pixel was between 60 μm and 160 μm (Figures 12B, C).
Corresponding, for albedo the standard deviations in these pixels
were between 0.4 and 0.5%, with total ranges of 3.0–6.2%.

The lowest coverage, between 25 and 30%, was in two edge pixels,
which still contained ~6,000 UAV-HSI pixels. These pixels were on the
west and northeast edge of the flight area, where higher variability in
grain size and albedo were present around the trees. These Landsat
9 pixels also had the most subpixel variability, with standard deviations
in grain size of 33 and 22 μm and grain size range of 197 and 152 μm.
Corresponding standard deviation values for albedo were 0.7–1.3%,
ranging from 5.3 to 8.3%. Relatively high standard deviations and ranges
were also seen for grain size and albedo across pixels with higher
coverage, indicating the variability was representative of the surface and
not solely a function of the lower coverage and pixel count.

Discussion

UAV data collection

Data collection with UAVs is increasingly accessible and flexible
relative to crewed aircraft, still, it is not without its challenges. The HSI
instrument used in this study required a relatively large and less portable
UAV, like theM600 Pro, with a high payload capacity. The combination
of thin air, due to the high elevation of the site, cold temperatures, and
the weight of the sensor greatly reduced typical flight times. This meant
that the M600 Pro had to be shuttled into the study site on a ski sled,
rather than flown from the road, and that the area covered was relatively
small with lower than desired overlap between flight lines. The flight
lines themselves also did not perfectly align due to GNSS location error,
despite the UAV and the sensor having differential (real time kinematic)
GNSS receivers. In this instance, it may have related to a degraded signal
due to the mountain environment or the temporary base station, but
uncertainty in location and therefore georectification may simply be a
reality of the smaller sensors and receivers necessary for UAV systems.

Additionally, data collection and data processing require a unique
set of skills, which limits the current accessibility of this method. With
a relatively large UAV and heavy payload, having an overall cost
exceeding $50KUSD, a pilot that is both skilled at flying and is familiar
with hyperspectral imaging is necessary. Acquiring quality data

requires the instrument to be focused at time of flight, suitable
integration time and framerate need to be selected, the illumination
conditions need to be consistent during flight, and the UAV needs to
be steady and stable. Also, a relatively large field team was required for
this study to set out the tarp, collect near-coincident field spectrometer
measurements and record the locations, measure incoming irradiance
during flight, and excavate a snowpit to record snow properties, which
required familiarity in field spectroscopy and snow observations.
Finally, data processing required expertise in analyzing spectral
data cubes and snow radiative transfer modeling.

Over time, these hurdles will lower. As hyperspectral imagers
become lighter, they will be able to fly on smaller UAV’s, which will
likely address the challenges with site access and flight time. As
uncertainties are constrained and better understood, the need for
coincident ground observations will be reduced. Using atmospheric
correction to convert at sensor radiance to reflectance could eliminate
the need for the in-scene reference tarp and allow for more flexibility in
variable lighting conditions or view angles across flight lines. Finally,
snow radiative transfer modeling is becoming more accessible with
online and open source code bases (Libois et al., 2013; Flanner et al.,
2021), that could integrate with processing workflows to support
automated or semi-automated processing of UAV-HSI datasets.

Retrieval sensitivity and uncertainty

Effective grain size
Inverting snow properties from remotely sensed data based upon

radiative transfer modeling has some uncertainty due to the method
used to fit measured and simulated spectra, environmental, and
topographic conditions. The scaled band area method, used here, has
a reported uncertainty of 50 μm using Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS Classic) data (Nolin and Dozier,
2000), which has significantly lower spatial and spectral resolution,
and lower signal-to-noise ratio, as compared to the NIR-HSI or the field
spectrometer. In a controlled laboratory environment, Donahue et al.
(2021) found that grain sizes from the same NIR-HSI used in this study
had the same mean grain size value as that retrieved from coincident
field spectrometer measurements, validating the coarser spectral
resolution retrievals. Relative to stereology, however, grain sizes were
41 μm lower (23%), a similar result was also reported in Gergely et al.
(2013), indicating a low bias in ‘optical’ grain size relative to physical
grain size parameters like specific surface area.

Here, the difference in grain size relative to the reference field
spectrometer measurements, 2 μm mean difference and 12 μm RMSE,
indicates that the uncertainty in terms of the optical retrieval is lower
relative to classic AVIRIS retrievals, but higher than that found in the
laboratory. It is worth recognizing that this was 1) following the vicarious
calibration, and 2) that the reference measurements are not without
errors. The sensitivity of grain size retrieved from a field spectrometer,
due to variability in environmental and collection conditions during field
measurements, has been reported as 20 μm (Skiles and Painter, 2017).
There is also sensitivity in retrievals related to the radiative transfer
modeling, and care must be taken to represent conditions at the time of
measurement, for example solar geometry, as incorrect inputs will bias
retrievals (Fair et al., 2022). If the same radiative transfer simulations are
being used for the field spectrometer and UAV-HSI grain size retrievals,
the error in grain size due to incorrect model inputs would be present in
both, and therefore would be unknown. Additionally, scaled band area of
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the ice absorption feature centered at 1030 nm is not suitable for wet
snow; it is modeled based on ice particles only and cannot represent the
widening of the ice absorption feature caused by the presence liquid water
(Donahue et al., 2022).

For future work in more complex environments, there are
additional considerations for retrieving grain size, and albedo, that
relate to the influence of topography on at-sensor radiance. The scaled
band area method is said to be somewhat insensitive to the absolute
measured reflectance (Nolin and Dozier, 2000), although this is not
strictly accurate, as the conversion from measured at-sensor radiance
to surface reflectance can introduce uncertainty into the grain size
retrieval by altering the area of the absorption feature. Here, we used a
calibration tarp laid on the flat ground to convert from radiance to
reflectance. This would not be a suitable approach for sloping terrain,
hills, or mountain sides, which influences magnitude of at-sensor
radiance. In this case, an atmospheric correction, such as ATCOR4
(Richter and Schläpfer, 2002), would likely be the best approach
because it would correct illumination based upon the topography.
Relatedly, SNICAR would not be suitable choice for the radiative
transfer modeling because the sensor would no longer be in a nadir-
looking configuration above a slope (Richter, 1998). In this case, a
radiative transfer model that simulates angular intensities, such as the
discrete ordinates radiative transfer (DISORT) or asymptotic radiative
transfer (ART) models (Stamnes et al., 2000; Kokhanovsky and Zege,
2004), would be needed to simulate directional reflectance.

For this study, the NIR-HSI needed to be vicariously calibrated in
order to retrieve grain sizes that were comparable to the field
spectrometer, and albedo values comparable to the instrumented
tower. The need for vicarious calibration can be due to a
combination of sensor characteristics, noise, sensor misalignment or
movement, environmental conditions, and the method used to convert
from radiance to reflectance. Using higher certainty field measurements
coincident with overflight to correct and scale reflectance values is a
common practice for imaging spectroscopy at satellite and airborne
scales (Secker et al., 2001; Teillet et al., 2001; Brook and Dor, 2011; Skiles
et al., 2018b; Bruegge et al., 2021). Practically speaking, though, it is a
logistical challenge that takes time and requires high accuracy in situ
spectrometermeasurements. In the future it would be useful to carry out
additional UAV-HSI case studies, across a variety of environmental and
snow conditions, in order to better understand sources of uncertainty in
reflectance values, as well as uncertainty if uncalibrated reflectance
values were used in retrievals.

Finally, the case study presented here had a short flight time
(~4 min) during which the illumination conditions did not change. In
future applications during longer flights that cover more area, the sun
angle will change during flight and could result in reflectance gradients
between flight lines. Although not implemented here, finishing the
flight with a flight line that crosses all other lines may be useful for
equalizing any effects from changing illumination.

Albedo
Recall, the albedo product retrieved here, using the NIR-HSI, is the

‘clean’ snow albedo, and does not consider any impacts from LAPs.
This is why the baseline comparison between datasets focused
primarily on grain size. This was suitable for the snow conditions
in this case study, but if present, it would be critical to account for
LAPs because they lower albedo in the visible wavelengths, where solar
irradiance peaks and exerts a stronger weight on broadband albedo
(Skiles et al., 2018a). To account for snow darkening and reduction of

snow albedo by LAPs additional measurements of reflectance across
the visible wavelengths would be needed. Practically speaking, this
would have required an additional sensor co-aligned to the NIR
sensor, which would increase the overall weight of the payload.
This was outside the means and scope of this study.

Without accounting for LAPs, the method presented here for
retrieving albedo is directly linked to snow grain size. The
relationship is non-linear, though, with albedo change being more
sensitive to smaller grain sizes. For example, under the illumination
conditions and radiative transfer modeling present in this study, a 25 μm
span in grain sizes, from 99 to 124 μm, would result in the same retrieved
albedo value of 85% (rounded to nearest whole number). Whereas the
same albedo value of 75% would results from a span of 112 μm, from
668 to 780 μm. This means that for a clean snow, grain size, based
approach of estimating albedo, larger errors would be expected at higher
albedos and smaller grain sizes, like the conditions in this study, and
lower errors for older, aging snow, which would be expected later in the
spring season during melt conditions.

Comparison to Landsat 9

Part of the motivation for this case study was to show how UAV-
HSI could be used to assess coarser scale satellite retrievals. Underlying
this motivation is the understanding that 1) spatial data is best validated
spatially, and 2) discrete point measurements in heterogenous
environments are not representative of satellites observations with
spatial resolutions of tens to hundreds of meters (e.g. (Román et al.,
2013; Ryan et al., 2017)). Because snow variability is essentially fractal in
nature, increasing with increasing resolution, field spectrometer, or
instrumentation tower observations, are not well-suited for assessing
Landsat directly because the discrete measurements are not measuring
the same processes as those being resolved within the 30 m pixels. For
example, patterns influenced by wind or local scale snow compaction.
The assessment of retrievals presented in this study, therefore, was step-
wise with scale by design; first, the discrete field spectrometer
measurements (28 cm spot size) were used to assess the UAV-HSI
grain size (20 cm pixels), then, the UAV-HSI retrievals were re-sampled
to the same spatial scale as Landsat 9 for comparison.

Although our motivation is ultimately better monitoring of
mountain snow, this case study started simple, with retrievals over a
flat mountain meadow. This is an important baseline because if
retrievals are inaccurate in idealized conditions, they will be more so
in more complex terrain. Our approach to retrieving grain size, NDGSI,
was also relatively simple but as shown here, also accurate for flat, fully
snow-covered pixels. The largest differences between the UAV-HSI and
Landsat 9 were in pixels with 1) lower percent coverage, and 2) trees.
The partial coverage may not have been representative of what Landsat
was sampling within those 30 m pixels, but also, trees were masked out
of the reference UAV-HSI imagery. Vegetation is relatively reflective in
the NIR, and when mixed with snow, could positively bias NDGSI.

Using band ratios has a long legacy in the snow remote sensing
community (Riggs et al., 1994; Salomonson and Appel, 2004; Hall and
Riggs, 2010; Gascoin et al., 2020) and they are computationally simple,
which makes them appealing for global scale retrievals. A band ratio
approach is likely suitable for snow cover at high latitudes, where fully
snow-covered pixels could be expected at the 30 m scale, or even high
alpine snow, when accounting for topographic effects on illumination.
This is not the case for midlatitude mountains, though, where over
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90% of Landsat pixels can still be mixed (Selkowitz and Forster, 2016).
The next logical extension of this work would be assessing spectral
mixture analysis using UAV-HSI imagery over snowmixed with other
land cover types. Additionally, since snow is rarely clean,
incorporating visible bands in the albedo calculation to account for
snow darkening by LAPs would be prudent in an operational product.

Conclusion

The first goal in this case study was to demonstrate and validate
quantitative retrievals of snow surface properties, snow grain size and
albedo, from a compact HSI on a UAV platform. We were able to map
grain size and albedo at 20 cm resolution across three flight lines
covering the Swamp Angel Study Plot meadow. The grain size
retrievals were validated using 20 field spectrometer measurements
collected within the flight area, and the broadband albedo was
validated using the solar radiation sensors on the study plot
instrumentation tower. Relative to reference values the snow
properties were accurately mapped, with a mean grain size difference
of 2 μm and RMSE of 12 μm, and a mean broadband albedo within 1%
of broadband albedo measured near the center of flight area. However,
the good comparison to reference measurements required a vicarious
calibration, and additional flights will be needed to assess if similar
results would be achieved for different snow conditions, and in different
environments. An interesting outcome of the study was the relatively
high level of small scale (submeter) variability and spatially coherent
patterns of grain size and albedo present in the new snow.

The second goal of this paper was to demonstrate an
application for UAV-HSI snow property retrievals; using the
higher spatial and spectral resolution retrievals to assess
coarser grain size and albedo from satellite multispectral
imaging. There was a Landsat 9 overpass two days following
the UAV-HSI flight, allowing us to assess NDGSI grain size and
albedo retrieved from 17 Landsat 9 pixels that overlapped with
the UAV-HSI flight area. Ideally, the satellite overpass and UAV-
HSI overflight would have been on the same day, but the snow and
illumination conditions were similar between collection dates.
Although there was less variability in satellite-based grain size
values across the comparison area, the Landsat 9 values compared
well to the resampled UAV-HSI reference dataset, with a mean
grain size difference of 9 μm and the same mean albedo (86%).
The high-resolution UAV-HSI dataset was also used to quantify
subpixel variability, which was lowest in the open meadow and
highest around vegetation, which is useful for interpreting the
representativeness of the 30 m pixel values. In the
future, additional UAV-HSI flights could be used for
quality assessment of Landsat OLI snow retrievals, or even
downscaling.
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