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Remote sensing measurements from multi-angle polarimeters (MAPs) contain rich aerosol
microphysical property information, and these sensors have been used to perform
retrievals in optically complex atmosphere and ocean systems. Previous studies have
concluded that, generally, five moderately separated viewing angles in each spectral band
provide sufficient accuracy for aerosol property retrievals, with performance gradually
saturating as angles are added above that threshold. The Hyper-Angular Rainbow
Polarimeter (HARP) instruments provide high angular sampling with a total of 90–120
unique angles across four bands, a capability developedmainly for liquid cloud retrievals. In
practice, not all view angles are optimal for aerosol retrievals due to impacts of clouds,
sunglint, and other impediments. The many viewing angles of HARP can provide resilience
to these effects, if the impacted views are screened from the dataset, as the remaining
viewsmay be sufficient for successful analysis. In this study, we discuss how the number of
available viewing angles impacts aerosol and ocean color retrieval uncertainties, as applied
to two versions of the HARP instrument. AirHARP is an airborne prototype that was
deployed in the ACEPOL field campaign, while HARP2 is an instrument in development for
the upcoming NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission. Based
on synthetic data, we find that a total of 20–30 angles across all bands (i.e., five to eight
viewing angles per band) are sufficient to achieve good retrieval performance. Following
from this result, we develop an adaptive multi-angle polarimetric data screening (MAPDS)
approach to evaluate data quality by comparing measurements with their best-fitted
forward model. The FastMAPOL retrieval algorithm is used to retrieve scene geophysical
values, by matching an efficient, deep learning-based, radiative transfer emulator to
observations. The data screening method effectively identifies and removes viewing
angles affected by thin cirrus clouds and other anomalies, improving retrieval
performance. This was tested with AirHARP data, and we found agreement with the
High Spectral Resolution Lidar-2 (HSRL-2) aerosol data. The data screening approach can
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be applied to modern satellite remote sensing missions, such as PACE, where a large
amount of multi-angle, hyperspectral, polarimetric measurements will be collected.

Keywords: PACE, multi-angle polarimeter, aerosol remote sensing, ocean color, data screening, cloud masking,
deep learning, automatic differentiation

1 INTRODUCTION

Aerosols play a critical role in Earth’s radiative balance by directly
scattering and absorbing solar radiation, and indirectly
interacting with clouds. Due to their complex micro-physical
properties and spatio-temporal distributions, combined with
measurement and modeling difficulties, aerosol-related
processes are among the largest uncertainties in radiative
forcing of the Earth climate (Boucher et al., 2013). Remote
sensing measurements from multi-angle polarimeters (MAPs)
contain rich information on aerosol microphysical properties
compared to other sensor types and therefore can be used to
improve aerosol retrieval accuracy (Mishchenko and Travis,
1997; Chowdhary et al., 2001; Hasekamp and Landgraf, 2007;
Knobelspiesse et al., 2012). Meanwhile, ocean color remote
sensing, which assesses water-leaving signals to infer
chlorophyll concentration and other biogeochemical quantities,
is important in the study of phytoplankton dynamics, global
carbon cycle, and marine ecosystems (Frouin et al., 2019; Groom
et al., 2019). Accurate estimation of the water-leaving signal
requires the quantification and removal of the aerosol path
radiance and the ocean surface reflectance from the remote
sensing measurement (Mobley et al., 2016). To advance both
aerosol and ocean color characterization based on MAP
measurements, simultaneous multi-parameter retrieval
algorithms have been developed over both open and coastal
waters (Chowdhary et al., 2005; Hasekamp et al., 2011; Xu
et al., 2016; Stamnes et al., 2018; Gao et al., 2018; Fan et al.,
2019; Gao et al., 2019, 2021).

To achieve various scientific objectives on the study of
aerosols and clouds, several MAP instrument designs are
available, with different spectral bands, viewing angles, and
measurement accuracies (see Table 1). The Polarization and
Directionality of the Earth’s Reflectances (POLDER)
instruments flew on Advanced Earth Observing Satellite
missions (ADEOS-I; 1996–1997 and ADEOS-II; 2002–2003,
Deschamps et al. (1994)) and the Polarization and Anisotropy
of Reflectances for Atmospheric Sciences coupled with
Observations from a Lidar (PARASOL; 2004–2013) mission
(Tanré et al., 2011). They measured up to 14 viewing angels in
nine spectral bands from visible to near infrared (NIR) with
three polarized bands. The 3MI mission, planned to launch in
2023, improves the POLDER design with a total of 12 spectral
bands which include nine polarized bands and an extension to
shortwave infrared (SWIR) (Fougnie et al., 2018). Similar to
POLDER with three polarized bands, the Airborne Multiangle
SpectroPolarimetric Imager (AirMSPI, Diner et al. (2018)) and
its spaceborne version MAIA (planned to launch in 2022, Diner
et al. (2018)) conduct measurements with eight spectral bands
from visible to NIR and 14 bands from visible to SWIR,

respectively, both with a selectable number of viewing angles
typically ranging from five to nine. The airborne Research
Scanning Polarimeter (RSP) measures a much higher
angular resolution with 152 viewing angles in nine bands
from visible to SWIR (Cairns et al., 1999); its space-borne
analogue the Aerosol Polarimetry Sensor (APS) on NASA
Glory mission (failed to reach orbit in 2011) would have
had a total of 250 viewing angles (Mishchenko et al., 2007).
The Airborne Hyper-Angular Rainbow Polarimeter
(AirHARP) and its space-borne counterpart the HARP
CubeSat (launched in 2020), and future HARP2 on NASA’s
Plankton, Aerosol, Cloud, ocean Ecosystem mission (planned
for launch in 2024), also makes high angular resolution
measurements (Martins et al., 2018; McBride et al., 2020).
Unlike the other MAP designs, the viewing angles of the
HARP polarimeters are slightly different for each band, with
a total of 120 unique angles across the four bands for AirHARP
and HARP CubeSat (60 angles for 670 nm band; 20 angles for
each of the other three bands), and a total of 90 unique angles
for HARP2 (60 angles for 670 nm band; 10 angles for each of
the other three bands). The Spectro-Polarimeter for Planetary
EXploration one (SPEXone) is the other MAP planned for
PACE (Hasekamp et al., 2019). SPEXone and its airborne
version (SPEX airborne, Smit et al. (2019)) measure at five
and nine viewing angles in each band, respectively, with
continuous spectral sampling (400 spectral bands, 50
polarized) mostly in visible bands. A thorough review of the
MAP instruments and their corresponding retrieval algorithms
can be found in Dubovik et al. (2019). Generally, SPEX,
AirMSPI and MAIA, with a small number of viewing angles
(5–9), are optimized for aerosol studies; POLDER and 3MI with
up to 16 viewing angles are designed for monitoring aerosol and
to some extent clouds; RSP, APS, and HARP instruments
(AirHARP, HARP CubeSat and HARP2) with a much
higher number of viewing angles (90–250) are capable of
resolving cloud bow angular patterns and are optimized for
cloud studies (Waquet et al., 2009; McBride et al., 2020) in
addition to aerosols.

Extensive research has studied how aerosol retrieval
uncertainties depend on the viewing angles available from
MAP measurements. Hasekamp and Landgraf (2007)
discussed the trade-off between spectral sampling and the
number of viewing angles using synthetic data with spectral
bands similar to POLDER, and found that the retrieval errors
of aerosol optical depth (AOD), refractive index, and size are only
slightly affected when the number of viewing angles is increased
at the cost of the number of spectral sampling points, as long as at
least three viewing angles are available. Based on synthetic high
accuracy RSP measurements with either SWIR bands included or
not, Wu et al. (2015) found that five angles equally spaced
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between ±60° provide sufficient accuracy for aerosol property
retrievals, with performance gradually saturating as more angles
are added beyond that. Similarly, Xu et al. (2017) concluded from
AirMSPI measurements that the retrieval accuracy of AOD and
single scattering albedo (SSA) do not improve significantly when
more than around five viewing angles are used.

Although five viewing angles are sufficient for aerosol studies,
in practice there will be ground pixels for which not all angles are
optimal for aerosol retrievals due to impacts by cloud, sunglint,
calibration artifacts, etc. Gao et al. (2019) used RSP
measurements from the Ship-Aircraft Bio-Optical Research
(SABOR) field campaign and found that viewing angles
impacted by cloud needed to be removed in order to obtain
high-quality retrieval results. Gao et al. (2021) found that
AirHARP pixels impacted by cirrus clouds during the Aerosol
Characterization from Polarimeter and Lidar (ACEPOL) field
campaign produced large retrieval cost function values, indicative
of larger deviation between the forward radiative transfer model
and the measurements. Further, strong sunglint signals measured
by both RSP and AirHARP instruments could not be modeled
sufficiently well by the isotropic Cox and Munk (1954) model
(Gao et al., 2019, 2021). Therefore, it is likely the number of
suitable viewing angles for a given scene will be lower than those
acquired by the sensor. The abundant angular measurements
from the HARP instruments are useful to explore data quality
screening by removing potentially problematic angles while
maintaining sufficient useful angles for retrievals.

Due to their frequent presence, clouds are one of the major
factors reducing the number of suitable viewing angles from
multi-angular measurements (whether polarized or not) for
aerosol studies. The MAP often observes a maximum angular
range of 110–120° (Table 1). Depending on the size and height of
a cloud, it may obscure Earth from all view angles or only over a
small angular range. To address the challenges in the aerosol
retrieval with cloud present, three approaches are often taken:

1. Completely remove the pixels influenced by clouds, using a
cloud mask before (e.g. Garay et al. (2020)) and/or additional
filtering after (Stap et al., 2015; Chen et al., 2020) the retrieval.

2. Simultaneous cloud and aerosol retrievals. This assumes an
optically thin cloud covers most of the region in the
observation, or a mixing of cloudy and clear sky pixels
(Hasekamp, 2010; Stap et al., 2016).

3. For partially cloud-covered pixels, the angles impacted by
cloud can be removed, and then a retrieval assuming only the
presence of aerosols can be conducted (Gao et al., 2019).

For a pixel with most or all of its angles covered by cloud the
retrieval can be either discarded (approach 1), or have both cloud
and aerosol properties included in the state vector (approach 2).
However, for a partially cloudy scene, there are open questions as
to whether cloud-influenced angles can be removed effectively,
and how much removal is practical before retrieval performance
is degraded. In this study we focus on approach 3) and aim to
answer the following three questions:

1. How many angles are sufficient in order to retrieve aerosol
properties and ocean water leaving reflectance from HARP
instruments with sufficient accuracy?

2. How can view angles problematic for aerosol retrievals, such as
those influenced by clouds, be efficiently identified and
removed (screened)?

3. How does the data screening improve the performance of
aerosol and ocean color retrievals?

To understand to what extent the aerosol retrievals are still
valid, we will examine the impact of the number of viewing angles
on retrieval uncertainties using synthetic data simulated for both
AirHARP and HARP2, which have different polarimetric
uncertainties. The impacts of the scattering angle range will
also be considered.

TABLE 1 | The number and range of the spectral bands and view angles for various MAP instruments.

Instruments Intensity bands Polarized bands Viewing angles dN

POLDER/ADEOS I and II 9: 443–1,020 nm 3: [443, 670, 865] nm up to 12: ±57° up to 144
POLDER/PARASOL 9: 443–1,020 nm 3: [443, 670, 865] nm up to 16: ±57° up to 192
3MI/MetOp-SG 12: 410–2,130 nm 9: 410–2,130 nm aup to 14: ±57° up to 294

AirMSPI 8: 355–935 nm 3: [470, 660, 865] nm b5-9: ±67° 55–99
MAIA 14: 365–2,126 nm 3: [444, 646, 1,044] nm b5-9: ±58° 85–153

RSP 9: 410–2,250 nm 9: 410–2,250 nm 152: ±60° 2,736
APS/Glory 9: 410–2,250 nm 9: 410–2,250 nm 250: ±60° 4,500

AirHARP (HARP CubeSat) 4: [440, 550, 670, 870] nm 4: [440, 550, 670,870] nm c120: ±57° 240
HARP2/PACE 4: [440, 550, 670, 870] nm 4: [440, 550, 670, 870] nm c90: ±57° 180

SPEX Airborne 400: 400–800 nm 50: 400–800 nm 9: ±56° 4,050
SPEXone/PACE 400: 385–770 nm 50: 385–770 nm 5: ±57° 2,250

aThe viewing angle range is ±30° for SWIR.
bAirMSPI, and MAIA, are gimballed instruments with a selectable number of viewing angles, typically five to nine.
cThis is for the total number of viewing angles across all four HARP, bands.
dN indicates the total number of measurements including both intensity and polarization.
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To identify the pixels impacted by water clouds, Stap et al.
(2015) proposed using the retrieval cost function, a goodness-of-
fit statistic based on how well the retrieval solution matches the
observed measurements. Pixels whose cost function exceeded a
threshold were deemed cloud-contaminated, and the whole pixel
then discarded (approach 1 above). Building on this, we evaluate
the fitting residuals (difference between the forward model and
measurement) at each view angle. We implement a multi-angle
polarimetric data screening (MAPDS) approach using these
residuals as a metric to evaluate data quality, built upon the
Fast Multi-Angular Polarimetric Ocean coLor (FastMAPOL)
retrieval algorithm (Gao et al., 2021). FastMAPOL provides an
efficient way to conduct aerosol and ocean color retrievals using
efficient neural network (NN) forward models, while the data
screening approach can automatically and adaptively identify and
remove observations at view angles that cannot be well-
represented by the forward model. Using AirHARP data, we
will demonstrate the effectiveness of the data screening and how
retrieval uncertainty changes after a portion of angles are
removed.

MAPDS requires extra retrieval iterations and therefore slows
down the retrieval. Retrieval speed can be improved using the
neural networks for MAP measurements in both inverse model
(Di Noia et al., 2015; Di Noia and Hasekamp, 2018), as well as
forward models for ocean reflectance (Fan et al., 2019; Mukherjee
et al., 2020) and coupled atmosphere and ocean model models
(Gao et al., 2021). Another way to compensate for the increased
computational cost, and also improve the overall FastMAPOL
retrieval speed, is to improve the calculation of the Jacobian
matrix that guides retrieval to a solution. This is challenging in
MAP inversions due to the large number of retrieval parameters.
To expedite the calculation, linearized radiative transfer models
based on forward-adjoint perturbation theory have been
developed (Spurr, 2008; Schepers et al., 2014). However, the
linearization of the radiative transfer code requires
sophisticated algorithm development. Instead, we employ
automatic differentiation (AD) based on the NN forward
model that acts as our radiative transfer (RT) emulator (Gao
et al., 2021). AD Jacobians are based on the chain rule of
derivatives (Baydin et al., 2018) and successfully reduce
computational expense.

NASA’s PACE mission includes a hyperspectral scanning
radiometer named the Ocean Color Instrument (OCI) and the
two above-mentioned MAPs: HARP2 and SPEXone (Werdell
et al., 2019). Together they will collect a large amount of multi-
angle, hyperspectral, polarimetric measurements essential for the
characterization of atmosphere and ocean states (Remer et al.,
2019a,b; Frouin et al., 2019). To facilitate cross-calibration and
data synergy, the measurements from all three PACE instruments
will be projected onto a common PACE Level-1C data format
with a uniform spatial grid. Aerosol and ocean color retrievals
based on multiple instruments, with larger data volume, require
even higher computational efficiency. The combination of
FastMAPOL and data screening provide an efficient approach
to analyze and process the large volume of measurements from
PACE, either from one instrument or in combinations with
others.

The impacts of ocean color retrievals from data screening
will be also discussed in this study. To derive ocean color
signals from the MAP measurement, we conducted
atmospheric correction by subtracting the contributions of
the atmosphere and ocean surface from the spaceborne or
airborne measurements taken at the top of atmosphere
(TOA) (Mobley et al., 2016). Note that for non-
polarimetric ocean color sensors, neural networks trained
on simulated TOA reflectance have been developed to
conduct atmospheric correction. For example, the case 2
Regional Coast Colour (C2RCC) algorithm has been
applied on ESA’s MEdium Resolution Imaging
Spectrometer (MERIS) measurements (Doerffer and
Schiller, 2007), and the Ocean Color - Simultaneous
Marine and Aerosol Retrieval Tool (OC-SMART)
algorithm has been applied on NASA’s Moderate
Resolution Imaging Spectroradiometer (MODIS)
measurements (Fan et al., 2021). In this study, neural
networks are trained to represent the radiative transfer
forward model over coupled atmosphere and ocean system
which is used in the inversions of both aerosol and ocean
parameters (Gao et al., 2021). The retrieved aerosol
microphysical properties are then used to conduct the
atmospheric correction on the multi-angle measurements.
This procedure also allows the application of the MAP
retrieved aerosol properties to atmospheric correction of
co-located hyperspectral measurements from other sensors,
such as PACE OCI (Gao et al., 2020; Hannadige et al., 2021).

This paper is organized as follow: Section 2 provides the
methodology including the retrieval algorithm, NN forward
model and AD Jacobian matrix; Section 3 describes synthetic
HARP2 and AirHARP data retrievals to address question 1);
Section 4 covers AirHARP filed data retrievals which address
question 2) and 3); Section 5 discusses cloud mask and
uncertainty analysis; Section 6 is the conclusions.

2 METHODOLOGY

2.1 Aerosol and Ocean Color Retrieval
Algorithm
This study is based upon the efficient aerosol and ocean color
retrieval algorithm FastMAPOL (Gao et al., 2021), which uses a
NN forward model to conduct vector radiative transfer
calculations for a coupled atmosphere and ocean system (Zhai
et al., 2009, 2010). The forward model assumes a three-layer
atmosphere: the bottom layer from ocean surface to an altitude of
2 km containing aerosols and molecules, a molecular layer
between 2 km and the aircraft (at 20 km), and an additional
molecular layer above the aircraft.

A total of 15 parameters are used in the forward radiative
transfer simulation, as listed in Table 4 (more details in Gao
et al. (2021)). The aerosol optical properties are determined by
the fine and coarse mode complex refractive indices (total 4
parameters), and the volume densities (μm3μm−2) for five
aerosol size submodes with each submode following a log-
normal distribution. The mean radii and variances of the
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submodes are prescribed and fixed in the retrieval. The three
smaller submodes in combination represent the fine mode, and
the two larger submodes in combination represent the coarse
mode. In this study we only consider open ocean waters
modeled as a uniform layer with its bio-optical properties
parameterized in terms of the chlorophyll-a concentration
(Chla, mg ·m−3 (Gao et al., 2019). Complex water properties
over coastal water require additional parameters in the bio-
optical model (Gao et al., 2018) which is subject to future
investigations. The ocean surface roughness is represented by
the isotropic model parameterized by wind speed (ms−1) (Cox
andMunk, 1954). As mentioned in Section 1, the sunglint signal
measured by AirHARP can not be modeled well by the isotropic
Cox andMunk model. In addition, it is challenging to accurately
represent sunglint in the NN training due to its large amplitude
in comparison with non-glint angles (Gao et al., 2021). To
minimize the impacts of the sunglint, we limited the wind speed
within 10ms−1 and excluded the view angles within 40° from the
direction of specular reflection for the analysis in the next
section. Larger wind speed and the associated white cap will
be considered in future studies. Therefore, total 11 parameters
are retrieved by FastMAPOL; the other four parameters needed

by the forward model (viewing and solar zenith angle, relative
azimuth angle, and ozone profile) are assumed to be known.

FastMAPOL determines optimal values of state parameters by
minimizing the difference between the measurements and the
NN forward model prediction. An iterative optimization
approach is used as summarized in Figure 1A. The NN
forward model computes the reflectance and degree of linear
polarization (DoLP), defined as.

ρt �
πLt

μ0F0
, (1)

Pt �
�������
Q2

t + U2
t

√
Lt

, (2)

where Lt, Qt, and Ut are the Stokes parameters at the sensor
altitude, F0 is the extraterrestrial solar irradiance, μ0 is the cosine
of the solar zenith angle. The differences between measurements
and model predictions are represented by a cost function χ2 based
on Bayesian theory (Rodgers, 2000):

χ2 x( ) � 1
N

∑
i

[ρt(i) − ρft (x; i)]2
σ2ρ(i)

+ [Pt(i) − Pf
t (x; i)]2

σ2
P(i)

⎛⎝ ⎞⎠ (3)

where ρft and P
f
t are the reflectance and DoLP computed from

the NN forward model. The state vector x contains the
forward-modeled parameters described above; the
subscript i stands for the index of the measurements
(where one “measurement” is defined as a pair of
reflectance and DoLP) at different viewing angles and
wavelengths; and N is the total number of measurements
used in the retrieval. The maximum possible N assuming all
angles are available is summarized for various MAPs in
Table 1, which is 240 for AirHARP and HARP CubeSat,
and 180 for HARP2.

The total uncertainties of the reflectance and DoLP used in the
algorithm are denoted by σρ and σP, respectively. These include
contributions from the instrument uncertainties σ ins, the NN

FIGURE 1 | Flowcharts for (A) FastMAPOL retrievals and (B) retrievals with the multi-angle polarimetric data screening (MAPDS). In panel (A), Δχ2 � |χ2i − χ2i−1|
indicates the changes of the cost function between two iterations with η as threshold (Eq. 6). In panel (B), Δρt and ΔPt indicate the difference between forward model and
measurements for reflectance and DoLP with ξ as threshold (Eq. 8). The dashed box in (B) represents the same retrieval process as shown in the dashed box in (A). A
maximum three passes (indicated by the loop in (B)) are used in the data screening process.

TABLE 2 | Uncertainties for reflectance (ρ) and DoLP (P) for both measurement
and forward model used in this study including instrument uncertainty (σ ins),
the radiative transfer simulation uncertainty (σRT), and the NN uncertainty (σNN).
Different σP,ins is used for AirHARP and HARP2 but with the same σρ,ins.

Uncertainties 440 nm 550 nm 670 nm 870 nm

σρ,ins (Both) 3% 3% 3% 3%
σρ,RT 0.08% 0.07% 0.2% 0.4%
σρ,NN 0.4% 0.5% 0.6% 1.0%

σP,ins (AirHARP) 0.01 0.01 0.01 0.01
σP,ins (HARP2) 0.005 0.005 0.005 0.005
σP,RT 0.0002 0.0002 0.0005 0.0007
σP,NN 0.0016 0.0020 0.0024 0.0030
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forward model uncertainties σNN, and the radiative transfer
simulation uncertainties σRT used to train the NN:

σ2ρ � σ2
ρ,ins + σ2ρ,NN + σ2

ρ,RT (4)

σ2P � σ2P,ins + σ2
P,NN + σ2P,RT (5)

Table 2 summarizes the uncertainties used in this study; the
values of σρ,NN and σρ,RT were determined in Gao et al. (2021) with
the same NN models as used in this study. Note that, at present,
uncertainties are assumed spectrally and angularly uncorrelated.

The FastMAPOL retrieval follows the flow chart in Figure 1A.
In each iteration, if χ2 is larger than a threshold, the state parameter
x is updated to compute both ρft and Pf

t , and a new value of cost
will be computed. The Jacobian matrix (the gradient of the cost
function with respect to x) is used to determine the magnitude and
direction for the updated estimate of x. This process iterates until
the convergence criterion is met:

|χ2i − χ2i−1|
χ2i

< η (6)

where i is the iteration index in optimization, and ϵ is the
convergence tolerance, taken as 0.01 in this study.

The convergence of the retrievals can be examined by the cost
function histogram over an ensemble of retrievals (more discussion
in the next section). If the retrievals converge well, the normalized
cost function histogram can be represented by the theoretical
probability density function (PDF) of the χ2 distribution:

f(χ2, k) � (χ2)k/2−1kk/2e−χ2k/2
2k/2Γ(k/2) (7)

where χ2 is the cost function (Eq. 3), k is the degree of freedom
(DOF), Γ(k/2) denotes the gamma function (James, 2006). The
PDF is useful in understanding the behavior of the retrieval cost
function distributions with different numbers of measurements
used. After neglecting potential correlation between
measurement uncertainties, we can approximate the DOF by
the total number of measurements N, which shows good
representation as demonstrated in the next section. Note that
the DOF refers to the retrieval residuals in the cost function (Eq.
3), which are mostly contributed by the noise and uncertainties in
the measurements and forward model. The DOF is likely between
N and N-11, where 11 is the total number of retrieval parameters.
The actual number of DOF can be determined from the Jacobian
matrix and error covariance matrix (Rodgers, 2000).

2.2 Adaptive Data Screening
Based on the FastMAPOL retrieval algorithm, the MAPDS data
screening approach, which conducts automatic data quality
analysis and data screening, is summarized in the flowchart
of Figure 1B. After each converged FastMAPOL retrieval, the
residuals between each measurement and the forward model
prediction are used to evaluate the data quality under the
criteria:

|Δρt|
σρ

< ξ, |ΔPt|
σP

< ξ (8)

where the residuals are compared with the uncertainty model
defined in the cost function of Eq. 3, and ξ is a threshold.
When either the reflectance or DoLP does not satisfy the
criteria, the corresponding measurement is excluded from the
cost function calculation (i.e., the view angle which cannot be
represented well by the forward model is removed), and a new
FastMAPOL retrieval is performed. In practice, additional
screening rules based on the criteria may be used depending
on the data quality of the field measurements (illustrated with
an example later in Section 4). This process is repeated until
all angles remaining satisfy Eq. 8. Note that the whole data
screening process will include several retrieval passes, each
involving multiple iterations until convergence. At the end of
each retrieval pass based on the new forward model fittings, all
measurements used in the retrieval are evaluated through Eq.
8 and subsequently excluded from the next round if they failed
to pass. The data screening approach is an adaptive process,
since it depends on the fitting at each iteration for each pixel.
A threshold value of ξ � 3 is used in this study, which can be
further tuned when more data is available. We found at most
three passes of retrievals are sufficient to remove most of the
problematic angles. Since the retrieved parameters from last
retrieval can be used as the initial values to the next retrieval
as shown in Figure 1, the total speed to conduct data
screening are usually less than three times of the single
round retrieval.

2.3 The NN Forward Model and Automatic
Differentiation
The MAP retrievals are often computationally expensive due
to their high dimensionality and iterative nature, with multiple
forward model and Jacobian calculations. The data screening

TABLE 3 | NN forward model and its Jacobian matrix computed by the forward mode and reverse mode of automatic differentiation (AD). The arrows indicate the order of
steps for each process.

*For brevity, the summation of index l is implied following the Einstein notation.
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approach developed here further increases the demand for
CPU computations because the retrieval must be repeated
several times. Therefore, fast forward model and Jacobian
matrix calculations are advantageous for efficient
processing, which was a motivation for the use of NN
forward models for AirHARP in (Gao et al., 2021). In this
work we further improve the efficiency through automatic
differentiation to compute the Jacobian matrix analytically (as
opposed to numerically through finite differencing), exploiting
the differentiable properties of the NN models.

The NN forward model developed in Gao et al. (2021) is a
feed-forward neural network as defined inTable 3, where h0 � x is
the input layer that contains all 15 forward model parameters.
Two sets of weight matrix Wp+1 and bias vector bp+1 have been
determined from the NN training process for reflectance and
DoLP respectively (Gao et al., 2021), both with three hidden
layers (k � 3) of 1,024, 256 and 128 nodes. Correspondingly, y is
the output layer for either reflectance or DoLP at the four
AirHARP bands.

For application to multi-angle measurements, the NN needs to
be called to simulate y for each set of viewing and solar geometries
for the state vector x. Elements of the Jacobian matrix are defined
as follows:

Kmij � zymi

zxmj
(9)

Here index m indicates the viewing and solar angles, index i
indicates the wavelength, and index j indicates the state
parameter. Table 3 illustrates the structure of the NN and
how the Jacobian matrix is calculated based on the trained

weights. In that table, the nonlinear activation function Φ is
the LeakyReLU function, which is defined as

Φ(Z)mi � max(0,Zmi) + α ×min(0,Zmi). (10)

where α � 0.01, and Z is a matrix with m and i as its indices. The
derivative with respect to each element in Φ is defined:

Dmi � zΦ(Z)mi

zZmi
� 1 if Zmi > 0

α if Zmi < 0{ (11)

The finite difference (FD) method was used to compute the
Jacobian matrix in FastMAPOL in (Gao et al., 2021), where the NN
forward model was called twice per input parameter under the
central difference approximation of derivatives. To reduce the
computational cost, the Jacobian matrix can be derived
analytically from the NN forward model using AD based on the
chain rule of differentiation (Baydin et al., 2018). Two recursive
relations are obtained to compute the Jacobian matrix as shown in
Table 3, where the forward mode indicates the evaluation sequence
from the first layer to the last layer, and the reverse mode indicates
the evaluation sequence from the last layer to the first layer. To
represent the recursive relations, we define _hp (tangent) and �hp
(adjoint) as follows:

_hp,mij � zhp,mi

zxmj
, (12)

�hp,mij � zymi

zhp,mj
(13)

Note that h is defined in Table 3 (left column) as the output
from each hidden layer of the NN. The Jacobian matrix can be
represented by AD with either the tangent or the adjoint forms as
the last step in Table 3:

Kmij � _ymij, (14)

Kmij � �h0,mij, (15)

where Eqs. 14, 15 are computed from the forward and reverse mode
AD, respectively. Forward and reverse AD produce identical results,
but differ in computational efficiency due to the different sequence of
matrix operations and NN architecture. For optimal efficiency, we
implemented AD directly based on the formalism summarized in
Table 3 using the Pytorch library (Paszke et al., 2019). The arrows in
the table indicate the order of calculation steps. NN forward model
can be computed layer by layer, with the output from the previous
layer as the input to the next layer. The forward mode AD can be
computed in the same sequence as the NN forward model as shown
in Table 3. The reverse mode AD is computed from the last layer
backward to the first layer. Note that AD in both modes requires the
values of matrix D as defined in Eq. 11, which is determined by the
output of the NN forward model at each layer.

For the NN used in this study, AD in reverse mode provides
the highest efficiency as investigated further in the next section.
The AD methods are efficient and accurate in computing the
Jacobian matrix, providing a convenient way to accelerate
algorithms like FastMAPOL with a large number of retrieval
parameters, making themmore suitable for practical applications.

TABLE 4 | Parameters used to represent the radiative transfer of the atmosphere
and ocean system. θ0 and θv are the solar and viewing zenith angles. ϕv is the
relative viewing azimuth angle. Vi denote the volume densities for the five aerosol
submodes. mr and mi are the real and imaginary parts of the refractive index.
Subscripts f and c refer to fine and coarse mode.

Parameters Unit Min Max Initial

θ0 ° 0 70 (Input)
θv ° 0 60 (Input)
ϕv ° 0 180 (Input)
n O3 DU 150 450 (Input)
V1 μm3μm−2 0 0.11 0.012
V2 μm3μm−2 0 0.05 0.007
V3 μm3μm−2 0 0.05 0.009
V4 μm3μm−2 0 0.19 0.017
V5 μm3μm−2 0 0.58 0.033
mr,f (None) 1.3 1.65 1.5
mr,c (None) 1.3 1.65 1.5
mi,f (None) 0 0.03 0.015
mi,c (None) 0 0.03 0.015
w ms−1 0.5 10 5.0
Chla mg · m−3 0.01 10 0.1

Ozone column density (n O3) in the atmosphere, ocean surface wind speed(w), and
chlorophyll a concentration (Chla) are also provided. The minimum (min) and maximum
(max) values determine the parameter ranges used in the retrievals. The initial values are
the ones used in the retrieval algorithm with θ0, θv, ϕv and n O3 are assumed to be known
from inputs.
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3 SYNTHETIC AIRHARP AND HARP2 DATA
RETRIEVALS

3.1 Synthetic Data
We performed radiative transfer simulations to generate 1,000
sets of synthetic polarized reflectances for a coupled atmosphere
and ocean system as discussed in Section 2 and Gao et al. (2021).
Here, we use a fixed solar zenith angle of 50° as this is
approximately the solar zenith angle in the AirHARP field
campaign data used in Section 4. Input parameters and their
range are listed in Table 4; Chla is randomly sampled from a log-
uniform distribution, AOD at 550 nm is sampled uniformly
within [0,0.5], and the fine-mode volume fraction is sampled
uniformly within [0, 1]. All the other parameters in Table 4 are
sampled uniformly, except aerosol volume densities (which are
determined by AOD and finemode volume fraction). Simulations
are performed with a view angle sampling of 1°. Random noise is
added to the measurement according to the instrument
uncertainties shown in Table 2.

In order to generate realistic viewing geometries we represent
the orbit geometry as shown in Figure 2, where the viewing angles
(θv, ϕv) can be sampled according to the along-track and cross-
track angles indicated in the figure.

tan ϕv �
tan θc
tan θa

, (16)

tan θv � tan θc
cos ϕv

, (17)

where θa and θc are the along-track and cross-track viewing angles.
We use a set of predefined θa values (120 angles for AirHARP, 90 for
HARP2) and then randomly sampled θc within ±47° according to
HARP instrument characteristics. The resulting example geometries
are shown in Figure 3A. Sunglint with view angles within a
conservative angle of 40° relative to the direction of specular
reflection are excluded as indicated in Figure 3. The simulated
reflectance and DoLP are interpolated into this viewing geometry,
each with a random value of θc. Note that Figure 2 is a simplified
PACE orbit geometry with the solar azimuth angle in the along-track
direction; the curvature of Earth’s surface is neglected.

To evaluate the retrieval uncertainties using different numbers
of viewing angles, we reduce the number of available viewing
angles by assuming the MAP measurements are blocked
randomly by clouds. Two cloud configuration schemes are
considered:

1. Cloud blocking the center part of the measurements, leaving
available angles on both sides. Cloud location can move
randomly from one side to another side as shown in
Figure 3B.

2. Clouds blocking both sides of the measurements, leaving the
middle part of cloud-free angles available which can also move
randomly from one side to another side as shown in Figure 3C.

We generate viewing geometries with the same total number
of viewing angles (Nv) for both schemes as shown in Figures
3B,C. We chose 11 different cases with Nv of 5, 8, 10, 15, 20, 25,
30, 40, 50, 60, and 75 for AirHARP, and similarly for HARP2 with
the two largest values as 56 and 58 instead. The largest averaged
Nv value for both AirHARP and HARP2 corresponds to the case
shown in Figure 3A with only sunglint removed and no cloud
present. For the same number of Nv, Scheme 1 will result in a
larger average range of scattering angles than Scheme 2. As shown
in Table 1, the angular range of HARP2 and AirHARP
measurements is 114°, therefore the cloud angular size (as
viewed from ground) used to block the synthetic data can be
estimated as 114° − Nv × 114°/90 for HARP2, and 114° − Nv ×
114°/120 for AirHARP. Their physical size depends on both their
angular size and height.

The retrievals are conducted for both AirHARP and HARP2
with their measurement uncertainties summarized in Table 2.
This provides a total of 44,000 retrievals: 1,000 (RT simulation
cases) × 2 (cloud schemes) × 2 (HARP2 and AirHARP) × 11
(total variations in angle number). Note that the total number of
measurements N equals 10 for the case withNv � 5, lower than the
total 11 retrieval parameters, and therefore for that case the
inverse problem is ill-posed with non-unique solutions.

3.2 Retrieval Efficiency Using FD and AD
The performance using FD with central difference is compared
with the forward mode and reverse mode of AD as shown in
Table 3 in Section 2. Figure 4 compares the retrieval χ2

histogram and the retrieval time for the FD and AD methods.

FIGURE 2 | The observing geometry of the instrument at Z. The direction
to an arbitrary location on the ground V can be determined by the along-track
(OX direction) zenith angles θa, and the cross-track (OY direction) zenith angle
θc. The viewing zenith and azimuth angles (θv, ϕv) can be derived through
θa and θc as shown in Eqs 16, 17.
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The results converge to similar χ2 distributions; the χ2 histograms
change with respect to the available number of viewing angles, but
can be well represented by the theoretical χ2 distributions from
Eq.7 with the same degree of freedom as the total number of
measurements (N � 2Nv).

Retrievals using conventional radiative transfer simulation
with FD usually took 1 hour to converge on a CPU (AMD
EPYC Processor). Using neural network forward models, the
averaged retrieval time decreased to 3 s using the same FD
method and CPU. With forward and reverse modes of AD, a
further decrease to 0.6 and 0.3 s respectively was achieved, which
is an increase of speed by a factor of 5–10. With GPU processing
(GeForce GTX 1060), the retrieval times were 0.08 and 0.05 s,

another factor of 6 faster than CPU. AD in reverse mode provides
the highest efficiency and will be used in the following discussions
as the default method.

3.3 Aerosol Retrievals
In this section, we compare the retrieval error as a function of
the number of available viewing angles. The retrieval error
(except Chla), shown in Figure 5, is defined as the root mean
square error (RMSE) between the retrieval results and the
simulated truth. The retrieval error of Chla is represented by
the Mean Averaged Error (MAE) in log scale which is a better
metric for Chla as recommended by Seegers et al. (2018), and
indicates the averaged ratio between the retrieval and truth

FIGURE 3 | The sampled viewing directions (θv, ϕv) in the polar plot (four examples are shown with different color lines): (A) with all angles after excluding sunglint
(the blue oval); (B) cloud blocking the central region; (C) cloud blocking both sides. When the cloud sizes are smaller enough, both b) and c) approach to (A). The asterisk
indicate the antisolar point.

FIGURE 4 |Histograms of χ2 (A and C) and retrieval processing time (B and D) for synthetic retrievals and varying number of viewing angles (Nv) used. Solid lines in
(A) and (C) indicate the χ2 distributions with the appropriate DOF equal to the total number of measurements (2Nv). FD with central difference and AD with reverse mode
are compared for both χ2 and processing time. Viewing angles geometries are based on Figure 3C.
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values. The definition and performance of the retrieval error
under different Chla range can be found in Gao et al. (2021).
While it is well known that retrieval uncertainties depend on
the aerosol loading (cf. Gao et al. (2021) for AirHARP data),
for the convenience of discussion here, the retrieval errors are
averaged over all cases with AOD within [0.01, 0.5]. The cloud
blocking generally produces smaller errors than which has a
smaller range of scattering angles. However, coarse mode veff
seems less sensitive to the number of viewing angles and does
not have a clear advantage between S1 and S2. Errors for
HARP2 are also smaller than AirHARP due to the lower
expected DoLP calibration uncertainty in HARP2.

Generally, the errors decrease rapidly as the total number of
angles increases to 20 (corresponding to 2 × 20 unique
measurements including both reflectance and DoLP across
four HARP bands). For HARP2, improvement continues for
AOD, SSA, mr, reff, veff up to 40–50 angles; Chla performance
seems to plateau around 20 angles. AOD error decreases the
most, by a factor of three from 0.06 to 0.02. The total SSA error

also decreases by a factor of two (from 0.06 to 0.03), but for
modal (either fine or coarse mode) SSA and mr, reff and veff, it
only reduces by about 1/3 of its maximum error. Due to the
removal of sunglint, the wind speed errors are relatively large
with a value of 2–3ms−1. For AirHARP data, the decrease of the
error is less pronounced due to the larger DoLP uncertainties of
this sensor (Table 4), and 30 angles are generally needed, with
marginal improvement after reaching 40 or more angles.
Therefore a total 20–30 angles across all bands, i.e. five to
eight viewing angles per band on average, seem sufficient to
achieve good retrieval performance. As an example of having 30
continuous angles available for HARP2 measurements, the
cloud angular size can be estimated to be 76° following the
discussion in Section 3.1.

3.4 Remote Sensing Reflectance
The ocean signals are represented by the remote sensing
reflectance, defined as the ratio between upwelling water-
leaving radiance and the downwelling irradiance just above the

FIGURE 5 | Retrieval errors in terms of root mean square error (RMSE) from the retrieval of 1,000 cases for AirHARP and HARP2, and with the two schemes of
angle screening as shown in Figure 3. AOD and SSA RMSE are for the wavelength of 550 nm. Note that the retrieval errors for Chla is represented by the MAE error of
Chla in log scale as used in Gao et al. (2021), which is different from other quantities. Rrs RMSE at all the four wavelengths with AOD (550 nm) < 0.2 are shown in the last
row with shaded area indicating the PACE mission Rrs uncertainty goal. The horizontal axis, Nv, is the total number of angles used in the retrievals, which is
equivalent to the total number of unique measurements of 2Nv including both reflectance and DoLP across four HARP bands as discussed in Section 3.1.
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ocean surface (Mobley et al., 2016). Through atmospheric
correction, the remote sensing reflectance can be derived as:

Rrs �
(ρt − ρft,atmsfc

)
π

CBRDF

Tf,+
d tf,+d

⎡⎣ ⎤⎦ (18)

where the reflectance contributed by the atmosphere and ocean
surface (ρfatm+sfc) and the transmittance and BRDF corrections
(CBRDF/T

f,+
d tf,+u ) can be evaluated using the NN model in Gao

et al. (2021) based on the retrieved aerosol and ocean properties.
The viewing angle closest to nadir is used to compute Rrs.

Comparing the retrieved Rrs with the truth data computed
from radiative transfer simulation with Sun at zenith and viewing
angle at nadir, the last row in Figure 5 shows Rrs uncertainties in
terms of RMSE for those simulations with AOD (550 nm) < 0.2.
Note that the Rrs uncertainties do not include the contribution
from the additional random noise added in the synthetic data,
therefore it is only used to represent the impacts from the aerosol
and ocean surface property retrievals. For the application to
PACE data, the calibration uncertainties for OCI is less than
0.5%, which can also be used to cross-calibrate PACE MAP
measurements and therefore reduce the impacts of the MAP
calibration uncertainties in Rrs evaluation. To achieve the PACE
mission Rrs uncertainty goals (shown in Figure 5), the results
suggest we need at least a total of 30 unique HARP angles for Rrs
at 440 nm, approximately 10–20 angles for all other bands. With
larger AOD in the range of [0.3,0.5], the errors increase up to
0.001 even when all angles are used (not shown) as accurate
atmospheric correction becomes more challenging due to the
increased signal from aerosols.

4 AIRHARP FIELD DATA RETRIEVALS

The ACEPOL field campaign conducted aerosol and cloud
measurements from the NASA high altitude ER-2 aircraft
from October to November of 2017 over a variety of scenes
including oceans, urban areas, intensive agriculture, forests and
high desert around California, Nevada and Arizona
(Knobelspiesse et al., 2020). The field campaign involved four
MAP instruments including AirHARP, AirMSPI, SPEX
airborne, and RSP (Table 1), as well as two lidar
sensors–HSRL-2 (Burton et al., 2015) and CPL (the Cloud
Physics Lidar) (McGill et al., 2002). Aerosol retrievals have
been conducted based on the MAP measurements from
ACEPOL (Fu et al., 2020; Gao et al., 2020; Puthukkudy et al.,
2020; Gao et al., 2021; Hannadige et al., 2021). Simultaneous
aerosol and ocean color retrievals have been performed over
three AirHARP scenes (Gao et al., 2021). In this study we focus
on AirHARP Scene where cirrus clouds were reported to impact
the aerosol retrievals. A portion of AirHARP viewing angles
impacted by the water condensation on the instrument front
lens has been removed from the dataset.

The RGB images of AirHARP scene at three different viewing
directions with θa � − 20°, 0°, 20° are shown in Figure 7A1–C1.
Two cloud patches are indicated in Figure 6 as A and B.
Due to the parallax effect (the data are geolocated to the

surface while the clouds are elevated), A and B appear at
different locations when viewed from the three angles. Since
our data screening criteria are applied to each angle and
wavelength combination, the approach is not affected by the
data being geolocated to an altitude other than cloud top. As
discussed in the next section, a multi-angle cloud mask can be
developed based on data geolocated at the surface.

4.1 Adaptive Data Screening
To identify and remove cloud-affected view angles, we apply the
data screening approach (MAPDS) as explained in Figure 1B.
Figure 7 provides an example comparing the measurement and
fitted reflectance and DoLP from one pixel near cloud A after the
first pass of retrievals. Here σρ and σP indicate the uncertainties
used in the cost function, Δρt and ΔPt indicate the residuals
(difference between the forward model and measurements), and
Δρt/σρ and ΔPt/σP the normalized residuals as used in the cost
function (Eq. 3).

The blue shaded region was identified as cloud contaminated
due to the relatively large ρt/σρ at all bands (with the largest at
870 nm), and the large ΔPt/σP, at the 670 nm band. As a further
buffer, we removed any angles within 4° of angles screened by
either reflectance or DoLP criteria at 550 or 670 nm bands. In this
way, both reflectance and DoLPmeasurements in the blue shaded
region are excluded.We chose 550 and 670 nm bands as reference
based on their higher data quality comparing with other bands
(Gao et al., 2021) which can be adjusted for application to other
datasets. For 440 and 870 nm bands outside of the blue and red
shaded region, the screening criteria from Eq. 8 are still applied
independently for reflectance and DoLP, which results in mostly
DoLP angles removed. The final retrieval (at the third retrieval
pass) is done using the remaining measurements after data
screening and resulted in a value of χ2 reduced from 4.98 to
0.6, and the retrieved total AOD reduced from 0.064 to 0.052.

For the AirHARP data used in Gao et al. (2021), the
measurement uncertainties were larger than expected at 440
and 870 nm. In that study, DoLP measurements from the
440 nm band were excluded manually. In this study, the
adaptive screening approach is able to automatically identify
and remove the problematic angles at 440 nm band, providing
an automatic data quality control mechanism.

4.2 Retrieval Results
Figure 8 shows retrieval results with and without the adaptive
data screening. As seen in Figure 8A1, the maximum number of
total viewing angles is 120 around the center upper region. The
elongated region with large χ2 values in Figure 8C1 is due to the
impacts of the cirrus cloud (Figure 7). Clouds can be viewed from
a broader range of pixels in the along-track direction, which
impacts the retrieval performance. The retrieved AOD at 550 nm
in Figure 8D1 has a clear covariation with χ2 with the highest
AOD around clouds A and B. The Rrs at 550 nm are mostly
smooth with small variations that seems to also relate to cloud
patterns. Therefore, the maximum number of viewing angles for
DoLP is around 100 as shown in Figure 8B1 (recall as discussed
above DoLP at 440 nm was excluded from retrievals in Figure 8).
Figure 8A2–E2 applied the criteria ofNv > 30 and χ2 < 2 to ensure
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the retrieval quality, removing most of the pixels around the
clouds due to the large χ2 values and leaving an elongated holes in
the retrieved AOD and Rrs.

After applying the MAPDS screening process, the number of
available angles around clouds are reduced (Figure 8A3, B3) and
χ2 (Figure 8C3) becomes much more uniform. Similarly, as seen
in Figure 8D3, the prominent large AOD regions around points
A and B are reduced. Most of the cirrus cloud features for Rrs from
Figure 8E1 are removed as shown in Figure 8E3. There are still
minor remaining artifacts for Rrs in Figure 8E3 which can be
further reduced by choosing a smaller χ2 threshold in the analysis.
Note that the data screening process also removed some of the
original viewing angles closest to nadir and the new Rrs can be
computed using an angle further away which helps reduce the
impacts of cirrus cloud on Rrs. Future improvement may require
using multiple angles to analyze Rrs. After applying the criteria of

Nv > 30 and χ2 < 2 in Figure 8A4–E4, the pixels removed are
mostly around the edge of the image due to the small number of
available viewing angles. TheNv criterion is important to ensure a
sufficient number of measurements used in the retrievals.

As shown in Figure 8D2, the criteria Nv > 30 and χ2 < 2 result
in many retrievals being discarded when all angles are used in the
processing. After applying the data screening, the χ2 are greatly
reduced; this reduction in χ2 outweighs the decrease in Nv, with
the effect that most of these discarded retrievals are now retained
(Figure 8D4). The valid retrieval pixels almost doubled after
MAPDS. These pixels mostly have Nv larger than 50; synthetic
retrievals in Figure 5 imply an AOD retrieval uncertainty of 0.03
for AOD up to 0.5. For smaller AOD around 0.1, the retrieval
uncertainty can be as low as 0.01 (Gao et al., 2021).

The retrieved AirHARP AOD at 550 nm is compared with the
HSRL AOD at 532 nm in Figure 9 for two lines (A1–A2) across

FIGURE 6 | (A-C) RGB images of the AirHARP measurements at 10/23/2017 at three different along track viewing angles(θa � −20°, 0°, 20°).Two cloud patches
are indicated by A and B.

FIGURE 7 | (A,B) Fitted reflectance and DoLP (circles) and AirHARPmeasurements (dots) for a pixel near cloud A after the first pass of retrievals; (C,D) uncertainty
model as defined in Eqs 4 and 5; (E,F) fitting residuals; (G,H) normalized fitting residuals. The blue shaded region was identified by the data screening method as cloud-
contaminated. Most DoLP measurements at 440 and 870 nm at viewing angles larger than 0° are also removed. Measurements within the red shaded region were
removed due to water condensation on the instrument lens.
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point A, and (B1–B2) across point B. The mean and standard
deviation after averaging 4 × 4 pixels (2.2 km × 2.2 km) areas are
used in the comparison, and only pixels satisfying Nv > 30 and χ2

< 2 are considered. To mitigate the influence from atmospheric
turbulence in the field measurement, the HSRL AOD is estimated
by multiplying an assumed lidar ratio of 40sr with the aerosol
backscatter coefficient derived from the HSRL technique, and the
corresponding AOD systematic uncertainty is estimated to be

50% (Fu et al., 2020). An additional cirrus cloud mask, which uses
thresholds of backscatter ratio greater than 1 (backscatter ratio is
the ratio of the particulate backscatter to molecular backscatter)
and particulate depolarization greater than 0.2 above 8 km, has
been applied on the HSRL-2 data. The AirHARP AOD fills in the
data gaps due to the cirrus cloud mask between HSRL AOD
results with a few overlapped pixels. The retrievals with all angles
in Figure 9B1 show differences of 0.019 between the averaged

FIGURE 8 | Retrievals on the AirHARP scene over ocean without data screening (all angles, first and second columns) and with MAPDS (third and fourth columns).
Panels show the number of viewing angles (Nv) for the reflectance (A1–A4) and DoLP (B1–B4), retrieval cost function (χ2,C1–C4), retrieved AOD (D1–D4) and retrieved
Rrs (sr−1, E1–D4). The first and third columns show all retrieved pixels; the second and the fourth columns show pixel satisfying criteria ofNv >30 and χ2<2, respectively.
The HSRL AOD at 532 nm is indicated as colored dots in the AOD plots (D1–D4). Same as Figure 6, two cloud patches are indicated by A and B.
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AOD from AirHARP and HSRL, but after applying the data
screening, these differences reduce to 0.005 in Figure 9B2. The
averaged difference shown in (a1) and (a2) are similar to each
other with a value of 0.01. However, a peak in Figure 9A1 with a
magnitude of 0.17 is reduced to a value of 0.07 after the angles
influenced by cloud are removed in Figure 9A2. Similarly, the
peaks in Figure 9B1 with a value up to 0.15 is reduced to below
0.09 as shown in Figure 9B2.

However, there are small variations of the retrieved AOD in
the vicinity of cloud locations, which may be related to light
scattering from the 3D structure of cloud and/or aerosol
humidification effects. The small inhomogeneity of Rrs near
clouds may be due to the artifacts from the aerosol retrievals
or the presence of cirrus clouds. The pixels which are influenced
by the cirrus cloud can be identified from the remaining number
of measurement angles (Nv).

5 DISCUSSION

5.1 Retrieval Uncertainties and Cost
Function
Retrieval uncertainties can be evaluated in two ways: 1) the truth-in
and truth-out studies as for the synthetic data in Section 3, where the
retrieval errors are evaluated by comparing the retrieval results with

the truth data in the synthetic data; 2) Using error propagation based
on the Jacobianmatrix. The secondmethod is effective to evaluate the
retrieval uncertainties and have been used to study MAP
measurements (Knobelspiesse et al., 2020) and more broadly in
aerosol remote sensing (Sayer et al. (2020) for a review). However,
it represents a best-case uncertainty, as it is based on various
assumptions including that our knowledge on the uncertainty
models in the cost function (Eq. 3) are accurate, that the retrievals
converge to their globalminimum, and that the forwardmodel is close
to linear near the solution (see Povey and Grainger (2015) for a
review). Retrieval first guesses are important, as convergence to local
minima when starting from different initial values can be a problem
for high-dimensional retrievals (Gao et al., 2020)

The histogram of χ2 for retrievals with all angles and with the
adaptive screening are shown in Figure 10, with most probable
values of 1.85 and 1.35 respectively. Because these values are
larger than 1, the retrieval uncertainty budget for σρ and σP
(Table 2) may underestimate the real total uncertainties. The
total number of reflectance and DoLP measurements used in the
retrieval are 112 and 85 on average according to Figure 8A1, B1,
and Figure 8A3, B3, respectively. The theoretical χ2 distribution
from Eq. 7 with degree of freedom of 85 can represent the
histogram for MAPDS well after normalizing its most
probable value to the same value of 1.35 as for the histogram.
However, the width is slightly smaller, which may indicate
overfitting of the data relating to the uncertainty correlation

FIGURE 9 | Mean (colored dots) and standard deviation (bars) of the retrieved AirHARP AOD at 550 nm averaged over 4×4 pixels (2.2km ×2.2 km) for two along
track lines across cloud patch A (line A, A1–A2) and cloud patch B (line B, B1–B2). HSRL AODs at 532 nm are indicated by circles. For the retrieval results with all angles
(A1–B1), most pixels converge into χ2 values larger than 2, but for retrievals with MAPDS (A2–B2)most pixels converged within χ2<2. The χ2 value for the corresponding
AirHARP AODs are indicated by its color label in the plots.
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between angles. The retrieval results using all angles have a much
wider distribution which cannot be approximated by theoretical χ2

distribution. The fact that the histogram after adaptive screening
matches the theoretical expectation more closely indicates that the
rejected angles led to outliers as they did not fit the assumed
forward model and (Gaussian) uncertainty assumption. To
evaluate retrieval uncertainties using error propagation in future
studies, the total uncertaintiesmay need to bemultiplied by a factor
of 1.35 due to this cost mismatch. A further complication, not
widely addressed in the remote sensing community, is that this
work (andmany others) assumes no spectral or angular correlation
between measurement/forward model uncertainties, or between
errors in nearby pixels. As discussed by Sayer et al. (2020), this has
consequences in terms of uncertainty estimates and cost function
when these correlations exist in the real world. However, these
correlations are hard to incorporate into retrievals because their
magnitudes are, in most cases, poorly known. The presence of
correlations also complicates the theoretical χ2 distribution, and a
more complex generalized χ2 distribution should ideally be used to
determine optimal cost thresholds for data filtering, if correlations
can be determined.

5.2 MAPDS as a Multi-Angle Cirrus Cloud
Mask
The RGB images in Figure 6 indicated two cloud patches, which can
be identified and removed by MAPDS. In this sense the screening
can serve as an angle-by-angle cloud mask for multi-angle data.
Figure 11A1–C1 shows the reflectance at 670 nm for the same three
viewing angles of Figure 6, and indicates the angles identified by
MAPDS at 670 nm, which correspond to clouds A and B very well.
The lengths for cloud A and B in the along-track direction are
estimated to be around 5–8 km. The displacement between the cloud
A locations in Figure 11A2, C2 is estimated through the cross

correlation of the masked reflectance from Figure 11A2, C2 in the
along-track lines, which shows a change of distance (Δd) of 7–9 km.
With the angular span of 2 × 20°, the height of the cloud can be
estimated as ctan (20°) ×Δd/2 which is 10–12 km. This assumes no
significant cloudmotion in the along-track direction during the time
interval between the measurements at the two viewing directions.
Note that we have assumed the cloud is not moving during the time
interval when conducting measurements at the two viewing
directions. A more precise treatment considering cloud motion
may be conducted by involving more viewing angles at different
observing times.

The screening could be used to generate a cloud fraction by
dividing the number of viewing angles impacted by clouds by the
total number of angles. For PACE, OCI’s viewing angle will be
20°, and SPEXone viewing angles include both ±20° viewing
angles (and other three angles), therefore a HARP2-derived
MAPDS cloud mask could be used to complement cloud
masks generated by OCI and/or SPEXone. This possibility will
be assessed in future studies when PACE data are available.

5.3 Data Quality Control
In this study, we discussed the removal of angles for the HARP
measurements by filtering out view angles that are problematic for
aerosol retrievals to improve data quality. Analogous concepts may
be applied to other instruments, such as in the hyperspectral rather
than angular domains for OCI and SPEXone. The removed
measurements can also be used to identify instrument artifacts
or cases involving excess amounts of sunglint due to insufficient
information on wind direction, surface slopes, and other factors
(Gao et al., 2019). The data with better-modeled glint characteristics
can then be used for further analysis in simultaneous aerosol and
glint retrievals (Knobelspiesse et al., 2021).

6 CONCLUSION

In this studywe developed and analyzed a data thinning technique to
improve performance of aerosol and ocean color retrievals from
hyper-angular MAPs by screening and removing problematic
measurements affected by cloud and other anomalies. We
investigated the impact of the number of viewing angles on
retrieval uncertainty for the AirHARP and HARP2 instruments
based on synthetic data, finding that a total of 20–30 unique angles
across all bands (five to eight viewing angles per band in average)
were sufficient to achieve good retrieval performance. Therefore, the
total number of viewing angles of HARP2 (90) and AirHARP (120)
allows for some screening while retaining sufficient observations for
high-quality retrievals.

We further developed and applied an automatic adaptive data
screening approach called MAPDS to the AirHARP field
measurements. We found that it effectively identified and
removed angles influenced by thin cirrus clouds, increasing
the level of agreement with independent AOD data from
airborne HSRL-2, and providing an additional angle-by-angle
cloud mask. We also found that this screening resulted in a better
match of retrieval cost to theoretical χ2 distributions. To improve
processing efficiency and accuracy, deep learning techniques

FIGURE 10 | Histogram of the χ2 for Figure 8 (C1) (with all angles) and
(C2) (with MAPDS) with its most probable values of 1.85 and 1.35
respectively. The average number of measurements including both
reflectance and DoLP used in the retrievals are 112 and 85 respectively.
The theoretical curve (red line) is for 85 degrees of freedom, shifted to the
same most probable value of 1.35 as the histogram.
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including neural network and automatic differentiation are
explored. The FastMAPOL algorithm using neural network
has demonstrated a factor of 1,000 speed improvement. After
we replaced numerical calculation of Jacobians with automatic
differentiation of the neural network forward model, the retrieval
speed is improved by another factor of 10, more than
compensating for the additional overhead of the screening
process. The FastMAPOL algorithm and the adaptive
screening approach provide efficient ways to process multi-
angle polarimetric measurements for NASA’s Plankton,
Aerosol, Cloud, ocean Ecosystem (PACE) mission, and can be
applied to other modern remote sensing studies where a large
amount of data collected.
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