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The Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band (DNB) on board the
Suomi NPP satellite now provides almost a decade of daily observations of night light. The
temporal frequency of sampling, without the degree of temporal averaging of annual
composites, makes it necessary to consider the distinction between apparent temporal
changes of night light related to the imaging process and actual changes in the underlying
sources of the night light being imaged. The most common approach to night light change
detection involves direct attribution of observed changes to the phenomenon of interest.
Implicit in this approach is the assumption that other forms of actual and apparent change
in the light source are negligible or non-existent. An alternative approach is to characterize
the spatiotemporal variability prior to deductive attribution of causation so that the
attribution can be made in the context of the full range of spatial and temporal
variation. The primary objective of this study is to characterize night light variability over
a range of spatial and temporal scales to provide a context for interpretation of night light
changes observed on both subannual and interannual time scales. This analysis is based
on a combination of temporal moments, spatial correlation and Empirical Orthogonal
Function (EOF) analysis. A key result of this study is the pervasive heteroskedasticity of
VIIRS monthly mean night light. Specifically, the monotonic decrease of variability with
increasing mean brightness. Anthropogenic night light is remarkably stable on subannual
time scales while background luminance varies considerably. The variance partition from
the eigenvalues of the spatiotemporal covariance matrix are 88, 2 and 2% for spatial,
seasonal and interannual variance (respectively) in the most diverse region on Earth
(Eurasia). Heteroskedasticity is pervasive in the monthly composites; present in all
areas for all months of the year, suggesting that much, if not most, of the month-to-
month variability may be related to luminance of otherwise stable sources subjected to
multiple aspects of the imaging process varying in time. Given the skewed distribution of all
night light arising from radial peripheral dimming of bright sources subject to atmospheric
scattering, even aggregate metrics using thresholds must be interpreted in light of the fact
that much larger numbers of more variable low luminance pixels may statistically
overwhelm smaller numbers of stable higher luminance pixels and cause apparent
changes related to the imaging process to be interpreted as actual changes in the
light sources.
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INTRODUCTION

The Visible Infrared Imaging Radiometer Suite (VIIRS) Day
Night Band (DNB) on board the Suomi NPP satellite now
provides almost a decade of daily observations of night light. In
comparison to the Defense Meteorological Satellite Program
(DMSP) Operational Line Scanner (OLS) night light imagery,
VIIRS DNB provides greater dynamic range (14 vs 6 bit),
higher spatial resolution (∼0.7 vs 5 km), on board
calibration and greater sensitivity for low light imaging
(Elvidge et al., 2013). All of these features allow VIIRS to
detect a much greater diversity of night lights than DMSP-
OLS was able to resolve. In addition, VIIRS imagery is available
as individual swaths and daily, monthly and annual
composites. The greater temporal frequency of sampling,
without the degree of temporal averaging of annual
composites, makes it necessary to consider the distinction
between apparent temporal changes of night light related to
the imaging process and actual changes in the underlying
sources of the night light being imaged.

Temporal changes in imaged night light arise from a variety of
factors related to ambient phenomena (e.g. stray light, lunar cycle,
aurora and lightning) (Elvidge et al., 2017; Ji et al., 2018),
atmospheric effects (Fu et al., 2018; Román et al., 2018), view
geometry (Li et al., 2019), overpass time (Li et al., 2020),
background reflectance (Levin 2017; Levin and Zhang 2017),
(Chen et al., 2019) and instrument calibration/drift (Zeng et al.,
2018), as well as actual changes in terrestrial light sources. Actual
changes in light sources also arise from a variety of factors such as
disruptions of electricity supply (Kohiyama et al., 2004; Cao et al.,
2013; Mann et al., 2016), conflict (Li et al., 2013; Li and Li 2014;
Levin et al., 2017; Li et al., 2018), cultural and religious activity
(Roman and Stokes 2015), lighted infrastructure development
(Kuechly et al., 2012; Hale et al., 2013; Small and Elvidge 2013;
Levin et al., 2014), and gas flaring (Elvidge et al., 2009; Zhang
et al., 2015; Elvidge et al., 2016; Coesfeld et al., 2018). While the
vast majority of research applications focus on changes in actual
light sources, the potential contribution of non-source
phenomena are often not considered in analyses of night light
change. The most common approach to night light change
detection involves direct attribution of observed changes to the
phenomenon of interest. Implicit in this approach is the
assumption that other forms of actual and apparent change in
the light source are negligible or non-existent. An alternative
approach is to characterize the spatiotemporal variability prior to
deductive attribution of causation so that the attribution can be
made in the context of the full range of spatial and temporal
variation.

The primary objective of this study is to characterize VIIRS
night light variability over a range of spatial and temporal scales
to provide a context for interpretation of night light changes
observed on both subannual and interannual time scales.
Specifically, to introduce a robust methodology for
characterization of VIIRS’ spatiotemporal variability that can
be used to distinguish multiple sources of apparent and actual
change in night light. The strategy implemented in this study is
based on the combined use of low luminance thresholds and

Empirical Orthogonal Function (EOF) analysis of night light time
series on both subannual and interannual time scales.

DATA

The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor
was launched on board the NASA-NOAA Suomi satellite in 2011.
The day/night band (DNB) of the sensor collects low light
imagery in a 3,000 km swath at a fixed resolution of 742 m
with an equator overpass time of ∼1 AM local time. Individual
VIIRS acquisitions are often composited to exclude clouds and
intermittent sources like fires. In comparison to DMSP, VIIRS
provides higher dynamic range, on-board calibration, and
multiple optical bands that can be used to distinguish different
light sources. More detailed descriptions of the data, products,
and applications of VIIRS imagery are given by (Elvidge et al.,
2013) and (Miller et al., 2013). The VIIRS monthly mean night
light composites and cloud free coverages used in this study were
produced by the Earth Observation Group at the Colorado School
of Mines (https://payneinstitute.mines.edu/eog/). All analyses in
this study use the stray-light-corrected monthly mean radiance
product. Because VIIRS radiances typically span four orders of
magnitude, all analyses are performed using Log10 (radiance).

METHODS

This analysis is based on a combination of temporal moments,
spatial correlation and Empirical Orthogonal Function (EOF)
analysis. Computation of the temporal mean (μ) and temporal
standard deviation (σ) of monthly mean radiance and number of
cloud free acquisitions per month allows for the combined use of
moment composite maps and moment spaces to illustrate the
relationships between monthly means and standard deviations.
Spatial correlation matrices computed for all pairs of monthly
mean radiance images provide a statistical measure of similarity
of spatial distributions of night light brightness. Temporal
moments and spatial correlations provide complementary
aggregate metrics of variability. While these metrics offer the
benefit of intuitive interpretability, a more comprehensive
depiction of this variability is given by a combined
spatiotemporal analysis. Empirical Orthogonal Function
analysis, originally developed for statistical weather prediction
(Lorenz 1956), is now a standard tool for analysis of
spatiotemporal patterns and processes. Overviews of the use of
EOF analysis in oceanography and meteorology are given by
(Preisendorfer 1988; Bretherton et al., 1992; von_Storch and
Zwiers 1999). The combined use of EOF analysis with
temporal feature spaces and temporal mixture models, with
application to DMSP night light time series is described in
detail by (Small 2012) and (Small and Elvidge 2013).

EOF analysis uses the principal component transform to
represent spatiotemporal patterns as orthogonal modes of
variance. Rotating the spatiotemporal coordinate system to
align with orthogonal dimensions of uncorrelated variance
allows any location-specific pixel time series Pxt in an N image
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time series to be represented as a linear combination of temporal
patterns, F, and their location-specific components, C, as:

Pxt � ∑
N

i�1
CixFit (1)

where Cix is the spatial Principal Component (PC) and Fit is the
corresponding temporal Empirical Orthogonal Function (EOF) and
i is the dimension. EOFs are the eigenvectors of the spatiotemporal
covariability (either covariance or correlation) matrix that represent
uncorrelated temporal patterns of variability within the data. The
PCs are the corresponding spatial weights that represent the relative
contribution of each temporal EOF to the pixel time series Pxt at
each location x. The relative contribution of each EOF to the total
spatiotemporal variance of the observations is given by the
eigenvalues of the covariance matrix. N is the number of discrete
dimensions represented by the time series of observations. Principal
Components are uncorrelated but not necessarily
independent–unless the data are jointly normally distributed. In
systems in which the same deterministic processes are manifest at

many locations, but stochastic processes are uncorrelated, the
variance of the deterministic processes may be represented in the
low order PC/EOF dimensions while the stochastic variance may be
relegated to the higher order dimensions (Preisendorfer 1988). If a
clear distinction can be made between a small number of physically
meaningful EOFs (or PCs) distinct from a continuum of
uninterpretable EOFs (or PCs), this can provide a statistical basis
for attribution of deterministic and stochastic components of an
image time series. However, the transformation is purely statistical
so there is no guarantee that the attribution will be physically
meaningful, or even exist at all.

Computation of the temporal means and standard deviations for
each pixel time series provides the bivariate distribution of temporal
moments necessary to assess the relationship between annual mean
brightness and monthly variability of brightness. Computation of
pairwise spatial correlations for each same month pair of images
using Pearson’s product-moment correlation coefficient provides
the 2019–2020 correlations with which to identify the cross year and
cross season lowest correlation pairs. Temporal EOFs and
corresponding spatial PCs are computed using the eigenvectors

FIGURE 1 | (A) Spatiotemporal moments for Log10 VIIRS monthly radiance for 2019 + 2020. Mean (μ) monthly Log10 radiance (red) is consistently high for lighted
development and relatively low elsewhere, while the standard deviation (σ) of monthly Log10 radiance (cyan) is low for lighted development and relatively high elsewhere.
Lighted development at higher latitudes has high μ and σ so appears white. The μ vs σ distribution (inset scatterplot) shows spurs of rapidly increasing σ with μ for high
latitude coverage gaps in summer months. Individual spurs of increasing μ and σ on the upper limb of the scatterplot correspond to brighter sources with different
summer gap lengths (inset left). Monotonically decreasing range of σ for μ > 1 nW/cm2/sr on the lowest limb of the distribution results from increasing temporal stability
(decreasing σ) with increasing brightness for sources south of the summer gap latitudes (inset right). Gas flares at all latitudes are both bright and variable (white). Inset
map of μ and σ for cloud free acquisitions per month for 2019 + 2020 (top) shows a similar pattern as a result of both cloud cover and high latitude coverage gaps.
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of the covariance matrix of the time series of monthly mean
radiance. The mean is removed before the data are projected
onto the transpose of the eigenvectors so the first PC generally
represents the spatial variation in overall brightness.

RESULTS

Temporal moment maps illustrate two of the most pervasive
sources of subannual variability in VIIRS night light. Figure 1A
shows the latitude-dependent variability in solar illumination
(and lack thereof) for Europe, southwest Asia and north Africa
(henceforth Eurasia) and Figure 1B the effect of summer
monsoon cloud cover for southeastern Asia. In both images,
the red channel represents the temporal mean of 24 monthly
radiance composites for 2019 + 2020 while the cyan channel
represents the temporal standard deviation. The inset maps show
the corresponding quantities for the monthly number of cloud
free observations contributing to each monthly composite. Both
maps for both regions are strongly bimodal, indicating strong
regional distinctions between areas with lowmean brightness and

high temporal variability and areas with high mean brightness
and low temporal variability. Areas with high mean brightness
and high variability are limited to anthropogenic night lights
associated with human settlements and gas flaring. Both high
latitude and monsoon summer gaps in coverage result in at least
1 month without sufficient data to detect even bright lights.
Examples are shown in the inset in Figure 1A. Offshore, lights
from fishing boats also results in high variability and low mean
brightness as a result of fleets’ seasonal mobility. In both Eurasia
and southeastern Asia the temporal moment spaces (inset) show
the bimodal distributions explicitly as two nearly orthogonal
limbs corresponding to the aforementioned geographic
partitions. The bright + variable night lights appear as
diagonal spurs extending away from the high variability limb
of each distribution. The high variability, low brightness limb
corresponds to large areas of highly variable background
luminance. The lower, horizontal limb of each distribution
represents the more stable anthropogenic night lights
corresponding to human settlements and other lighted
development. Note that in both distributions, the range of
standard deviation diminishes monotonically with increasing

FIGURE 1 | (B) Spatiotemporal moments for Log10 VIIRS monthly radiance for Asia in 2019 + 2020. Mean (μ) monthly Log10 radiance (red) is consistently high for
lighted development and relatively low elsewhere, while the standard deviation (σ) of monthly Log10 radiance (cyan) is low for lighted development and relatively high
elsewhere. Lighted development in summer monsoon areas has high μ and σ so appears white. The μ vs σ distribution (inset scatterplot) shows spurs of rapidly
increasing σ with μ for high latitude coverage gaps in summer months. Individual spurs of increasing μ and σ on upper scatterplot correspond to brighter sources
with different summer gap lengths (inset left). Monotonically decreasing range of σ for μ > 1 nW/cm2/sr on the lowest limb of the distribution results from increasing
temporal stability (decreasing σ) with increasing brightness for sources outside the summer monsoon gap areas (inset right). Inset map of μ and σ for cloud free
acquisitions per month for 2019 + 2020(top) shows a similar pattern as a result of monsoon cloud cover.
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mean brightness on the lower limb. Similar distributions are
observed elsewhere on Earth (Small 2021).

Spatial correlation matrices of VIIRS monthly mean radiance
composites for 2019 + 2020 show correlations between 0.7 and

0.9 for all pairs of months. Heteroskedasticity of the mode of the
distributions results from month to month variability in
background luminance which reduces the spatial correlation
for large numbers of low luminance pixels. Tri-temporal color

FIGURE 2 | Tri-temporal composites of lowest spatial correlation. Color implies change. May 2020 and December 2020 (top) have much lower correlation to all
other months (inset RGB). Aside from these two anomalous dates, summer and winter pairs have lower correlations (bottom) than same season pairs, which are
generally >0.88. Correlations are computed using only pixels >10+0.5 nW/cm2/sr to exclude effects of background luminance changes. Note geographic contiguity of
change areas.
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FIGURE 3 |Monthly comparisons of 2019 and 2020 for Eurasia. In all months, dispersion about the 1:1 line diminishes with increasing brightness, with no apparent
bias above ∼100.5 nW/cm2/sr. At lower brightness levels, there is considerable bias, varying from month to month. Brighter sources show slight bias suggesting
dimming from 2019 to 2020 in January and March, but none apparent in other months. Correlations computed using only radiances >10+0.5 nW/cm2/sr.
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FIGURE 5 | PCs, EOFs and temporal feature space for 2019 + 2020monthly time series for Eurasia with luminance threshold applied. PC1, PC2 and PC3 account for
88, 2 and 2% of spatiotemporal variance (respectively). The >10+0.5 nW/cm2/sr low luminance threshold eliminates large areas of background luminance so the
transformation reflects the spatiotemporal characteristics of the much smaller area of brighter anthropogenic luminance. Bright, temporally stable, urban cores appear red
because brightness is modulated by EOF1 and PC1. Magenta and green areas represent variations in the lower luminance periphery where seasonal and interannual
changes from residual background luminance approach the contribution of the dimmer anthropogenic light sources. Most of the seasonal (green) areas correspond to
mountains or steppe where winter snow and summer vegetation result in higher winter and lower summer albedo. The sign of each PC value determines the polarity of its
EOF. The distinct cluster of pixels in quadrant three of PC2-PC3 corresponds to parts of eastern Europe and Russia where December 2020 had anomalously low luminance.

FIGURE 4 | Spatial principal components of the 2019 + 2020monthly time series for Eurasia. PC1, PC2 and PC3 account for 48%, 26% and 6% of spatiotemporal
variance (respectively). The temporal feature space (inset) shows PC1 corresponding to overall brightness and temporal stability as PC2 represents latitudinal variations
in background luminance. PC3 also shows seasonal variability consistent with persistent winter snow cover in mountainous and steppe regions.
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composites of mean radiance for the months with the three lowest
spatial correlations are shown in Figure 2. Areas with similar
brightness in all 3 months appear shades of gray. Color implies
change. The upper composite shows the anomalously low
brightness for large areas of Russia, the Alps and Anatolian
plateau in December 2020 as shades of red/orange and a
narrow high latitude zone of anomalously high brightness in
May 2020 as green along the top of the panel. The lower panel
illustrates the effect of seasonal differences. This composite shows
the periurban peripheries of lighted developments on the Russian
steppe, Alps and Anatolian plateau with higher brightness in
January 2020, consistent with the presence of high albedo snow in
winter and low albedo vegetation in summer. This is consistent
with the seasonality observed by (Levin 2017) and (Levin and
Zhang 2017), although it should be noted that this variability is
limited to periurban areas with lower luminance–and presumably
much larger areas of illuminated snow and vegetation than the
brighter urban cores. As with the moment spaces in Figure 1, the
inset scatterplots in both panels show strong heteroskedasticity
with much greater dispersion at lower brightness levels,
diminishing monotonically as brightness increases. It is also
noteworthy that the considerable skewness magnitude and
polarity of the lower tails of all these bivariate distributions
varies among all pairs while the upper tail of each distribution
remains symmetric about the 1:1 line.

The seasonal periodicity indicated by the monthly spatial
correlation matrix suggests that interannual changes should be
most apparent when comparing the same months of different
years. Figure 3 shows scatterplots comparing monthly mean
radiance for 2019 and 2020 for the Eurasian region shown in
Figures 1, 2. As with the subannual comparisons in Figure 2, the
interannual bivariate distributions are all strongly heteroskedastic
with skewed lower tails and symmetric upper tails. There is no
obvious consistency in the month-to-month skewness variations,
while the upper tails are consistently symmetric for radiances >
100.5 nW/cm2/sr. Similar distributions are observed elsewhere on
Earth (Small 2021).

The spatial principal components (PCs) of the 24 monthly
mean radiance composites from 2019 + 2020 show the spatial
distribution of the dominant modes of spatiotemporal variability
for Eurasia driven by the contrast between large numbers of low
luminance pixels and much smaller numbers of much brighter
pixels (Figure 4). Specifically, a strong contrast between the
bright stable anthropogenic lights associated with settlements
and the high variability of background luminance in non-lighted
areas. Again, the strong contrast between higher latitude and
mountainous areas where background reflectance changes
seasonally, and lower latitude deserts with negligible
seasonality of background reflectance is apparent. This
contrast is reflected in the bimodal structure of the temporal

FIGURE 6 | Temporal feature space and example time series for 2019 + 2020 monthly mean with luminance threshold applied. Seasonal variability diminishes with
increasing brightness (left), Brightness changes significantly greater than month to month variability occur, but are exceedingly rare (right).
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feature space of PCs one and 2. The structure of the feature space
is similar to that of the moment space as the PC1 represents
overall brightness varying in space while PC2 represents the
dominant mode of temporal variability.

In order to suppress the effects of variance heteroskedasticity
on the PC rotation, the 24 months image time series was rotated

with all pixel time series with radiances less than 100.5 nW/cm2/sr
masked. Limiting the rotation parameters to those time series
with larger radiances effectively focuses the EOF analysis on the
variance of anthropogenic light sources. Figure 5 shows a tri-
temporal composite of the three low order PCs from the masked
time series. As with the other composites, the effect of

FIGURE 7 | Night light stability in China. Tri-temporal composites of monthly mean radiance for early 2020 shows almost all lights as unchanging (shades of gray),
with a few small exceptions. No evidence for persistent or widespread reduction in night light during the 2020 lockdowns. Color implies change. Warmer colors imply
dimming between January and May 2020.
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background reflectance of land cover is clearly apparent–even
though it is limited to the larger periurban areas at the scale of the
figure. However, it is also clear that there is much greater
variability in most of the urban areas, indicated by a greater
variety of colors resulting from varying combinations of the low

order EOFs. The inset EOFs show a clear distinction among
spatial variations in overall brightness (PC1 – red), seasonal
variations (PC2 – green) and interannual variations (PC3 –
blue). Note that all 3 PCs have both positive and negative
values, implying that each corresponding EOF occurs in both

FIGURE 8 | Seasonal night light in coastal east Asia. Tri-temporal composites of monthly mean radiance for early 2020 shows most urban lights as unchanging
(shades of gray). Color implies change. Warmer colors imply dimming between January and May 2020. Small isolated sites with seasonal fluctuations in northern South
Korea and western Hainan Island occur in 2019 and 2020 (arrows and inset plots). More prominent are the seasonal movements of fishing fleets in the Sea of Japan and
Gulf of Tonkin. The apparent change in Hanoi and other Red River Delta cities results from cloud cover reduced brightness in March 2020.
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polarities. Hence, the upward trend of EOF3 would correspond to
decreases in brightness in pixels with negative PC3 values. The
overall variance partition derived from the eigenvalues of the
covariance matrix are 88, 2 and 2% for dimensions 1, two and
three respectively. This suggests that almost 90% of the

spatiotemporal variance is associated with spatial variations in
average brightness while 8% of variance is associated with the
remaining higher (>3) order modes representing stochastic
variability and only 2% each for seasonal and interannual
temporal variability. With background luminance suppressed,

FIGURE 9 | Nocturnal horticulture. Tri-temporal composites of monthly mean radiance shows urban lights as unchanging (shades of gray). Color implies change.
Warmer colors imply dimming between January and May 2020. Isolated sites of greenhouse clusters in the Netherlands and Belgium (top) and extensive Dragonfruit
plantations in southern Vietnam (bottom) are seasonally lighted in 2019 and 2020 (arrows and inset plots).
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most anthropogenic night light detected by VIIRS appears to be
remarkably stable in at monthly time scales.

The spectral feature space of the three low order dimensions of the
low-luminance masked image time series shown in Figure 6 is
consistent with both the temporal moment spaces (Figure 1) and
the bivariate brightness distributions (Figure 3). As overall brightness
(PC1) increases, both seasonal (PC2) and interannual (PC3) variance

decrease monotonically. The inset time series taken from the upper
edge of the envelope of PC1/PC2 distribution show considerable
month-to-month variability superimposed on the seasonal cycles,
consistent with a variance partition between deterministic (PC ≤ 3)
and stochastic (PC > 3) variance. The PC3/PC2 space is effectively a
phase plane in which different combinations of positive and negative
PC weights for EOFs two and three represent different combinations

FIGURE 10 | Intermittent lights and gas flares from densely spaced hydrofracture wells in North America. Tri-temporal composites of monthly mean radiance for
early 2020 shows small urban lights unchanging (shades of gray). Color implies change. Warmer colors imply dimming between January and May 2020.
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of seasonality and interannual change between 2019 and 2020. Note
that the example time series 2 and 4 are not actually monotonic
trends as EOF three depicts, but abrupt increases and decreases. This
is consistent with the way that abrupt changes are often represented
in low order EOFs (Small 2012).

Using the spatial PC maps for dimensions 2 and 3 as anomaly
detectors makes it possible to immediately identify locations
exhibiting strong seasonality or changes between 2019 and
2020. Figures 7–10 show contrasting examples of seasonal
changes in 2020 as tri-temporal composites with example time

FIGURE 11 | Interannual variability of anthropogenic night light associated with oil and gas production. Stable lights appear shades of gray. Color implies change.
Northwestern Arabia and the southern Gulf (top) shows pervasive change of production infrastructure lighting on both the Ghawar oilfield onshore and the North Dome
gas field offshore. The Niger Delta (bottom) shows more extensive change of both small settlements and oil production. Gas flares are characterized by larger, brighter
sources and much larger peripheral halos.
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series for individual pixels. Figures 11–13 show examples of
interannual changes between 2014, 2017 and 2020 as tri-temporal
composites from april of each year. April was chosen to minimize
the effects of snow cover at higher latitudes and elevations and the
effect of monsoon cloud cover at lower latitudes.

DISCUSSION

Implications of Subannual Variability
A key result of this study is the pervasive heteroskedasticity of
VIIRS monthly mean night light. Specifically, the monotonic

FIGURE 12 | Interannual variability of anthropogenic night light associated with small rural settlements in Africa. Stable lights appear shades of gray. Color implies
change. Most small sources southeast of Khartoum (top) show progressive brightness increase since 2014 (red), but those in Ethiopia show both sustained increase
and decrease (blue). In contrast, numerous small sources in western Africa (bottom) show both sustained increase and increase followed by decrease (green). In the
latter case, the decrease post 2017 is partial with 2020 brightness still greater than in 2014.
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decrease of temporal variability with increasing mean brightness.
Bivariate distributions for all monthly pairs, temporal moment
distributions and temporal feature spaces all show this pattern
consistently for all years and geographic regions. The three
primary sources of geographic temporal variability are
latitude-dependent summer gaps in low light acquisitions,

summer monsoon cloud cover variations and seasonal changes
in background reflectance at higher latitudes and elevations
where snow is more persistent in winter and vegetation in
summer. However, heteroskedasticity is a pervasive
characteristic of the monthly composites and is present in all
areas for all months of the year, suggesting that much, if not most,

FIGURE 13 | Interannual variability of anthropogenic night light associated with conflict. Stable lights appear shades of gray. Color implies change. Bright isolated
lights with halos are gas flares. Large area changes of smaller lights likely indicate changes related to power outages at the time of VIIRS′ overpass.
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of the month-to-month variability may be related to luminance of
otherwise stable sources subjected to multiple aspects of the
imaging process varying in time. Three of the most obvious
that have been documented are viewing geometry (Li et al., 2019),
atmospheric opacity related to aerosols (Fu et al., 2018; Román
et al., 2018) and tropospheric water vapor observed frequently in
astronaut photos of cities at night (Small 2019).

EOF analysis quantifies the remarkable stability of brighter
sources of night light. Specifically, in urban areas and other types
of lighted development. While the two dominant forms of
deterministic change (EOF2 and EOF3) account for 2% of
variance each, spatial variations in brightness account for almost
90% and stochastic variance accounts for almost 10%. EOF analysis
also illustrates the pervasive influence of background reflectance in
dimly lighted periurban and unlighted rural areas–even with a
moderate low luminance threshold (10+0.5 nW/cm2/sr) used to
mask background luminance variations.

Aggregate Metrics of Change
The heteroskedastic nature of monthly night light composites has
important implications for studies that infer actual change in light
sources from aggregate metrics like Sum of Lights (SoL) and
Number of Pixels (NoP). Even studies that apply low luminance
thresholds are subject to variability at the level of the threshold.
Given the skewed distribution of all night light arising from radial
peripheral dimming of bright sources, even aggregate metrics
using thresholds must be interpreted in light of the fact that much
larger numbers of more variable low luminance pixels may
statistically overwhelm smaller numbers of stable higher
luminance pixels and cause apparent changes related to the
imaging process to be interpreted as actual changes in the
light sources. The aggregation process may conceal the most
obvious effects of month-to-month variability, but does so at the
risk of misattribution of apparent variability to actual change.

Spatiotemporal Anomaly Detection
Because EOF analysis can orthogonalize seasonal and interannual
variability as distinct from spatial variability in average brightness, the
spatial PCs of these higher dimensions can be used as anomaly
detectors to easily identify light sources potentially having undergone
actual deterministic change that is statistically distinguishable from
both spatial variations in brightness and stochastic temporal
variations. As such, it can achieve a stated objective of this study:

to provide a basis for distinguishing between actual and apparent
change in the sources of anthropogenic night light. Unlike commonly
used time series fitting and modeling approaches, EOF analysis is
model agnostic and free of the biases inherent in curve fitting. The
only assumptions inherent in EOF analysis are that variance
corresponds to information and that correlation implies
redundancy. Clearly, this is not always the case, but it is often a
reasonable assumption. Enough so to justify the use of EOF analysis
as a tool for characterization of spatiotemporal variability. In addition,
when the combination of variance distribution and EOF
interpretability allows for a feasible separation of deterministic and
stochastic variance, the resulting partition can inform understanding
of both. In the case of significant month-to-month or year-to-year
variability inconsistent with the nature of stable night light, this
variance partition can provide a basis for projection filtering to more
clearly isolate the spatial structure of the temporal changes associated
with the temporal processes represented by the low order EOFs
(Small 2012; Small and Elvidge 2013).
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