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It is common in estuarine waters to place fixed monitoring stations, with the advantages of
easy maintenance and continuous measurements. These two features make fixed
monitoring stations indispensable for understanding the optical complexity of estuarine
waters and enable an improved quantification of uncertainties in satellite-derived water
quality variables. However, comparing the point-scale measurements of stationary
monitoring systems to time-snapshots of satellite pixels suffers from additional
uncertainties related to temporal/spatial discrepancies. This research presents a
method for validating satellite-derived water quality variables with the continuous
measurements of a fixed monitoring station in the Ems Dollard estuary on the Dutch-
German borders. The method has two steps; first, similar in-situ measurements are
grouped. Second, satellite observations are upscaled to match these point measurements
in time and spatial scales. The upscaling approach was based on harmonizing the
probability distribution functions of satellite observations and in-situ measurements
using the first and second moments. The fixed station provided a continuous record of
data on suspended particulate matter (SPM) and chlorophyll-a (Chl-a) concentrations at
1 min intervals for 1 year (2016–2017). Satellite observations were provided by Sentinel-2
(MultiSpectral Instrument, S2-MSI) and Sentinel-3 (Ocean and Land Color Instrument, S3-
OLCI) sensors for the same location and time of in-situ measurements. Compared to
traditional validation procedures, the proposed method has improved the overall fit and
produced valuable information on the ranges of goodness-of-fit measures (slope,
intercept, correlation coefficient, and normalized root-mean-square deviation). The
correlation coefficient between measured and derived SPM concentrations has
improved from 0.16 to 0.52 for S2-MSI and 0.14 to 0.84 for S3-OLCI. For the Chl-a
matchup, the improvement was from 0.26 to 0.82 and from 0.14 to 0.63 for S2-MSI and
S3-OLCI, respectively. The uncertainty in the derived SPM and Chl-a concentrations was
reduced by 30 and 23% for S2-SMI and by 28 and 16% for S3-OLCI. The high correlation
and reduced uncertainty signify that thematchup pairs are observing the same fluctuations
in the measured variable. These new goodness-of-fit measures correspond to the results
of the performed sensitivity analysis, previous literature, and reflect the inherent accuracy of
the applied derivation model.
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1 INTRODUCTION

With the planned launch of the Pre-Aerosol Clouds and ocean
Ecosystem (PACE) in 2022, and the data streaming from the
Sentinel missions, Earth Observation (EO) technology is moving
toward a long-term sustainable data flow, forming the basis for its
operational use (Groom et al., 2019). Setting up satellite-based
services for water quality monitoring in turbid estuaries provides
an instrument for early warning and mitigation on extended
spatiotemporal scales (Anderson et al., 2017). However, the
added value of satellite products in estuarine waters is
determined, primarily, by their accuracy, which needs to be
validated against reference data. In this regard, continuous
data measured from a fixed monitoring station are
indispensable for understanding estuarine systems (Benway
et al., 2019) and quantifying the uncertainties of satellite
products of water quality. Validation is the action of checking
or proving the validity or accuracy of satellite products. It
measures the correctness and meaningfulness of derived values
against measured quantities (e.g., Salama et al., 2012). In this
respect, validation outputs are metrics measuring the
resemblance between satellite-derived products and measured
values and a set of logical values addressing whether satellite
products are acceptable (Seegers et al., 2018; Werdell et al., 2018).
The standard procedure of comparing point-scale measurements
to time-snapshots of satellite pixels suffers from additional
uncertainties related to the temporal and spatial mismatches
(Evers-King et al., 2017). For example, Salama and Su (2011)
have shown that the spatial mismatch between 300 and 1000 m
pixel resolutions could be up to 0.02 sr−1 for ocean color remote
sensing reflectance at 665 nm. From this, atmospheric correction
accounts for up to 40% of the total uncertainty, which is partly
due to the unavailability of information on atmospheric variables,
e.g., aerosols optical thickness (Frouin et al., 2019), at the satellite
measured scales. Having fine spatial resolution could provide
extra details (Vanhellemont and Ruddick, 2014). However, there
is a trade-off between gaining information from reducing the
spatial scale and adding additional noise-component resulting
from small-scale turbulences of water constituents (Bissett et al.,
2004). For example, Groetsch et al. (2014, 2016) have shown a
mismatch between fluorescence measurements from ship-of-
opportunity, taken at 5 m below the water surface, and
satellite-derived concentrations of chlorophyll-a (Chl-a). The
authors attributed this mismatch to the different sample sizes
of a satellite pixel vs. a point in-situmeasurement and the depth-
integrated satellite observation vs. in-situmeasurement taken at a
specific depth.

The spatial and temporal dynamics of water quality variables
are particularly high in estuarine waters (Hommersom et al.,
2009; Nechad et al., 2015). The spatial variability is usually
addressed through assessing the homogeneity of satellite pixels
of the matchup location (e.g., Harding Jr et al., 2005) or using
Bayesian inference (e.g., Salama and Su, 2010). Whereas the
temporal variability of in-situ measurements is usually

addressed by averaging data points within a temporal window
of 1 to 4 h of the satellite overpass (IOCCG, 2019). Current
guidelines (e.g., Sentinel three Validation Team S3VT) minimize
the spatiotemporal variability by sampling homogeneous water
within ±1 h of the satellite overpass and under good atmospheric
conditions. Applying these approaches to address the
spatiotemporal mismatch could, nonetheless, result in variable
performances and lead to little improvement in validation
statistics (Barnes et al., 2019). This calls for a validation
scheme that provides an unbiased assessment of uncertainty at
several scales and ensures the consistency of uncertainty
estimates of satellite-derived water quality variables. Recently,
McKinna et al. (2021) have shown that incorporating model and
observation uncertainties have improved the validation metrics.
This paper incorporates the variabilities of field measurements
and satellite observations to estimate the underlying accuracy of
satellite-derived concentrations of suspended particulate matter
(SPM) and alga’s green pigment, chlorophyll-a (Chl-a) in
estuarine waters. To achieve this objective, we use semi-
continuous measurements from a fixed location and
observations from two satellite sensors: the Multispectral
Instrument on Sentinel 2 (S2-MSI) and the Ocean Land Color
Instrument on Sentinel 3 (S3-OLCI).

The paper is organized as follows: first, the employed method
to answer the research question is presented in Section 2,
followed by a description of the study area in Section 3. Used
data and preprocessing are then detailed in Section 4, followed by
results (Section 5) and discussion (Section 6). The paper is
finalized with a summary of findings in the conclusion section.

2 METHODS

2.1 Validation
Following the ISO standard (Åhlin et al., 2014) and its
implementation in the Committee On Earth Observation
Satellite, validation is the process of assessing, by independent
means, the quality of the data products derived from the system
outputs. For such validation to bemeaningful, it should be applied
to matchups—which is defined (IOCCG, 2019) as pairs of
measured (say 10) and satellite-derived (say y) values that
have the same locations and times (±1 h) of sampling. The
validation protocol (IOCCG, 2019) suggests taking several
satellite pixels surrounding the location of the monitoring
station. While this could be performed in open waters, it will
be a challenge in fine-scale estuarine systems where proximity to
land is inevitable. The approach adopted in this paper to
construct the matchup is to exclude all pixels that partially
cover the ground and select the nearest water pixel to the location.

Validation is carried out on the matchup dataset using type-II
linear regression (Laws, 1997; IOCCG, 2006), whereby a
regression line—passing through the centroid of the data μx,
μy—is estimated through adjusting its slope αII and intercept βII
to minimize the sum of squares of normal deviates—lines
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perpendicular to the regression line. Approaches other than
minimizing the normal deviates exist, e.g., calculate the
geometric mean of the slope from regression of y on x and x
on y but they are similar. The slope measures the gain of y,
i.e., how close/far the regression line is from unity. Whereas the
intercept measures the offset of y, i.e., how close/far the regression
line is from passing through the origin.

In addition to the coefficients resulting from type-II
regression, validation involves calculating the correlation
coefficient r and the root-mean-square deviation, Δ, or the
mean absolute differences (Seegers et al., 2018). The
correlation coefficient, r, is a measure of linearity, whereas Δ
provides the total mean uncertainty of satellite-derived products,
w.r.t measured values (hereafter denoted as Δtot):

Δ2
tot �

1
n − 1

∑n
i�1

xi − yi( )2 (1)

where n is the total number of matchups. Normally water
authorities or engineering applications require a percentage of
uncertainty to be presented from the validation of satellite
products. This percentage measure is quantitative and provides
an immediate feeling of accuracy. For example, most satellite
missions require percentage accuracy in the derived water quality
variables. The Δ could be normalized, for x ≠ 0, as (e.g.,
Hieronymi et al., 2017), ψ � x−y

x .
However, this calculation of percentage accuracy is not

symmetric resulting in higher values for y < x and lower
values for y > x. For example:

foryi � 2xi →ψ � −100%
whereas foryi � 0.5xi →ψ � +50%

To avoid such a confusion, in this paper we calculate the
percentage error by dividing Δ by the mean μx:

Δ 2 � Δ2

μx
(2)

2.2 In-Situ Measurements vs. Satellite
Observations
Deriving water quality variables from satellite observations requires
two main steps (Gordon and Morel, 1983; Frouin et al., 2019):
atmospheric correction to retrieve the water leaving signal, and
deriving water quality variables from the water leaving signal.
Eventually, both steps could be combined and simultaneously
carried out (e.g., Arabi et al., 2016, 2018). Water quality variables
that can be derived from optical observations are those with the
property of changing the visible sunlight through absorption and/or
scattering (Mobley et al., 1993), namely phytoplankton pigment
(here we focus on the green pigment chlorophyll-a, Chl-a),
suspended particulate matter (SPM) and colored dissolved
organic matter (CDOM) (Kirk, 1994). This study will focus on
the first two variables, namely SPM and Chl-a concentrations.

When satellite-derived SPM and Chl-a are compared to in-situ
measurements, some discrepancies arise related to differences in

sampled times, depths, and water volumes. Much research (see,
for example, Salama and Su, 2011; Groetsch et al., 2014, 2016;
Valdés and Lomas, 2017) has shown that due to these differences,
in-situ devices record small turbulences (fluctuations on a short
time scale) that are undetected or averaged by the satellite’s pixel
observations. This phenomenon was referred to by Oke and
Sakov (2008) as the representation error. This mismatch in
representation will supplement additional components to the
retrieval’s uncertainty, Δtot, namely uncertainties related to
temporal and spatial mismatches (IOCCG, 2019).

In an analogy to the Taylor approximation of the second
moments and using the expression of Salama and Stein (2009),
Salama and Su (2011), and Salama et al. (2011), the total
uncertainty could be approximated as the sum of three
components:

Δ2
tot � Δ2

s + Δ2
t + Δ2

d (3)
where the subscripts stand for temporal (t), spatial (s), and
derivation (d) uncertainties. Eq. 3 separates the total
uncertainty into three contributors: derivation, spatial, and
temporal mismatch. The derivation uncertainty Δ2

d represents
the uncertainty resulting from all processing steps required
for deriving water quality variables from satellite
observations, i.e., sensor calibration, atmospheric
correction, and model inversion. This definition coincides
with the Guide to the Expression of Uncertainty Measurement
(GUM, 2008). The other components, Δ2

s and Δ2
t will add up to

Δ2
d only when comparing a satellite pixel to a point in-situ

measurement.

2.3 Representative In-Situ Measurements
Depending on the sampling frequency of the in-situ device, n
measurements will be recorded within the 2 h of the satellite
overpass. Validation protocol (IOCCG, 2019) commonly
advises to average in-situ measurements that fall within a
temporal window of 1 to 4 h of the satellite overpass.
However, due to the representation error discussed in the
previous section, this time window (±1 to ±4 h) depends on
water quality dynamics with spatial and temporal
dependencies. To reduce representation error resulting from
temporal averaging and ensure that these n measurements
represent the same dynamics, we group the data based on their
variability. This is done by selecting subsets that fall within a
range of variabilities and recorded in a sequential
(uninterrupted) timespan. This additional grouping
produces sets of representative measurements (hereafter
called “optimal in-situ matchup”) that fall inside satellite
pixels and form the primary basis for assessing the accuracy
of satellite derived water quality products, and is performed as
follows:

(i) Analyze the dis/similarities between in-situ
measurements;

(ii) Determine data points that have inter-variance that falls
within a range of variability (will be defined later in this
section);
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(iii) Identify the subset from [ii] that has a sequential
recording time.

The (dis-)similarities between consecutive records of in-situ
measurements can be quantified by the empirical semivariogram
(Bowman and Crujeiras, 2013). For the 2-h span, the empirical
semivariogram can be estimated from the data points as:

γ x, dt( ) � 0.5
1

n dt( ) ∑
n dt( )

xt − xt+dt( )2 (4)

where γ(x, dt) is the temporal semivariogram of x with a time lag
dt and n (dt) is the number of bins (data pairs) of width dt.

Similar measurements have sequential recording time and fall
within the range of data variability, say γs:

γ x, dt( )≤ γs (5)
The value of γs Eq. 5 is empirically estimated in this work by

employing the principle of insufficient reason (Jaynes, 1957;
Salama and Shen, 2010), which states that when there is not
enough evidence to separate the uncertainties in Eq. 3, we can
assign uniform weights, i.e., γs ≈ 1/3Δ2

tot, so we have:

γ x, dt( )≤ 1
3
Δ2
tot (6)

The total uncertainty Δ2
tot can be written as (see Eq. 3 in

Taylor, 2001):

Δ2
tot � σ2x + σ2

y − 2 σx σy rx,y (7)
With rx,y being the correlation coefficient between x and y. For

standardized anomalies the condition Eq. 6 becomes:

γ x, dt( )≤ 2
3

1 − rx,y( ) (8)

The application of Eq. 8 requires iteration to estimate the
correct value of rx,y. The iteration procedure is detailed in
Section 5.2.

The semivariogram Eq. 4 and the similarity condition Eq. 8
can be applied on each data point as well (instead of one data
point of the satellite overpass) producing thereby m records of
similar measurements, withm being less than the number of data
points within ±1 h of satellite overpass (i.e., 120). These m sets of
similar measurements provide an ensemble of information to
carry out the validation.

2.4 Unbiased Validation
The component Δd in Eq. 3 represents the underlying accuracy
of satellite-derived water quality and should therefore be
unbiased. A technique to estimate Δd without the need to
calculate the individual components of Eq. 3 is described
hereafter and starts with the assumption that variables x
and y are normally distributed and often log-normal
(Campbell, 1995).

The matchup pairs of measurements (x) and satellite-
derivations (y) should in principle be linearly related in the
form of ŷ � αI x + βI. Where ŷ is the predictor of y estimated

using type-I regression, and αI and βI are type-I regression
coefficients. From this linear relationship it follows: μŷ � αI μx +
βI and σ ŷ � αI σx. Where μ and σ are the mean and standard
deviation of the variable in the subscripts. The standardized
anomaly of predicted values ŷ is expressed as (ŷ − μŷ)/σŷ,
which can be written in terms of the variable x as:

ŷ − μŷ
σ ŷ

� αI x + βI − αI μx + βI( )
αI σx

� x − μx
σx

(9)

Eq. 9 means that if satellite-derived products are linearly
related to measured variables, a requirement to accept derived
products, their anomalies should be equal. This finding from Eq.
9 has great utilities, as it facilitates incorporating the ratio σx/σy in
the validation to better estimate the derivation uncertainty, Δd.
The main assumption here is that, adjusting satellite-derived
values, y, such that they have the same mean and standard
deviation of measured values will yield new satellite-derived
values, �y, that are upscaled to match the point measurements
of the fixed monitoring station.

We start first by approximating Eq. 9 as:

x − μx
σx

≈
y − μy
σy

(10)

Second, the values of x are substituted with new updated
satellite-derived values �y such that:

�y − μx
σx

≈
y − μy
σy

(11)

Rearranging the sides of Eq. 11 the new updated �y can be
obtained as (Draper et al., 2009; van der Velde et al., 2019):

�y ≈ μx +
σx

σy
y − μy( ) (12)

From Eq. 12, it can be shown easily that μ�y � μx and σ �y � σx,
whereas the correlation coefficient, rx,�y, between x and �y is equal
to that between x and y, i.e., rx,�y � rx,y. Using the result of Eq. 12,
the uncertainty of satellite-derivation that is free of temporal and
spatial mismatch, is found to be:

Δd � σx

�������
2 − 2rx,y

√
(13)

Eq. 13 demonstrates that for values of the correlation
coefficient r ≥ 0.5 the Δ will always be equal or less than σx
and the uncertainty cannot be larger (r→ − 1) than 2σx. There is
one drawback for Eq. 13, namely when r → 1 the value of
uncertainty Δd will vanish. For the presented data, this condition
was unlikely with the value of rx,y not exceeding 0.6.

Eq. 13 provides the minimum value of uncertainty if σy > σx,
the proof is provided in the Appendix section Proof I. In
addition, the slope and intercept (αII, βII) of the type-II
regression between x and the updated values �y are unity and
zero, respectively. The proof to that is provided in the Appendix
section Proof II. This leaves Δ to be the only estimator of
uncertainties. Due to the equal mean between x and y, the
bias will also be zero, i.e., unbiased.
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3 STUDY AREA

The method presented in Section 2 is applied to matchups in the
Ems-Dollard estuary, a semi-enclosed body of water stretching
from the Ems River’s Mouth to the Island of Borkum in the
Wadden Sea along the Dutch-German border (Figure 1). The
estuary covers an area of 1071 km2, half of which consists of
intertidal flats (Compton et al., 2017). Concerning the
Amsterdam Reference Level (Normaal Amsterdams Peil,
NAP), the tidal channel has a depth ranging from ≈ − 1.5 m
to ≈ − 25 m.

Ensemble of physical processes, dominated by large tide
gradients and freshwater influx, control the dynamics in the
Ems’s estuary. The Ems Dollard is a mesotidal estuary with a
semi-diurnal tidal cycle that ranges between 2 m in the channel
(inner Ems) to 3 m near the mouth of the Ems River (de Jonge,
1983). The primary source of freshwater inflow is the Ems
River, with a mean discharge of 100–120 m3 s−1, with a high
dynamic range from 25 to 390 m3 s−1 (Ysebaert et al., 1998).
Recently, Schulz et al. (2020) showed that the system alternates
between a destratification state during the flood and a built-up
of stratification throughout the ebb. The authors also observed
that the lateral circulation experiences abrupt transitions
during a tidal cycle with large spatial variabilities at fine-
scale ( < 200 m). Within a tidal cycle, the concentration of
suspended particulate matter (SPM) varies between a few
g.m−3 up to 1000 g m−3 with up to five peaks (Schulz et al.,
2020). In addition to these natural processes, human
interventions (e.g., deepening of tidal channels) have altered
the dynamics of physical processes, increasing thereby the
concentration of SPM in the estuary (van Maren et al., 2015a,

2016). Due to dredging activities in the last 50 years, SPM
concentration has increased in the estuary by two- to threefold
with the turbidity maximum moving landward extending into
the freshwater tidal river (de Jonge et al., 2014). The Ems
estuarine system can, therefore, be considered hyper-turbid,
with SPM concentrations reaching up to 200 kg m3,
particularly in the maximum turbidity zone (Papenmeier
et al., 2013). On the other hand, Chl-a concentrations could
reach high values ≈ 50 mg.m−3 during the spring and summer
blooms (Colijn, 1982), with a peak above 150 mg m−3, in the
tidal channel (Staats et al., 2001).

The high turbidity and the fine-scale variability in the Ems
Dollard estuary poses a challenge for in-situ measurements and
validation of satellite products. In this respect, measurements
from fixed stations require careful selection to be representative of
the matching satellite pixels. Details on this selection procedure
are provided in Section 4.

4 USED DATA

4.1 In-situ Data
For this research, we have collected in-situ and satellite data
forming two sets of matchups: radiometric and water quality
derivations. The in-situ data were collected from two permanent
monitoring stations located at Texel Island and Eemshaven, both
in the Dutch part of the Wadden Sea, about 150 km apart. The
Texel station provided radiometric data for atmospheric
correction, whereas the Eemshaven station provided
measurements on water quality variables serving the purpose
of validation.

FIGURE 1 | The study area: (A) locations of the Ems Dollard Estuary (red box) and the Texel station (red star); (B) bathymetry of the Ems Dollard Estuary, water
quality data are obtained from the Eemshaven station (red triangle). Coastlines are from EEA (2018), Bathymetry data are from Pierik (2019), land classes are from Corine
(2018).
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4.1.1 Radiometric Data
Radiometric data, from proximity (i.e., close-range) remote
sensing, were obtained from the permanent station at Texel
Island in the Wadden Sea, the red star on Figure 1A. The
Texel station has three RAMSES TriOS sensors measuring
upwelling radiance and sky-radiance and downwelling
irradiance covering the visible range between 318 and 950 nm
at ≈ 3.3 nm spectral interval. Radiometric data and their
preprocessing chain of converting to reflectance and quality
check are described with great detail in Arabi et al. (2018,
2016). Proximity remote sensing data are used in this study to
identify the atmospheric correction procedure most suited for the
Wadden Sea. Three years of Texel data (from 2015 to 2017) that
are matching satellite observations (±1 h) were averaged on the 2-
h period (eight measurements) and used to establish the
radiometric matchup set. Radiometric data from proximity
remote sensing were transformed to the bands of the
matching space-sensor using its spectral response function.

4.1.2 Water Quality Data
The Department of Public Works and Water Management
(Rijkswaterstaat, RWS), have a permanent station in the
Eemshaven, the red triangle in Figure 1B. This station
contains a YSI 6600 V2 sensor at -3.5 m deep (NAP
reference), measuring turbidity (in NTU unit) and
chlorophyll-a concentration each minute of the day. Fixed
monitoring stations of the RWS follow the guidelines of the
OSPAR’s Joint Assessment and Monitoring Programme (JAMP).
RWS carries out periodical quality checks with fluorometric
measurements and yearly validation with HPLC. However, as
the stratification occurs primarily during the built-up of the ebb,
and the maximum turbidity is near the bottom, YSI6600
measurements during the flood cycle were selected (Schulz
et al., 2020), see Section 4.3 for more details.

The conversion from NTU to g.m−3 is performed using two
gain factors: 1.7 for silt (SPM particle size < 63 μm) and 2.2 for
total suspended matter. These gain factors are estimated by
comparing the NTU readings to the water contents of SPM
(performed by Rijkswaterstaat, Monitoring Waterstaatkundige
Toestand des Lands, MWTL). This data set is used here to
validate satellite-derived water quality variables. One year of
the Eemshaven data (2017), matching (±1 h) satellite
derivations, were used without time averaging to establish the
validation matchup set.

4.2 Satellite Data
Satellite observations were obtained, for both stations (Texel and
Eemshaven), from Sentinel-3 Ocean and Land Color Instrument
(S3-OLCI) and Sentinel-2 Multi-Spectral Instrument (S2-MSI).
S3-OLCI and S2-MSI images of the Ems Dollard Estuary were
collected from the Copernicus Open Access Hub (Copernicus,
2019). Three years (2015–2017) of data were used to establish the
radiometric matchup set for the S2-MSI. Whereas 1 year (2017)
of data was used to establish the radiometric matchup set for the
S3-OLCI. For both sensors 1 year, 2017, of data was used to
establish the validation matchup set. Satellite pixels covering the

water nearby the Texel and Eemshaven sites were then selected
based on three criteria (flags):

(i) Flagged as good observations,
(ii) Flagged as cloud-free, and
(iii) Flagged as water targets.

Ancillary atmospheric data of ozone total column, wind speed,
surface pressure, and air temperature were obtained from the
global reanalysis data ERA-Interim (ECMWF, 2017). ERA-
Interim data are updated monthly with a delay of 2 months.
Therefore, the closest data in time is used to perform the
atmospheric correction.

The processing chain of satellite data followed these two steps:

(1) Different atmospheric correction methods were inter-
compared using a radiometric matchup set to select the
procedure with the least error. For S2-MSI we applied
Acolite (Vanhellemont and Ruddick, 2014, 2015), Polymer
(Steinmetz et al., 2011), Case-2 Regional/Coast Color
(C2RCC), and the extreme Case-2 waters (C2X)
(Brockmann et al., 2016). For S3-OLCI we applied C2RCC
and an alternative version of it (C2RCC-A, C. Lebreton
personal communication). The Sentinel’s toolbox (SNAP)
was used to process satellite data.

(2) The Nechad-705 model (Nechad et al., 2010) was employed
to retrieve SPM concentrations, whereas for Chl-a the Gons
model (Gons, 1999) was employed. These models were
developed for regions with similar characteristics as the
Ems Dollard Estuary and were employed by this study
without calibration.

The standard flags of the different atmospheric correction
approaches were used without adjustment, which has caused
lowering the number of radiometric matchups from 14 to 7, 9, 10
and four spectra for, respectively, Acolite, C2X, C2RCC, and Polymer.

4.3 Matchups Data
The radiometric matchup set was used to select the atmospheric
correction procedure with the least error and consisted of 14 and
11 pairs of in-situmeasured vs. S2-MSI and S3-OLCI reflectance,
respectively. On the other hand, the validation matchup set was
used to validate satellite derivations of water quality variables as
described in Section 2. Each pair in the validation matchup set
consisted of satellite-pixels and the matching in-situ record. To
guarantee that the in-situ measurements at 3.5 m depth near
the Eemshaven are representative to the surface-derived
satellite concentrations of SPM and Chl-a, we filtered data
using two conditions based on the recent findings of Schulz
et al. (2020):

(i) Select the nearest water pixel to the Eemshaven
station to minimize the cross-sectional fine-scale
spatial variability.

(ii) Select measurements during the flood cycle, as the
water column is well mixed.
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Water level data recorded by RWS at the Eemshaven station
were used to filter the data.

A summary of the validation matchup set is presented in
Table 1.

5 RESULTS

5.1 Verification of Atmospheric Correction
The results from four atmospheric correction methods applied to
S2-MSI (Figure 2) show that the C2X approach rendered spectra
that fall within the range of measured values. Only C2X produced
spectra that are within a similar range to the measured values.

C2RCC, on the other hand, resulted in S2-MSI spectra with
magnitudes close to those of C×2, but with a different range and
variability between 665–705 nm (i.e., absorption effect of Chl-a). The
least fit was obtained from Acolite and Polymer with a noticeable
higher magnitude for Polymer. More quantitative goodness-of-fit
measures are presented in Table 2. Slope, intercept, and R2 were
estimated from type-II regression, theΔwas normalized to themean
(denoted as Δ ), representing a relative measure of accuracy.

It is noticeable from Table 2 that Acolite and Polymer
produced the least accurate results with Δ values ranging from
50% in the blue band to 80% in the red band, with larger error
(Δ � 99%) in the green band. This is also apparent from
Figure 2, i.e., the shapes of Polymer spectra follow the shapes

TABLE 1 | Water quality matchups.

Variable Sensor No Period

SPM S3-OLCI 46 Feb. 13, 2017 to Aug. 2, 2017
S2-MSI 15 Aug. 19, 2016 to Jul. 22, 2017

Chl-a S3-OLCI 46 Feb. 13, 2017 to Aug. 2, 2017
S2-MSI 15 Aug. 19, 2016 to Jul. 22, 2017

In-situ radiometric spectra RAMSES TriOS 44 Feb. 1, 2015 to Aug. 2, 2017

FIGURE 2 | Summary of the results from applying atmospheric correction to S2-MSI using (A) Acolite, (B) C2X, (C) C2RCC and (D) Polymer. Solid lines depict
average values, whereas shaded areas represent the variability as standard deviation. The subscripts, ac,f refer to atmosphere correction and field spectra, respectively.
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of measured spectra but with a large gain and offset. From a
magnitude perspective, C2RCC andC2X provide the best accuracy,
with C2X providing better accuracy in the red bands than C2RCC.
Because the used water quality models (Nechad et al., 2010; Gons,
1999) employ the red bands in retrieving SPM and Chl-a, the C2X
was selected as the atmospheric correction of choice.

For the application to S3-OLCI, only the C2RCC and C2RCC-
alternative were available. The results (Figure 3) show that
C2RCC-alternative has a slightly better fit than its older
version. More quantitative goodness-of-fit measures are
presented in Table 3. Both approaches for atmospheric
correction did not produce a good fit to measured spectra
with very low values of correlation coefficient and large Δ .

Nonetheless, the average spectrum resulting from both
atmospheric correction methods resemble the averaged
spectrum obtained from the field with the alternative version
being slightly better than C2RCC. The analysis of atmospheric
correction results is limited in this study to select the approach
that yields the least error in the satellite water leaving spectra. The
above-presented results show that C2X and C2RCC-A were used
to atmospherically correct S2-MSI and S3-OLCI, respectively.

5.2 Validation of Satellite-Derived Water
Quality Variables
Figure 4 shows water quality matchups in the (±1) of the satellite
overpass. This figure shows that continuous in-situmeasurements
contain many fluctuations that are either undetected or averaged
by satellite observations. These fluctuations are large to the point
that average values of satellite derivations fall outside the variability
range (defined as μx ± σx) of in-situ measurements. Particularly,
matchups of Chl-a values (Figure 4B,D) show larger discrepancy

TABLE 2 | Radiometric validation of atmospheric corrections applied to S2-MSI.

λ nm Ac α β × 103 r Δ

443 Acolite 0.4 3.25 0.20 0.65
C2X 0.93 −2.03 0.46 0.57
C2RCC 0.85 −2.69 0.87 0.59
Polymer 0.59 6.99 0.76 0.63

490 Acolite 0.46 2.03 0.83 0.52
C2X 0.97 −3.92 0.69 0.46
C2RCC 0.86 −4.4 0.90 0.58
Polymer 0.82 9.01 0.91 0.65

560 Acolite 0.49 3.49 0.61 0.55
C2X 1.5 −13.79 0.80 0.31
C2RCC 1.28 −11.62 0.87 0.45
Polymer 1.52 7.8 0.98 0.99

665 Acolite 0.64 -0.8 0.83 0.55
C2X 1.08 −5.28 0.84 0.41
C2RCC 1.03 −5.61 0.86 0.53
Polymer 1.76 −1.72 0.98 0.71

705 Acolite 0.75 −1.28 0.64 0.58
C2X 1.22 −6.25 0.79 0.42
C2RCC 0.88 −3.81 0.85 0.59
Polymer 1.97 −4.11 0.91 0.88

FIGURE 3 | Summary of the results from applying atmospheric correction to S3-OLCI using (A) C2RCC and (B) C2RCC-A. Solid lines depict average values,
whereas shaded areas represent the variability as standard deviation. The subscripts, ac,f refer to atmosphere correction and field spectra, respectively.

TABLE 3 | Radiometric validation of atmospheric corrections applied to S3-OLCI.

λ nm Ac α β × 103 r Δ

443 C2RCC −0.66 12.96 −0.05 0.64
C2RCC-A 1.33 −4.50 0.27 0.68

491 C2RCC 0.92 -5.06 0.09 0.54
C2RCC-A 1.61 −15.40 0.38 0.54

561 C2RCC 1.72 −36.41 0.09 0.55
C2RCC-A 2.47 −56.77 0.32 0.52

666 C2RCC 0.79 −6.04 0.00 0.71
C2RCC-A 1.02 −8.03 0.09 0.64

682 C2RCC 0.75 −5.73 0.01 0.72
C2RCC-A 0.98 −7.47 0.06 0.65

709 C2RCC 0.74 −4.33 0.06 0.74
C2RCC-A 0.84 −4.67 0.08 0.69
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than the matchups of SPM (Figure 4A,C). The semivariograms of
in-situ measurements are computed from the standardized
anomalies and shown in Figure 5.

To further analyze the data, we applied the extended triple
collocation technique (Stoffelen, 1998; McColl et al., 2014) on the
standardized anomalies of these data (see Table 4).

FIGURE 4 | Average values and variabilities of the matchup data for S3-OLCI (A) and (B) and for S2-MSI (C) and (D). Solid lines depict average values, whereas
shaded areas represent the variability as standard deviation. The subscripts, f and sat, refer to in-situ measurements and satellite-derived values.

FIGURE 5 | Semivariograms of in-situ measurements around the satellite overpass for S3-OLCI (A), (B) and S2-MSI (C), (D). Solid lines depict average values,
whereas shaded areas represent the variability as ± standard deviation. The dotted line represents the similarity condition of Eq. 8 set to one for illustration.
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The results in Table 4 show that the uncertainty of in-situ
measurement within the ± hour of satellite overpass is
comparable to the uncertainties in satellite-derived water
quality products. This observation is also confirmed when
analyzing the semivariograms. The semivariogram shows non-
stationary and cyclic processes, particularly for Chl-a
measurements, with a cycle of about 10 min. As the sensors of
RWS are well maintained and periodically calibrated, this time
variability could be explained by the inertial subrange
(Kolmogorov et al., 1991), where phytoplankton is affected by
fluctuations at a small-scale ranging from seconds to minutes.
Blauw et al. (2018) measured Chl-a at 12- and 30-min intervals
and found substantial hourly variations, and explained it by
vertical mixing and horizontal transport of different water
masses. Franks (2005) showed high patchiness (in Figure 4) of
one snapshot in time of phytoplankton fluorescence taken with
an imaging fluorometer. However, further research is needed to
investigate this small temporal variability of Chl-a in the study
area. On the other hand, SPM also shows a cyclic pattern but on a
larger temporal scale of a few hours, roughly corresponding to the
tidal cycle of the Ems Dollard (Blauw et al., 2012). The analysis
here will be, however, focused on using the semivariograms to
identify the optimal in-situ matchups. For each in-situ matchup
of 120 data points, sets of similar measurements are identified by
first computing the semivariograms and second applying the
similarity condition of Eq. 8 using the following iterative
procedure:

(i) Starting at the first data point (at t = − 60), compute the
semivariogram using Eq. 4;

(ii) Initialize rx,y (either −0.995 or use the computed
correlation) and compute the condition in Eq. 8;

(iii) Subset all data points that satisfy Eq. 8 and compute their
median or mean.

(iv) Perform steps i to iii on all in-situ matchup and
compute rx,y;

(v) Go to Step ii and replace rx,y and iterate until its value does
not change significantly.

(vi) Exclude the data points that satisfy the similarity condition
(say m) and move the cursor to the next data point m + 1;

(vii) Repeat Steps i to vi starting from m + 1.

Steps ii to v converge very rapidly with a maximum of eight
iterations regardless of the starting value. Only sequential
measurements were grouped in this similarity check. In other
words, the first ms sequential data points that stratified the
similarity condition were grouped. Another condition was

required to guarantee that the data recorded is 5 min (i.e., five
data points) or more, namelyms ≥ 5. The whole procedure, Steps i
to vii, produces data records without overlap, i.e., independent,
each representing a similar set of measurements. Therefore, each
in-situ matchup has a different number of records. Data records
with a correlation coefficient r < 0.15 were excluded from the
calculation. Finally, the unbiased validation procedure of Section
2.4 is applied to the values of weighted averages Xm.

The proposed approach is compared to the standard
procedure of averaging measurements within the 2-h span of
satellite overpass and presented in Table 5 for S2-MSI and
Table 6 for S3-OLCI.

From Tables 5, 6 and Figure 6 it is apparent that using the
similarity conditions of Section 2.3 to group in-situ
measurements, with iterative estimation of rx,y, has improved
the overall fit and produced useful information on the ranges of
goodness-of-fit measures (slope, intercept, correlation coefficient,
and Δ ). The largest improvements can be seen in the correlation
coefficient and the slope. For example, the correlation coefficient
between measured and derived SPM concentrations has
improved from 0.16 to 0.52 for S2-MSI and 0.14 to 0.84 for
S3-OLCI. For the Chl-a matchup, the improvement was from
0.26 to 0.82 and from 0.14 to 0.63 for S2-MSI and S3-OLCI,
respectively. This high correlation signifies that the matchup pairs
are observing the same fluctuations in the measured variable.
Applying the method of unbiased validation (UV, Section 2.4)
will further reduce the uncertainty, Δ , in S2-MSI estimates by 30
and 23% (for SPM and Chl-a, respectively) and by 28 and 16% in
S3-OLCI estimates of SPM and Chl-a, respectively. We
hypothesize that including the ratio σx/σy, Eq. 12, will most
likely reduce the effect of discrepancies other than those
related to satellite derivation (more details on this statement
are provided in Section 6.1). This also means that the used
models to derive Chl-a and SPM from satellite observations have
inherent uncertainties independent of the used validation data.
The Nechad model (Nechad et al., 2010) has uncertainties in the
derived SPM values between 27 and 29%, whereas the Gons
model (Gons, 1999) has derived Chl-a values with uncertainties
of 51 and 46% for S2-MSI and S3-OLCI, respectively. From
Table 5 it is apparent that due to the fine spatial resolution of S2-
MSI (≈ 10m) the reductions in Δ values were limited with larger
uncertainty (standard deviation of Δ ), in particular when
compared to S3-OLCI results (Table 6).

TABLE 4 | Results of the triple-collocation technique applied to standardized
anomalies of field measurements and satellite derived concentrations of SPM
and Chl-a. With σ being the standard deviation, and the subscripts, f, s2, and s3
representing filed, S2-MSI, and S3-OLCI data, respectively.

Variable σf σs2 σs3

SPM 1.23 1.36 1.02
Chl-a 1.01 2.53 1.01

TABLE 5 | Validation of S2-MSI derivations. Similar (μ ± σ) is obtained from sets of
independent records of similar measurements. UV is obtained after the
application of unbiased validation.

Variable Method Slope Offset r Δ

SPM Standard 0.34 11.02 0.16 0.57
Similar 0.54 ± 0.19 3.42 ± 4.45 0.52 ± 0.27 0.57 ± 0.04
UV 1.00 ± 0.00 0.00 ± 0.00 0.52 ± 0.27 0.27 ± 0.18

Chl-a Standard 0.19 11.40 0.26 0.74
Similar 0.23 ± 0.15 9.09 ± 1.55 0.82 ± 0.09 0.75 ± 0.16
UV 1.00 ± 0.00 0.00 ± 0.00 0.82 ± 0.09 0.51 ± 0.16
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6 DISCUSSION

6.1 Method and Results
This study has presented a validation procedure for water quality
products derived from the Sentinel missions in estuarine waters.
Validation of S2-MSI and S3-OLCI products was carried out
using continuous records of suspended sediment (SPM) and Chl-
a measured in Ems Dollard Estuary by the Department of Public
Works and Water Management (RWS) in the Netherlands.
However, proximity remote sensing observations were used

from the Texel station to verify the quality of atmospheric
correction. From the four tested atmosphere correction
approaches, C2X produced S2-MSI spectra close to measured
values in magnitude and shape. For S3-OLCI, two models were
available, with the augmented version of C2RCC producing
slightly better results consistent with recent findings. For
example, Mograne et al. (2019) compared five atmospheric
correction methods for S3-OLCI over optically complex waters
and found that C2RCC-A is better suited for turbid water.
Toming et al. (2017) showed that C2RCC is suitable for

TABLE 6 | Validation of S3-OLCI satellite derivations. Similar (μ ± σ) is obtained from sets of independent records of similar measurements. UV is obtained after the application
of unbiased validation.

Variable Method Slope Offset r Δ

SPM Standard 1.98 −30.88 0.14 0.57
Similar 0.88 ± 0.23 −6.98 ± 5.67 0.84 ± 0.07 0.51 ± 0.07
UV 1.00 ± 0.00 00.00 ± 0.00 0.84 ± 0.02 0.29 ± 0.04

Chl-a Standard 0.76 −4.69 0.24 0.62
Similar 0.99 ± 0.29 −5.19 ± 8.25 0.63 ± 0.12 0.50 ± 0.10
UV 1.00 ± 0.00 00.00 ± 0.00 0.63 ± 0.12 0.46 ± 0.11

FIGURE 6 | The results of the standard approach (Stand, red stars), after selecting similar measurements (Sim, blue triangles) and unbiased validation (UV, gray
circles) applied to similar measurements for SPM (A,C) and Chl-a (B,D) derived from S3-OLCI (A,B) and S2-MSI (C,D).
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atmospheric correction of S3-OLCI but not for deriving water
quality variables. Warren et al. (2019) compared six algorithms
for retrieving water-leaving reflectance from S2-MSI observations
and found that all algorithms have high uncertainties, with
Polymer and C2RCC achieving the lowest mean absolute
differences of 40–60% in blue/green bands. Verification of
atmospheric correction, although indicated radiometric
accuracy, were performed far from the Ems Dollard and
should, therefore, be taken with caution (Pahlevan et al., 2017;
Crout et al., 2019).

In-situ data showed high variability and data points
matching the satellite overpass did not correspond with
satellite-derived values. This could be explained by the fact
that although surface processes are related to underwater
processes, this relationship is not always evident (e.g.,
linear/logarithmic depth profile or stratification). In this
case, in-situ and satellite measurements are likely observing
different processes. For example, Groetsch et al. (2014) showed
that the stratification largely caused the mismatch between in-
situ and satellite-derived Chl-a values during cyanobacterial
blooms. Valdés and Lomas (2017) showed that turbulence of
patches of water constituents are in the order of centimeters
and minutes on the spatiotemporal scale, which does not
correspond with satellite observations (hundred meters and
snapshots). The Ems Dollard Estuary has fine-scale lateral
spatial variability at fine-scale ( < 200 m) and the
destratification state occurs during the flood cycle (Schulz
et al., 2020). Therefore, we filtered the data to include the
nearest pixels and observations during the flood period to
avoid stratification and lateral variability. Moreover, the
presented analyses of semivariograms showed a peculiar
cyclic pattern of about 10 min in Chl-a. The in-situ data
were verified with earlier work (Brinkman et al., 2015) in
the Ems Dollard estuary and found to be consistent. One
explanation could be that the measurements are affected by
the inertial subrange, at which phytoplankton are subjected to
high-frequency fluctuations ranging from seconds to minutes
Kolmogorov et al. (1991). For example, Blauw et al. (2018)
measured Chl-a at 12-min and 30-min intervals and found
substantial hourly variations, and explained it by vertical
mixing and horizontal transport of different water masses.
However, the dynamics of suspended sediments corresponded
to the tidal cycle in the estuary (van Maren et al., 2015b). The
data analysis presented in this paper calls for more elaborate
research on the effect of the tidal cycle, which was considered
to be out-of-scope for this study (see Section 6.3 for details).

Each in-situ matchup consisted of 2 h measurements (one
per minute), resulting in 120 data points around the satellite
overpass. The semivariogram was applied to identify similar
measurements: sequential and fall within a range of variability
defined by the semivariogram. In applying the semivariogram
and similarity condition, a different number of records for
each in-situ matchup were produced with each record
representing a similar set of measurements and is
independent of the other records. The semivariogram was
applied without exclusion to investigate the effect of
records’ overlapping, i.e., staring at t = 5 and moving with

an interval of 5, 23 data records for each in-situ matchup were
produced. These records have some overlap, i.e., a record i
could contain parts i − 1 and i + 1 records. The results, not
shown here, are similar to those presented in Tables 5, 6 but
with lower variability, which the overlap of the data records
could explain.

The semivariogram and the similarity condition were also
applied to point t = 0 around the satellite overpass but did not
provide additional information as it was comparable to the
standard approach. Remembering that in-situ measuring
devices record fluctuations that are not necessarily observed by
the satellite, and then following the principle of insufficient
reason (Jaynes, 1957), any measurement, within the ±1 h of
satellite overpass, could be a candidate point for selecting the
optimal in-situ matchup. Using satellite estimates as background
information, the concept of optimal interpolation, commonly
used to grid satellite data, could be employed. We used the
Cressman weights (Cressman, 1959) to produce a weighted
average Xm from these m records of similar measurements:
Xm � 1

m∑m
i�1wiXi. Xi is the average of ith set (from m sets) of

similar measurements, and wi are the weights, wi � D2
i −d2i

D2
i +d2i

, where
di is the deviation of Xi from the background value, and Di is the
search radius, Di = max (di) + 1. This weighting mechanism will
improve the values of correlation coefficients, but without
sensible uncertainty reduction after applying the unbiased
validation (results are not shown here).

The proposed validation procedure incorporates the
variability of in-situ measurements and satellite
observations (the ratio σx/σy) to estimate the accuracy of
satellite-derived water quality products. Due to this
incorporation, the bias will vanish (therefore, the name
unbiased validation) and the validation metrics (slope,
intercept, correlation, and root-mean-square deviation) will
improve. Our results correspond with the recent work of
McKinna et al. (2021), in which they have shown that
incorporating model and observation uncertainties will
improve the validation metrics. In our work, the variability
of in-situ measurement σx is on a point-scale and includes two
scales: 2 h (around the satellite overpass) and the time-
averaged over the matchup data points. Whereas the
variability of satellite observations, σy, is on a pixel scale (it
includes spatial variability) and contains the time-averaged
over the matchup pixels. Taking the ratio σx/σy will largely
remove time-averaged over the matchup sets and leave the
spatial (pixel scale) and temporal (2 h span) variability.
Therefore, incorporating the ratio, σx/σy, in the validation
will largely account for the spatial and temporal mismatch,
yielding the underlying derivation-uncertainty.

6.2 Derivation Models
The Gons (Gons, 1999) and Nechad (Nechad et al., 2010)
models were used in this study to respectively derive Chl-a and
SPM from satellite data. Although more advanced models do
exist (Pitarch and Vanhellemont, 2021; Werdell et al., 2018;
Salama and Verhoef, 2015; Budhiman et al., 2012), they are not
as robust as the models used in this study. Gons and Nechad
models were validated by recent (Neil et al., 2019, for Chl-a of
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Gons) and earlier studies (Kari et al., 2017; Gons et al., 2008,
for SPM and Chl-a, respectively) and were, therefore, used in
this study as off shelf models. For example, Neil et al. (2019)
have compared 48 models to retrieve Chl-a from satellite
observations. The Gons model (Gons, 1999), with its
original parameterizations, provided very good estimates of
Chl-a with a score of 11 out of 14 (Neil et al., 2019, Figure 6,
the model H). Although the uncertainties of SPM and Chl-a
derived from S2-MSI are more significant than those of S3-
OLCI (5 vs. 6), the fine resolution of S2-MSI reveals spatial
features that are not apparent in S3-OLCI. The unbiased
validation approach provides uncertainty measures that
better reflect the intrinsic accuracy of the derivation models
in the Ems Dollard. For example, the Nechad model has an
inherent uncertainty of about 40% in deriving SPM, whereas
the Gons model has less than 35% of uncertainties in the
derived values of Chl-a. This information, on models’
accuracies, corresponds very well with the considered range
of concentrations, previous work (e.g., Salama et al., 2011), and
the values obtained from the sensitivity analyses of these
models. For comparison, we employ the algebraic method
(based on derivatives) to compute the model’s response to
variations in its coefficients. For the Nechad model, a variation
of ±15% in water leaving reflectance ρw and model’s
coefficients yielded ±20% and ±30% of error in SPM when
derived from S3-OLCI and S2-MSI, respectively. On the other
hand, for the Gons model, the same variation in ρw and its
coefficients (specific inherent absorption coefficient of Chl-a)
resulted in ±40% of errors in Chl-a values when derived from
S3-OLCI or S2-MSI.

6.3 Limitations
This paper dealt with matchup data points between satellite
observations from two sensors and measurements from a fixed
station in a mesotidal estuary. Tidal circulation generally
dominates the dynamics of SPM and Chl-a concentrations in
the Ems Dollard. We used the findings of Schulz et al. (2020) to
avoid stratification and filtered the data to include matchups
during the flood cycle (high water level). However, the
measurements of Schulz et al. (2020) were for 1 day and at
locations to the southeast of the Eemshaven. In this respect,
their results and findings may not apply to the Eemshaven site.
Comparing the measured values (averaged over 120 min around
the satellite overpass, not shown here) to water level did not reveal
an apparent effect of the tide on the concentrations of SPM and
Chl-a. We recognize that analyzing the impact of the tidal cycle
on the uncertainties in satellite estimations is of prime
importance but deemed out-of-scope for this study. For such
an analysis to be appropriate, it should consider more stations
and include the effect of vertical mixing in a 3D
hydrodynamic setup.

In addition, the study showed that performance of standard
algorithms (Gons, 1999; Nechad et al., 2010) was not suited to the
highly turbid and optically complex water of the Ems Dollard (as
shown in the first row of Tables 5, 6). For optically complex
waters, additional skills are required. For example, calibrating the
model’s coefficients with regional data (Salama et al., 2012), or

classifying the water and for each identified type apply the model
with the least uncertainty (Moore et al., 2014).

Nonetheless, the data analysis of this study has revealed the
complexity of validating satellite products of water quality in
mesotidal estuary. The study raised another concern related to the
depth of the inertial subrange in Eemshaven. Although inertial
subrange could explain the small-scale cyclic pattern in Chl-a
measurements, we did not verify this process. These limitations,
however, do not preclude the utility of the suggested technique as
it may also remove part of the tidal effects by incorporating the
variability of in-situ measurements.

7 CONCLUSION

The mismatch, in time and space, between satellite-pixel and
point field measurements is a significant challenge facing the
accuracy assessment of satellite products of water quality.
Comparing in-situ data measured on a small footprint with
satellite value derived on a pixel-scale is only meaningful when
this mismatch is reduced.

The objective of this study was to devise a method to
validate satellite derivations of water quality with
continuous in-situ measurements in estuarine waters. The
main challenges in this validation exercise were: the high
variability of in-situ records, 120 values for each matchup,
and discrepancies related to uncertainties other than the
derivation-uncertainty. The first challenge was addressed by
identifying the similarity between in-situ measurements using
their semivariogram. The second challenge was addressed by
incorporating the variabilities of field measurements and
satellite observations in the validation procedure. The
proposed approach has produced zero bias and improved
the validation metrics (slope, intercept, correlation, and
root-mean-square deviation). When compared to traditional
validation procedures, the proposed method has improved the
overall fit and produced valuable information on the ranges of
goodness-of-fit measures (slope, intercept, correlation
coefficient, and normalized root-mean-square deviation).
The correlation coefficient between measured and derived
SPM concentrations has improved from 0.16 to 0.52 for S2-
MSI and 0.14 to 0.84 for S3-OLCI. For the Chl-a matchup, the
improvement was from 0.26 to 0.82 and from 0.14 to 0.63 for
S2-MSI and S3-OLCI, respectively. The uncertainty in the
derived SPM and Chl-a concentrations was reduced by 30
and 23% for S2-SMI and by 28 and 16% for S3-OLCI. The high
correlation and reduced uncertainty signify that the matchup
pairs are observing the same fluctuations in the measured
variable. These new goodness-of-fit measures correspond to
the results of the performed sensitivity analysis, previous
literature, and reflect the inherent accuracy of the applied
derivation model.

The presented work is not limited to the realm of ocean color but
can be used to validate satellite retrievals on land. For example, the
method is applicable to validate active-passive microwave products
of soil moisture or thermal-infrared products of land and sea surface
temperatures. The proposed technique ensures the consistency of
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accuracy’s estimates of satellite retrievals when validated with semi-
continuous field measurements.
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APPENDIX

Proof 1
Here we will show that the uncertainty Δd Eq. 13 resulting from
the transformed values �y Eq. 12 always provides the lowest
uncertainty, Δtot > Δd as long as σy > σx. The proof of this
statement follows from calculating the root-mean-square
deviation, Δ2, between measured x and satellite-derived
values y:

Δ2
tot � σ2x + σ2y − 2σx σy rx,y (A1)

σ2x + σ2y − 2σx σy rx,y > 2σ2x 1 − rx,y( ) (A2)
Rearranging the inequality in Eq. A1:

rx,y < 0.5 + 0.5
σy
σx

(A3)

The inequality in Eq. A3, and thus Δtot > Δd, is always satisfied
as long as σy > σx.

Proof 2
The proof that αII = 1 and βII = 0 for �y is provided hereafter.
Type-II regression minimizes the normal deviates in the major
axis regression line, �y � αII x + βII (York, 1966), we will have the
slope estimated as:

αII �
n − 1( ) σ2

�y − σ2
x( ) + ���������������������������

n − 1( )2 σ2
�y − σ2

x( )( )2 + 4σ2
x σ

2
�y r

2
x,�y

√
2σx σ �y rx,�y

(A4)
Remembering that σ �y � σx yields αII = 1 and μ�y � μx yields βII

= 0. This proof is valid as long as the slope αII is positive, which is
expected to hold for a good matchup set.
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