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Satellite-based visible and near-infrared imaging of the Earth’s surface is generally not
performed in moderate to highly cloudy conditions; images that look visibly cloud covered
to the human eye are typically discarded. Here, we expand upon previous work that
employed machine learning (ML) to estimate underlying land surface reflectances at red,
green, and blue (RGB) wavelengths in cloud contaminated spectra using a low spatial
resolution satellite spectrometer. Specifically, we apply the ML methodology to a case
study at much higher spatial resolution with the Hyperspectral Imager for the Coastal
Ocean (HICO) that flew on the International Space Station (ISS). HICO spatial sampling is of
the order of 90 m. The purpose of our case study is to test whether high spatial resolution
features can be captured using hyper-spectral imaging in lightly cloudy and overcast
conditions. We selected one clear and one cloudy image over a portion of the panhandle
coastline of Florida to demonstrate that land features are partially recoverable in overcast
conditions. Many high contrast features are well recovered in the presence of optically thin
clouds. However, some of the low contrast features, such as narrow roads, are smeared
out in the heavily clouded part of the reconstructed image. This case study demonstrates
that our approach may be useful for many science and operational applications that are
being developed for current and upcoming satellite missions including precision agriculture
and natural vegetation analysis, water quality assessment, as well as disturbance, change,
hazard, and disaster detection.
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1 INTRODUCTION

Space-borne hyper-spectral imagers are instruments that typically have a spatial resolution of the
order of 100 m or better and spectral coverage from the visible through near-infrared (NIR) and
sometimes also encompassing ultraviolet (UV) and/or short-wave infrared (SWIR) wavelengths.
These spectrometers are enabling a host of new science and applications. For example, the 2018
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United States National Academies’ Decadal Survey identified
several priorities for a hyper-spectral sensor including the
monitoring of terrestrial and aquatic ecosystem physiology and
health; snow and ice albedo, accumulation, and melting; active
surface changes including those due to volcanic eruptions,
landslides, and other hazards; and land use changes and
resulting effects on fluxes of energy, water, and carbon
(National Academies of Sciences, Engineering, and Medicine,
2018). Several such sensors have been or are currently flying in
low Earth orbit (LEO) and more are planned for launch over the
next decade. Remote sensing of the Earth’s surface with
hyperspectral imagers is typically not attempted in moderately
cloudy conditions. Rather, observations in overcast cloudy
conditions are commonly discarded in most types of surface
remote sensing with backscattered sunlight (e.g., Thompson et al.,
2014). Atmospheric correction, defined as the removal of
atmospheric and unwanted effects such as Rayleigh, cloud, and
aerosol scattering, remains a critical part of ocean and land
remote sensing algorithms (e.g., Lyapustin et al., 2011a;
Lyapustin et al., 2011b; Lyapustin et al., 2012; Thompson
et al., 2015; Thompson et al., 2016; Frouin et al., 2019).

Joiner et al. (2021) (hereafter referred to as J21) demonstrated
that surface color (red, green, and blue components) could be
recovered in cloud conditions of low to moderate optical
thickness as well as in heavily loaded absorbing aerosol using
satellite hyper-spectral data with a machine learning based
approach and appropriate training data. The instrument they
used, the Global Ozone Monitoring Experiment 2 (GOME-2),
covers the UV through NIR with continuous measurements at
about 0.5 nm spectral resolution. J21 completed a global training
with GOME-2 using orbits taken over several training days in
different seasons, viewing conditions, cloud, and aerosol
conditions. The trained network was then applied globally
throughout the year including days not trained on. GOME-2
provided an attractive data set to demonstrate the approach since
it contains complete spectral coverage from the UV through NIR
and thus other instruments with different spectral coverage and
resolution could also be simulated. However, the drawback of
GOME-2 for this application is its spatial resolution with nadir
footprints of the order of 40 km2.Within the fairly large GOME-2
pixels, many surface spatial details are obscured. It was therefore
unclear to what extent and under which conditions cloud effects
blur surface imagery reconstructed at higher spatial resolution. It
was also not apparent how often there were cloud gaps within the
large GOME-2 pixels that allow for good quality cloud clearing in
relatively homogeneous pixels.

In this work, we expand on the study of J21 to examine whether
their cloud-clearing approach can be effectively applied to higher
spatial resolution hyper-spectral imagers with lower spectral
resolution and sampling for a scene that contains pixels for
which the surface is visibly obscured. Here, we use the
Hyperspectral Imager for the Coastal Ocean (HICO) that flew
on the International Space Station (ISS). The results of J21 showed
that their approach should work well at HICO spectral resolution
and sampling. We conduct a case study over the northern coast of
Florida, where there were overcast conditions over much of the
scene with optically thin clouds over a portion of the scene

transitioning to overcast conditions with optically thick clouds
over another portion. With HICO we also examine the accuracy of
the cloud-clearing at near-infrared wavelengths and show how this
applies to reconstructions of a vegetation index; this was not done
in the previous J21 GOME-2 study.

The basic cloud-clearing approach involves the use of an
artificial neural network (NN) to retrieve surface spectral
reflectances from observations in overcast skies. The approach
is a spectral method of the type that has been employed for image
dehazing, with far ranging applications such as search and rescue
and event recognition (e.g., Mehta et al., 2020, and references
therein) and ocean remote sensing in the presence of thin clouds,
aerosol, and glitter (Gross-Colzy et al., 2007a; Gross-Colzy et al.,
2007b; Schroeder et al., 2007; Steinmetz et al., 2011; Frouin et al.,
2014). Unlike other approaches such as spatial, temporal, and
non-complementation methods (e.g., Zhang et al., 2018; Wang
et al., 2019; Li et al., 2019, and references therein), our
methodology does not require a priori information about the
Earth’s surface or atmosphere (beyond an appropriate data set for
NN training). In addition to cloud effects, the observations are
impacted by scattering and absorption from air molecules
(Rayleigh scattering and absorption from gases such as O2,
H2O, and O3). The method is able to remove these effects
along with those of the clouds.

2 MATERIALS AND METHODS

2.1 Hyperspectral Imager for the Coastal
Ocean Reflectances
We use reflectance measurements from the United States Naval
Research Laboratory’s (NRL) HICO [data provided by NASA
Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean
Biology Processing Group (2018)]. HICO has continuous spectral
coverage from approximately 400–1,000 nm with a spectral
binning of ∼5.73 nm. It flew on the Japanese Experiment
Module-Exposed Facility on the ISS at an altitude of
approximately 350 km and at an inclination of 51.6°. HICO
incorporates an Offner grating-type spectrometer that images
in a pushbroom mode. The operations period was from October
1, 2009 through September 13, 2014 with a focus on coastal zones
worldwide. The ground sample distance is approximately 90 m in
both the cross- and along-track directions. The cross-track
instantaneous field-of-view (IFOV) varies with view angle
from 83 m at nadir to 182 m at 45°. In the along-track
direction, the IFOV is also 83 m at nadir and increases to
120 m at 45°. The camera employs a 512 × 512 charge-
coupled device (CCD). Calibration procedures are described
by Lucke et al. (2011) and Gao et al. (2012).

There are a few noted issues with HICO that may affect results
shown here. Second-order light from wavelengths between 350
and 540 nm falls into the same pixels as the first-order light
between 700 and 1,080 nm. Although an empirical correction
technique was developed (Li et al., 2012), there may still be errors
in a bright cloudy scene such as the one we focus on.
Imperfections in the frame smearing correction (Lucke et al.,
2011) may also affect results shown here.
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Here, we use two sets of observations taken over the northern
coast of Florida that include a portion of the Panama City Beach
area, Mexico Beach, and the St. Joseph Bay. The first scene is
taken over mostly clear skies on day 78 (March 19) of 2011 (scene
H2011078211654) and is used as the target or outputs for NN
training. The second cloud-covered scene is from 17 days later on
day 95 (April 5) (scene H2011095142905) and is used for NN
inputs during the training and evaluation. A basic assumption is
that the scene has not changed during the 17 days period in
between when the two observations were made.

Because the two scenes are spatially mismatched, it is
necessary to align them for the NN training. This was
accomplished using the AUTO_ALIGN_IMAGES software
provided for use in the interactive display language (IDL) by
T. Metcalf. With this software, we aligned images of the difference
vegetation index (DVI) defined as the NIR minus red reflectance
(Tucker, 1979). The DVI provides enhanced contrast for image
alignment in cloudy conditions as compared with a single
wavelength as will be shown below. The DVI is also an
indicator of greenness; it similar to the normalized difference
vegetation index (NDVI) defined as NDVI � DVI/(NIR + red
reflectance). The denominator of the NDVI provides a
normalization. However, this normalization may slightly
amplify noise in a reconstructed image as discussed below.
This is why we use the DVI in this work rather than the NDVI.

The northernmost portion of the full scene (all pixels north of
30.45 N) was discarded because some clouds were detected on
March 19 in this part of the scene which is taken to be the clear
sky reference. In addition, we trimmed off the sides of the aligned
images to use rows 20–479 and columns 20–1980 for training.
This corresponds to latitudes between 29.59 and 30.45 N and
longitudes between 85.05 and 86.42 W. For the cloudy day (April
5), the VZA range is 11.2–17.6°. For the clear day (March 19), the

VZA range is 12.3–18.3° such that there was not much relative
FOV distortion between the two sets of observations.

2.2 Methodology
Figure 1 shows a flow diagram of the NN training that
reconstructs red, green, blue, and near-infrared surface
reflectances (henceforth denoted RGBNrecon or Rrecon, Grecon,
Brecon, and Nrecon) from cloudy HICO reflectances ρcld. The
approach is similar to that detailed in J21, however with a few
minor differences. J21 used nadir-adjusted collocated reflectances
derived from a different sensor, the moderate-resolution imaging
spectroradiometer (MODIS), as the target in the NN training
developed for GOME-2. The MODIS MCD43 data were
processed over a 16 days window in order to construct surface
reflectances adjusted to nadir view (Schaaf et al., 2002; Wang
et al., 2018). MCD43 processing includes removal of cloudy data
as well as atmospheric correction and quality control. Clear-sky
data are then weighted over the 16 days window towards the day
of interest. Therefore, MCD43 are somewhat smoothed over a
16 days interval. We were not able to collocate the HICO and the
lower resolution MODIS images to a satisfactory level for
training. Instead, we use clear sky data HICO taken on
another day close in time (17 days apart) to our cloudy day of
interest for the target in our NN training.

Surface Lambertian-equivalent reflectances (LERs) at R, G, B,
and Nwavelengths are derived from the clear sky image onMarch
19 to be used as the predicted or target variables. The wavelengths
used to define R, G, B, and N are 630–690, 520–600, 450–520, and
780–900 nm, respectively, similar to bands on the Landsat seven
Enhanced Thematic Mapper Plus (ETM+). These bands are
slightly wider than the Landsat eight Operational Line Sensor
(OLI) and Sentinel two bands and were chosen to potentially
optimize signal to noise performance though differences in

FIGURE 1 | Flow diagram showing how surface reflectances at red (R), green (G), blue (B), and near-infrared (N) wavelengths are reconstructructed and their
uncertainties are estimated with a neural network (NN) using hyper-spectral reflectance measurements from HICO.
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performance with respect to the exact RGBN bands are expected
to be small. Surface LERs are derived by inverting

I � I0 + LER × T
1 − LER × Sb

, (1)

where I0 is the radiance contributed by the atmosphere with a
black surface, T is direct plus diffuse irradiance reaching
the surface converted to an ideal Lambertian reflected radiance
in the direction an observer by division by π, then multiplied by
the transmittance between surface and top-of-atmosphere, and Sb
is the diffuse flux reflectivity of the atmosphere for isotropic
illumination from below. We compute I0, T, and Sb using the
vector linearized discrete ordinate radiative transfer (VLIDORT)
software (Spurr, 2006). Henceforth, R, G, B, and N will refer to
LERs at red, green, blue, and NIR wavelengths, respectively.

Once trained, the non-linear NN reconstruction of RGBNrecon,
denoted as fNN, can be described by

RGBNrecon � fNN ρcld(λ), cos (θ0), cos (θ), cos (ϕ)( ), (2)

where the inputs depend on observed reflectance spectra ρcld(λ)
along with the optional sun-satellite geometry that can be
described by the cosines of the solar zenith, view zenith, and
phase angles, θ0, θ, and ϕ, respectively.

As in J21, we reduce the dimensionality of the HICO spectra by
performing a principal component analysis (PCA) or eigen-
decomposition of a covariance matrix constructed from a large
sample of spectra from the cloudy scene on April 5, 2011 (note that
we do not subtract a mean spectrum first as is common practice for
PCA). We use coefficients of the leading modes as the actual NN
predictors or pseudo-observations. We also reconstruct each
spectrum using the leading mode coefficients as a quality check
as described below. While J21 found that 14 leading modes well
captured most of the spectral variability in GOME-2 spectra, we
find that 12 modes are sufficient for the lower spectral resolution
HICO spectra in order to represent most of the variability
(>99.9987%) in the wavelength range 400–1,000 nm.

As in J21, we find that training results improve when we
remove water-contaminated pixels; the NN would require a
large number of samples over many different sun-satellite
geometries to effectively learn the complex angular-spectral
dependencies of water surface scattering. Such an effort is
beyond the scope of this case study. We use quality control
filters for training data similar to those in J21 as follows: 1) to
remove observations with optically thick clouds, we filter out
pixels with an observed red reflectance in the cloudy scene of
>0.7 (note that this check was not necessary for the cloudy scene
in this study as no pixels meet this requirement); 2) to remove
water-contaminated observations, we filter out pixels with
observed red and NIR reflectances in the clear scene <0.1; 3)
to remove suspect spectra, we check the reconstruction of each
spectrum with leading modes and discard if the maximum error
in the reconstructed spectrum exceeds the mean error computed
over all spectra in the training set by more than 5σ. This flagging
may identify erroneous observations in spectra, such as
excessive amounts of scattered light or other spectral
distortions (removes ∼0.2% of otherwise good pixels).

The total number of samples that meet passing all quality
control checks was 180,996. We conduct the training and
evaluation using two fold cross validation, where two separate
trainings were conducted each using half the samples for training
and the other half for evaluation. All results shown here are for
the independent samples (i.e., not used in the training). Similar
statistical results were obtained for the dependent and
independent samples, an indication that over-training did
not occur.

We employ the same NN architecture as that used by J21,
consisting of a three layer feed-forward artificial NN with two
hidden layers and 2N nodes in each layer, where N � 15 is the
number of inputs (coefficients of 12 leading modes and cosines of
three angles defining the sun-satellite geometry). For activation
functions, we use a soft-sign for the first layer, a logistic (sigmoid)
for the second layer, and a bent identity for the third layer. An
adaptive moment estimation optimizer minimizes the error
function with a learning rate of 0.1. Inputs and outputs are
both scaled to produce zero means and unit standard
deviations. Two NN with this structure were constructed, one
to predict the surface RGBN reflectances and the other to predict
its uncertainties. The target for predicting the uncertainties is the
absolute value of the differences between the target and
reconstructed RGBN surface reflectances as detailed in J21.

3 RESULTS

A random sample of HICO spectra is shown in Figure 2 for
conditions ranging from mostly clear, with lowest reflectances in
the visible wavelengths, to overcast with higher visible
reflectances in the range ∼0.2 to 0.4 that correspond to cloud
optical thicknesses of around five as discussed in more detail
below. Major atmospheric absorption bands are seen including
the O2 A band near ∼760 nm and O2 B band near 685 nm. The
red edge, characterized by a rapid rise in reflectance between

FIGURE 2 | Random sampling of HICO reflectance spectra (random
colors and line-types) on April 5, 2011 with major atmospheric absorption
bands labeled above.

Frontiers in Remote Sensing | www.frontiersin.org August 2021 | Volume 2 | Article 7219574

Joiner et al. Cloud Clearing With Hyper-Spectral Data

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


about 685 and 760 nm, is apparent in the land pixels. These pixels
can be distinguished from those over water that have generally
low NIR reflectances. The effect of Rayleigh scattering that is
more prevalent at shorter (bluer) wavelengths is also seen in the
spectra as an increase in reflectance from green to blue
wavelengths; the surface reflectance is generally higher in the
green as compared with the blue. Some defects may be present at
the longest and shortest wavelengths in this range. These artifacts

are not expected to degrade results as they do not fall within the
ranges of the target reflectances. HICO spectra have been adjusted
within the processing of the raw data to account for instrument
wavelength and response function variations across its swath
(also known as the spectral smile effect) as described in Gao et al.
(2012).

Table 1 summarizes the evaluation with statistics comparing
RGBNclr and RGBNrecon. Variability captured is generally high
for R, G, and B at more that 94% for these wavelengths. The r2

values are a bit lower than those reported for GOME-2 trained on
collocated MODIS MCD43 data in J21 (values were about 0.98,
0.97, and 0.95 for GOME-2 reconstructed R, G, B, respectively).
However, RMSD values were higher for R, G, and B for GOME-2/
MODIS as compared with HICO which may result from a greater
proportion of high values of reflectances contained in the global
sample for GOME-2, particularly the inclusion of deserts. Note
that GOME-2/MODIS r2 values decreased from red to blue
wavelengths whereas the opposite behavior is seen for HICO.

As in J21, we conducted training with and without the sun-
satellite angles as predictors and find that reasonable results are
obtained without the geometry included (r2 > 0.92 for R, G, and B,
see Table 1) though inclusion of the angles gives a small
improvement. The inclusion particularly of the view angle may
remove small row-dependent biases that are inherent in CCD
detectors, but does not provide identifying spatial information to
the neural network. Also, as in J21, we found that the errors in the
reconstructed reflectances were highly correlated between the
different bands. We list statistics for band differences in Table 1.

TABLE 1 | Statistical comparison of reconstructed red (R), green (G), blue (B), and
NIR (N) bands (RGBNrecon) and band differences with independent (not used
in training) data points (180,996 in total) from the clear sky day (RGBNclr). Statistics
include the root mean squared difference (RMSD), bias (mean of RGBNrecon-
RGBNclr), and variance explained (r2).

Color r2 Bias RMSD

R 0.947 0.000 0.009
G 0.957 0.000 0.007
B 0.958 0.000 0.006
N 0.797 −0.000 0.012
Ra 0.921 0.001 0.010
Ga 0.930 0.001 0.009
Ba 0.927 0.000 0.009
Na 0.731 0.000 0.014
R-B 0.791 −0.000 0.004
R-G 0.784 0.000 0.003
G-B 0.638 −0.000 0.002
N-R 0.872 −0.000 0.012

aSun-satellite geometry (3 angles) not included as predictors.

FIGURE 3 | RGB imagery from HICO: (A): Original image from April 5, 2011 over the northern coast of Florida including the St. Joseph Peninsula and St. Joseph
Bay. (B): Aligned image fromMarch 19, 2011; (C): Reconstructed surface RGB using April 5 HICO spectra. Pixels over water in middle and right panels are displayed as
black. See text for description of processing used to produce these images.
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Figure 3 shows the April 5, 2011 HICO original all sky RGB
image, the target surface RGB image for March 19, and the
reconstructed RGB image for April 5. Here, we display only a
portion of the reconstructed image that shows a gradient in
cloudiness with reduced coverage over ocean (rows
1,100–1,800 and columns 200–479). The coverage corresponds
approximately to latitudes between 29.59 and 30.19 N and
longitudes from 85.14 to 85.77W. The RGB images are
selectively scaled using the ScaleModis procedure from the
Interactive Display Language (IDL) coyote library (Fanning
Software Consulting) based on original code from the MODIS
rapid response team. The two images on the right and in the
middle were further enhanced using the Mac Preview application
with the “auto levels” function to adjust contrast.

High reflectances over the beaches along the coastline are
visible in the uppermost portion of the cloudy April 5 image
where clouds are optically thin, but disappear in the lower part of
the image where clouds are more optically thick. All surface
features are obscured in the lower portion of the cloudy image. As
will be shown below, the red reflectance in the cloudiest parts of
the scene (approximately the bottom third of the scene) ranges
from about 0.2 to 0.4. These reflectances correspond to cloud
optical thicknesses of the order of 5 (Kujanpää and Kalakoski,
2015). Note that in the center and right panels in this figure and
following figures unless otherwise noted, pixels over water
surfaces, detected as described above in the March 19 clear
sky image, are displayed as black as the training is not
optimized for these pixels. The major bright features are fairly
well captured in the reconstructed cloudy image, especially in the

upper portion of the image where the clouds are more
transmissive.

Figure 4 shows a similar set of panels for the DVI (NIR minus
red). The DVI displays noticeable contrast between land and
water scenes even through the optically thick clouds in the lower
portion of the image. As in Figure 3, most of the large contrast
DVI features are preserved while some of the lower contrast high
spatial resolution features are washed out. Note that the DVI
error due to clouds is positive in the upper part of the figure where
clouds are optically thin but errors are negative in the lower
portion of the scene with thicker clouds. As in Figure 3, some of
the clear sky spatial features are visible in the cloudy image, while
others such as in the lower portion of the image, affected by heavy
clouds, are not.

We tested the use of standard image sharpening software
packages to see whether they can be used to recover contrast and/
or washed out features. This is not a part of our standard
approach and results with sharpening are not shown here. We
were able to restore some of the loss of contrast in the lower part
of the reconstructed image in Figure 4. However, we were not
able to recover additional fine scale spatial features that were lost
in the reconstructed image.

In the cloudy April 5 DVI image (left panel), some moderately
low values are seen extending over the ocean. The positive values
do not extend in an isotropic manner around all of the coastlines
as may be expected if they were due to spatial-spectral scrambling
from clouds. Rather, the features over ocean appear in the
direction of the image acquisition after land has been
encountered. This suggests a possible ghosting effect in the

FIGURE 4 | Similar to Figure 3 but for the DVI (NIR minus red): (A): Original image from cloudy April 5, 2011; (B): Original image from clear day March 19; (C):
Reconstructed image from April 5. Pixels over water in middle and right panels are displayed as black.
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readout of the CCD array. These effects would likely also occur
over land and may contribute to spatial smearing. Full scene
(including over ocean) clear sky images (March 19) are shown for
RGB, red, and blue in Figure 5 and show that the positive DVI

features over ocean in the cloudy image of Figure 4 do not
correspond to those of ocean color.

Figures 6, 7 show the same set of three images as in Figures 3,
4 for the red and blue bands, respectively, along with estimated

FIGURE 5 | Original imagery from the clear day March 19, 2011 (ocean not blacked out); (A): RGB; (B): Red band; (C): Blue band.

FIGURE 6 | Similar to Figure 3 but for the Red band: (A): Original image from cloudy April 5, 2011; (B): Original image from clear day March 19; (C): Reconstructed
image from April 5; (D): Estimated uncertainties in reconstructed reflectances. Pixels over water in middle and right panels are displayed as black.
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uncertainties for the reconstructed bands. As in the RGB image,
the bright beaches are seen through the clouds in the upper
portions of the cloudy images, but are completely obscured in the
lower parts of the images. Similar to the set of images in Figures 3,
4, the high contrast features are captured fairly well, while the low
contrast, high spatial features, such as roads are smeared out.
Imagery appears very similar in the red and blue bands and there
does not appear to be any noticeable smearing in the blue band
due to increased Rayleigh scattering. Estimated uncertainties in
reconstructed reflectances increase with the value of the surface
reflectance similar to results shown in J21. Images in the
reconstructed green band display similar features (not shown).

4 DISCUSSION

While some of the low contrast, high resolution features such as
roads are smeared out, particularly in the lower portion of the
reconstructed imagery, it is encouraging that the higher contrast
features are relatively well preserved even when the clouds appear
opaque to the human eye. While we used a clear sky image over
the same area for training of a neural network, none of the spatial
information from the training set entered into the image
reconstruction; all information used to recover the spatial-
spectral details from the cloudy image came from the observed
spectra on the cloudy day as well as the sun-satellite geometry.

Additional studies need to be undertaken to determine the
range of conditions and instrument performance that is necessary
to achieve image reconstruction with the required accuracy for a
particular application. We attempted to apply the trained NN for
our case study scene to other HICO scenes from different years and
areas and found that it did not produce good quality RGB images.

We believe this is due to the insufficiency of a limited training set.
To construct a global training set with a high spatial resolution
sensor such as HICO will be much more difficult and time
consuming than the global training that was used in J21 with
GOME-2 andMODIS.We therefore caution that the results shown
here are limited in scope, and we plan to test the limits of the
approach with other types of scenes and sensors in future work.

We have expanded on the work of J21 to include NIR
reflectance and DVI, demonstrating that recovery of detailed
vegetation information, specifically the greenness inherent in this
spectral index, is possible with our reconstruction approach. The
features and contrasts captured by the DVI in vegetated areas,
such as man-made plots, are much more subtle in the
corresponding RGB image. Therefore, applications in precision
agriculture may be possible.

In our case study of a cloudy image where optically thin clouds
cover the upper part of the scene transitioning to optically thick
clouds (that would appear white to the human eye) in the lower
portion, we demonstrate how a hyper-spectral data can be used to
reconstruct much of the spatial-spectral detail that is obscured or
distorted by the clouds. However, some of the highest spatial
resolution features with low contrast are lost. We may attribute at
least some of this loss to spectral-spatial scrambling of the
observations within the optically thick clouded portion of the
scene that would be expected to occur particularly in the presence
of liquid water clouds. Terra MODIS data on that data indicate
water clouds in the vicinity, although the Terra overpass time did
not perfectly coincide (our scene was on the eastern part of the
MODIS swath). Ice clouds and aerosols produce more forward
scattering as compared with water clouds and therefore may
produce less spectral-spatial scrambling and blurring in a
reconstructed image. Our results in thin clouds shows

FIGURE 7 | Similar to Figure 6 but for the Blue band: (A): Original image from cloudy April 5, 2011; (B): Original image from clear day March 19; (C): Reconstructed
image from April 5; (D): Estimated uncertainties in reconstructed reflectances. Pixels over water in middle and right panels are displayed as black.
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excellent reconstruction of spectral and high spatial details.
However, close inspection of our results reveals that
instrumental effects may also play a significant role in the
blurring of the reconstructed image. While we were not able
to recover some of the fine spatial details that were lost in the
blurred parts of the image with standard sharpening packages
that may utilize convolutional neural networks, these sharpening
tools may still useful in other scenes or with other sensors.

We note that the clear sky image was taken at 21:16 UTC or 17:
16 EST which is later in the day than the cloudy image taken at 14:
29 UTC or 10:29 EDT. Unlike the work of J21 that trained on
many different viewing conditions with a nadir adjusted target
reflectance, here we essentially neglect surface BRDF effects in the
target data. Therefore, shadowing in the clear sky image may have
degraded the fitting results somewhat.

This study focuses on land surfaces with a very limited training
data set. More training data over a wide range of angles and
conditions would be needed to effectively reconstruct imagery
over the ocean surface with our methodology. We plan to address
ocean applications in future works. We also plan to apply our
approach to other hyperspectral imagers. In addition to HICO,
there are many more current and planned hyper-spectral satellite
instruments that our method could be applied to. These include
the German Aerospace Center (DLR) Earth Sensing Imaging
Spectrometer (DESIS) (Krutz et al., 2019), the Japanese Ministry
of Economy, Trade, and Industry (METI) Hyperspectral Imager
Suite (HISUI), and the NASA Earth Surface Mineral Dust Source
Investigation (EMIT), all currently flying on the ISS, as well as
with similar spectral coverage and GSD of ∼30 m (Krutz et al.,
2019), the Italian Space Agency’s (ASI) Hyperspectral Precursor
of the Application Mission (PRISMA). The next few years will see
the launches of the German Environmental Mapping and
Analysis Program (EnMAP) (Storch et al., 2020), the
European Space Agency (ESA) Copernicus Hyperspectral
Imaging Mission (CHIME), and NASA surface biology and
geology (SBG) mission. Hyper-spectral instruments can also be
operated from the ground or flown on airborne platforms. The
techniques developed here provide capability to do remote

sensing in cloudy conditions and increase the data coverage
and timeliness of products from these sensors for a wide
variety of applications. We plan to conduct our own testing
and encourage adoption of our approach with these sensors.
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