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INTRODUCTION

There are numerous 21st century environmental grand challenges that need to be addressed by the
scientific community. Several that have been identified are even considered to threaten life on Earth
(Turner et al., 1990; Pimm et al., 1995; Costanza et al., 1998; Kates et al., 2001; Koh et al., 2004; Orr
et al., 2005; Rockström et al., 2009; Foley et al., 2011;Wu, 2013). Environmental grand challenges that
need critical research include understanding how the environment is changing due to the global
footprint of human activities, such as climate change, habitat alteration or modifications to the
animal community, all of which are occurring at unprecedented rates.

Scientists and engineers need to rise to address these challenges by advancing the field of remote
sensing. One of the promising remote sensing technologies include those that utilize acoustics - either
active or passive - which can uniquely characterize the structure and dynamics of terrestrial and
aquatic systems. Acoustic remote sensing has advanced rapidly in recent years as researchers have
drawn upon several well-known measuring technologies including the applications of transducers
that measure sound in air, water and in solids, applying and advancing a variety of signal processing
techniques, and leveraging generic data mining technologies that facilitate the analysis of acoustic
data. Ultimately, research in remote sensing aims to discover patterns in data that can be used to
understand how the Earth system is changing, acoustics being one form of data that is becoming
increasingly useful. We need a forum for scholars across a variety of fields to communicate their
discoveries in order to improve the well-being of people and other life on Earth.

Here, we outline the kinds of applications of acoustic remote sensing that we hope will appear in
the Acoustics Specialty Section of Frontiers in Remote Sensing (FRS). As co-Chief Editors for this
specialty section, we want to convey our excitement about this emerging field of acoustic remote
sensing and the promise that these technologies can provide scholars to advancing the greatly needed
discoveries of our rapidly changing planet.

ACTIVE ACOUSTIC REMOTE SENSING

Mapping the surface of the earth using satellite (or airborne) remote sensing techniques have
revolutionized our understanding of earth, ocean and atmospheric systems over the past 5 decades
(Dubovik et al., 2021). Most of these sensors use information from the electromagnetic (EM)
spectrum to measure and monitor the earth. These technologies have allowed terrestrial systems and
the surface of the ocean to be repeatedly mapped at high resolution, with some sensors now capable
of mapping at sub-meter resolution (Hansen and Loveland, 2012; Mulla, 2013; Almeida et al., 2019).
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FIGURE 1 | Examples of active acoustic remote sensing data sets and sensors. (A) Multibeam echosounder bathymetry showing a 3D view of a digital elevation
model of the seafloor derived from multibeam bathymetric measurements. Inset image shows how MBES data sets are collected. Imagery courtesy of the Dalhousie
University, Seascape Ecology and Mapping Lab (www.seafloormapping.ca); (B) Synthetic Aperture Sonra data set showing a ship wreck and seafloor sediment
bedforms. Data is 3 cm horizontal resolution and collected from a towed SAS system shown inset (Kraken Robotics Katfish). Imagery courtesy of Kraken Robotics
(https://krakenrobotics.com/); (C) Sub-bottom profiler data showing sediment stratigraphy beneath the seafloor. The profile was collected using a towed sensor
platform (Geoforce DTS). Imagery courtesy of Geoforce Group Ltd. (https://www.geoforcegroup.com/).
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However, electromagnetic waves do not penetrate very far
through water, and with 70% of the earth covered by the
oceans with an average depth of 3.6 km, the vast majority of
the globe remains extremely poorly mapped. For example, it is
estimated that only 18% of the seabed is mapped at a comparable
resolution to that of terrestrial environments (Mayer et al., 2018).

Active acoustic remote sensing methods generate a sound
pulse and measure the returning signal (echo) to deduce
information about the sensed environment. These active
systems have filled this sensor void in helping us
understand underwater systems where EM sensors have
difficulty reaching. Sonar (Sound Navigation and Ranging)
systems primarily utilize frequencies ranging from 1 kHz to
several hundreds of kHz (Lurton, 2010), and the design and
engineering of these sensors has advanced and diversified for
use in a wide range of application: Singlebeam echosounders
(SBES) and multibeam echosounders (MBES) are used to map
seafloor bathymetry for nautical charting (e.g., Mayer, 2006;
Lurton, 2010; Brown et al., 2011; Mayer et al., 2018); MBES,
sidescan sonar (SSS) and lower frequency sub bottom profilers
(SBP) are used to study the morphology and geology of the
seabed (e.g., Piper et al., 1999; Polyak et al., 2001; Collier and
Brown, 2005; Wilson et al., 2007; Lecours et al., 2016); SBES,
MBES and acoustic telemetry are used for fisheries
applications to map fish biomass and movement (e.g.,
Mayer, 2002; Foote, 2009; Colbo et al., 2014; Crossin et al.,
2017; Muñoz et al., 2020) or to map benthic ecosystems (e.g.,
Brown et al., 2011; Micallef et al., 2012; Ierodiaconou et al.,
2018; Lacharite et al., 2018; Brown et al., 2019; Wilson et al.,
2021); Synthetic aperture sonars (SAS) are primarily used for
defense applications (e.g., Hayes and Gough, 2009; Myers and
Fawcett, 2010) with other applications such as benthic habitat
or substrate mapping recently emerging (Brandes and Ballard,
2019; Thorsnes et al., 2019); Acoustic Doppler Current
Profilers (ADCP) are used to investigate physical
oceanographic phenomena including current speed,
direction and transport of biological or geological particles
(e.g., Fielding et al., 2004; Gartner, 2004; Thomson et al.,
2012). At lower frequencies (<1,000 Hz), seismic systems have
been developed for remote characterization of the deep
seafloor subsurface (e.g., McConnell et al., 2012) and the
physical structure of the overlying oceans (e.g., Ruddick
et al., 2009). Examples of some of these types of sensors
and data are shown in Figure 1. Although active acoustic
remote sensing is dominated by uses in the underwater
domain, there are also some terrestrial (e.g., terrestrial
seismic exploration) and atmospheric applications (e.g.,
Sonic Detection and Ranging (SODAR) and Radio Acoustic
Sounding Systems (RASS) (Bradley, 2007)).

PASSIVE ACOUSTIC REMOTE SENSING

Passive acoustic technologies focus primarily on measuring
sound and/or vibrations in air, water and/or solids. These
passive technologies focus on three important spectral ranges -
those in the human audible range (20–20,000 Hz), above human

hearing (>20,000 Hz) or ultrasonic, and those below human
hearing sensitivity (less than 20 Hz), or infrasonic. Sound
sources in these ranges include sounds from biological
organisms (animals that are communicating using sound),
geophysical dynamics (thunder, sounds from rain, and
earthquakes), and sounds from human-made objects (sirens,
road noise). Together these occur as soundscapes (Schafer,
1993; Kang, 2006; Pijanowski et al., 2011a; Pijanowski et al.,
2011b). Studies of soundscape ecology are at the forefront of
ecological sciences as it focusses on the interplay of landscape/
seascape dynamics and spatial-temporal acoustical patterns
(Fuller et al., 2015; Doser et al., 2020; Lin et al., 2021). As
terrestrial and aquatic acoustic sensors (Figure 2) have now
become relatively affordable and analytical tools such as
Seewave (Sueur et al., 2008), AP.exe (Towsey et al., 2014), and
SoundEcologyR (Villanueva-Rivera et al., 2018) have been
developed, work in passive acoustic monitoring has flourished.
Advances in terrestrial, marine, freshwater, and urban
soundscape ecology has exploded in recent years; and, due to
the robustness of current sensors, research has now extended
across tropical, temperate, arid, and cold climates and in
freshwater and marine systems.

GRAND CHALLENGES

Although some areas of acoustic remote sensing are relatively
mature and have established journals for publication, many of the
emerging techniques and technologies, novel applications, and
data interpretation and analyses methods have no clear venue for
publication. It is our hope that FRS may offer this very young
science a forum for which we can share our discoveries.

We seek to have acoustic remote sensing scholars from all over
the world (e.g., Pijanowski et al. (2021) for a summary of the
exceptional work being done in Latin America for example)
publish in FRS in the following areas:

Advances in transducer technologies Sonar design have
diversified tremendously in the past 2–3 decades, with a move
from analogue to digital systems, and improvements in
performance, resolution, and positioning. Swath sonar systems
(e.g., MBES, SSS, SAS) continue to advance, with increasing
resolution and capability to operate over a range of frequencies
(e.g., multispectral MBES – Gaida et al., 2018; Brown et al., 2019;
Misiuk et al., 2020). Microphones for passive acoustics can come in
a variety of configurations, from single transducers to those
arranged in arrays (e.g., double M/S). New configurations can
provide more detailed information about the location of sound
sources, how sound propagates through media, and the extent that
sound can reach a receiver. Power is also a challenge with field
sensors so technological solutions are needed to ensure that sensors
can collect data for longer periods or time or in environments (e.g.,
cold) where battery power is limiting. Papers in FRS should
advance the technology frontier in transducer technologies that
can lead to more discoveries in our sonic world.

Advances in acoustic sensor networks. How can researchers
create wired or wireless acoustic sensor networks that support the
coordination of data collection, data transfers and onboard sensor
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capabilities such as edge computing? How can these acoustic sensors
be integrated with other environmental sensors, such as those that
collect data on weather, imagery, and chemistry? Large-scale acoustic
sensor networks have been challenging to deploy and maintain (e.g.,
Akyildiz et al., 2005) but advances continue to occur moving us
toward implementing these are very large spatial extents (e.g., Erbe
et al., 2015; Roe et al., 2021; Sherrit et al., 2021).

Advances with sensor platforms Deploying sonars on
autonomous platforms such as autonomous surface vehicles

(ASVs) or autonomous underwater vehicles (AUVs) (Grasmueck
et al., 2006; Wynn et al., 2014) is providing significant reduction in
the cost of data acquisition. Platform design, capabilities and sensor
integration is an emerging field, with rapid innovation taking place
which will continue to drive the field of acoustic remote sensing
forward. We are interested in articles that describe new acoustic
sensor platforms for any environmental application (e.g., Lammers
et al., 2008; Aide et al., 2013; Sousa-Lima et al., 2013; Potamitis et al.,
2014; Wynn et al., 2014; Hill et al., 2018; Diviacco et al., 2021).

FIGURE 2 | Passive acoustics technologies that show (A) a terrestrial passive acoustic recorder mounted to a tree in the Sundarbans, Bangladesh (photo credit B.
Pijanowski), (B) a hydrophone being deployed in a Weinberg Reef, Puerto Rico (photo credits Jack Olson, Rebecca Becicka and Alex Veglia), (C), an ultrasonic (bat)
recorder along the Tuul River, Mongolia (photo credit, B. Pijanowski), (D) a hand-held parabolic dishmounted on a hypercardioid microphone (photo credit, B. Pijanowski
and M. Ghadiri) and (E) a false color spectrogram of 24 1-h recordings made in Feb, 2017 in Issa Valley, Tanzania (courtesy of Francesco Rivas Fuenzalida).
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Advances in labeling and retrieval of acoustic data Many
researchers are now collecting acoustic data that is difficult to
manage due to the size and complexity of the information stored.
Advances in information retrieval systems are needed so that
researchers can query their large databases for use in their
research. Acoustic information retrieval systems will require
innovative approaches as many current databases lack the
ability to readily store acoustic data. Soundscape information
retrieval systems is at the forefront of engineering work to
support acoustic research (Bellisario and Pijanowski, 2019; Lin
and Tsao, 2020; Mooney et al., 2020).

Advances in acoustic sensor applications (both active and
passive) How can our acoustic sensors be used to better
understand patterns of biodiversity, map and study aquatic
ecosystems, measure the impact of noise on animal
communication (e.g., Patricelli and Blickley, 2006; Warren
et al., 2006; McKenna et al., 2012; Duarte et al., 2021),
understand patterns of environmental sounds like those from
storms, such as wind, rain, thunder (e.g., Bedoya et al., 2017),
earthquakes (Wu et al., 2020), and the vibroscapes of animals
such as spiders (e.g., Virant-Doberlet et al., 2019)? What new
acoustic indices can be developed that assess changes in the
environment (e.g., Gasc et al., 2013a; Gasc et al., 2013b; Pieretti
and Farina, 2013; Fairbrass et al., 2017; Buxton et al., 2018;
Deichmann et al., 2018; Bradfer-Lawrence et al., 2019;
Burivalova et al., 2019)? How can acoustic remote sensing
help us to understand and pose solutions to grand
environmental problems such as climate change, habitat
alteration, the decline of species at local to global scales, the
impact of pollutants on ecosystem dynamics, and the
introduction of non-native species into the environment?

Advances in big data acoustic mining and data processing
Passive acoustic monitoring has solved many problems related to
the recording of sound in harsh environments, but doing so means
that there is now a tremendous amount of data to analyze, and
many argue (e.g., Servick, 2014) that this has brought ecologists into
the big data era. Similarly, active acoustic data acquisition is
acquiring vast volumes of data, with a need to explore how to
analyze, process and interpret these data source through integration
of in situ validation measurements. With that transition, ecologists
and data scientists are now applying a multitude of data mining
tools to the analysis of massive acoustic data. These include those
that classify sounds (e.g., Zhao et al., 2017), sort sounds through
clustering algorithms (e.g., Bellisario et al., 2019a; Bellisario et al.,
2019b), reduce the massive number of acoustic features that are
calculated per recording in order to reduce the multidimensionality
for more efficient and less complex analysis (Dias et al., 2021;
Hilasaca et al., 2021), use of acoustic recordings that are integrated
with human perception data (e.g., Aletta et al., 2016) and the
development and application of advanced visualization tools
such as false color spectrograms (Figure 2). Software
development that supports the collection, modification, analysis,
fusion, and visualization of acoustic data is needed to advance
acoustic remote sensing research. In addition, data formats for
sound files, traditionally stored as lossless formats such as wav and
flac or as lossy formats such as mp3, could be improved to reduce
costs to store data or reduce time to discovery.

Advances in seascape ecology The application of sonar for
mapping the benthic environment (both marine and freshwater)
has resulting in exponential growth in publications in this research
area over the past 2 decades. Swath acoustic systems (MBES, SSS)
coupled with geological and biological ground validation are now
used to map underwater landscapes (benthoscapes – the seafloor
component of seascapes (Brown et al., 2012; Pittman, 2017;
Lacharite et al., 2018; Pittman et al., 2021; Wilson et al., 2021) in
a comparable way that terrestrial landscapes are mapped using
satellite remote sensing data sets on land. Physical oceanographic
variables, sometimemeasuredwith acoustic remote sensingmethods
(e.g., water column data from MBES or ADCPs), or other forms/
sources of environmental data are increasingly being integrated with
benthic data - offering new insights in understanding habitat use by
marine organism, or species range shifts resulting from climate
change. In addition, passive acoustic sensing in oceans (e.g.,
Gottesman et al., 2020, Gottesman et al., 2021) and freshwater
systems such as ponds, lakes and rivers (e.g., Rountree and Juanes,
2017; Desjonquères et al., 2020; Gottesman et al., 2020; Linke et al.,
2020; Rountree et al., 2020; Rountree and Juanes, 2020) is advancing
at rapid paces too, providing us with rich information about how our
aquatic systems are changing. With increasing data availability, this
research area is primed for further growth in the coming decades.

Advances in understanding of landscape/seascape-
soundscape relationships Sound produced by objects in
terrestrial and aquatic environments is a spatially explicit
phenomenon. Soundscape ecologists have focused a lot of
research on understanding the relationship between patterns
and processes occurring in landscapes and the composition
and dynamics of the soundscape (Pekin et al., 2012; Fuller
et al., 2015). Advances are needed in this area of research as it
helps researchers and natural resource managers understand how
human and organismal activities create the types of sounds that
occur across space and time. Analyses of the interplay of
landscapes/seascapes and soundscapes is at the forefront of
many applications of acoustic remote sensing and FRS is
especially interested in advancing this area of research. This
research could also involve the integration of acoustic remote
sensing data with that from other remote sensing platforms, such
as those from LiDAR (e.g., Asner et al., 2012), hyperspectral (e.g.,
Asner and Martin, 2009) and multispectral imagery (e.g., Roy
et al., 2021; Yan and Roy, 2021).

GROWTH IN THIS RESEARCH FIELD

Growth and expansion in this field of research has been
enormous over the past 2 decades, mostly driven by
improvements, innovations, and access to sensing technology.
Figure 3 demonstrates this growth, through a basic search of the
literature using the key words “Acoustic Remote Sensing” or
“Active Acoustic Sensing” or “Passive Acoustic Sensing” in Web
of Science, resulting in 2,650 publications. We acknowledge that
this is likely a significant underestimate of the number of
publications in this field, as many will have no standard key
words. Nonetheless, it demonstrates the growth in this field over
the past few decades.
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CONCLUSION

The sensor technologies and methodological advances that
are outlined above have led to the emergence, expansion,
and rapid growth of acoustic remote sensing research.
Over the coming decades we anticipate that acoustic
remote sensing will help improve our understanding of
how the environment is changing due to human activities,
such as climate change, habitat alteration and loss of
biodiversity. Important global initiatives, such as Seabed

2030 (https://seabed2030.org/), will apply acoustic remote
sensing to help map the ocean floor in higher resolution,
the most poorly studied ecosystem on earth. Technological
innovation will continue to improve sensors, and deployment
automation will improve the way that these sensors are
deployed into the environment, leading to new discoveries,
and a better understanding of global environments. Often
cutting across multiple disciplines and integrating diverse
forms of data, research conducted in this field is often
difficult to place in existing journals. FRS will therefore

FIGURE 3 |Growth of the acoustic remote sensing field. (A): Web of Science search showing number of publications by year using the key words “acoustic remote
sensing” or “active acoustic sensing” or “passive acoustic sensing”; (B): Number of publications byWeb of Science Categories, highlighting the key areas where acoustic
remote sensing research is applied (top 25 categories).
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provide a much-needed forum for publishing science in this
relatively young and exciting field of research.
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