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The lowest layer of the atmosphere in which all human activity occurs is called the Planetary
Boundary Layer (PBL). All physical interactions with the surface, such as heat andmoisture
transport, pollution dispersion and transport happen in this relatively shallow layer. The
ability to understand and model the complex interactions that occur in the PBL is very
important to air quality, weather prediction and climate modeling. A fundamental and
physically important property of the PBL is its thickness or height. This work presents two
methods to obtain global PBL height using satellite lidar data from the Ice, Cloud and land
Elevation Satellite-2 (ICESat-2) and the Cloud-Aerosol Transport System (CATS). The first
method is a straightforward backscatter threshold technique and the second is a machine
learning approach known as a Convolutional Neural Network. The PBL height retrievals
from the two methods are compared with each other and with PBL height from the NASA
GEOS MERRA-2 reanalysis. The lidar-retrieved PBL heights have a high degree of spatial
correlation with the model heights but are generally higher over ocean (∼400m) and over
northern hemisphere high latitude regions (∼1,000m). Over mid-latitude and tropical land
areas, the satellite estimated PBL heights agree well with model mid-day estimates. This
work demonstrates the feasibility of using satellite lidar backscatter measurements to
obtain global PBL height estimates, as well as determining seasonal and regional variability
of PBL height.
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INTRODUCTION

The Planetary Boundary Layer (PBL) is the lowest region of the atmosphere in contact with the
surface that controls the complex interactions between the surface (land and ocean) and the free
troposphere. Ranging in depth from just a few hundred meters to near 6 km, moisture, heat and
pollutants at the surface are transferred into the atmosphere within the PBL and are transported to
other regions of the atmosphere mainly by turbulence and convective motions. Since the PBL
contains a large percentage of the total atmospheric moisture, it determines to a large degree the
amount of latent heat available to fuel deep convection and storm development. Our understanding
of air quality, human health, and severe storms are currently hindered by an incomplete
understanding of PBL processes. The height of the PBL (PBLH) is an essential aspect of Earth’s
coupled system that must be represented properly in weather, climate, and air quality prediction
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models. PBLH varies as a function of regional land and ocean
characteristics, seasonal atmospheric patterns, and diurnal solar
heating. This variability is a critical indicator of regional surface-
atmosphere energy, mass, and momentum exchanges that
strongly influence convection, precipitation, air pollution, and
extreme events.

Because of its importance, much attention has been given to
PBL research over the last many decades. The interaction of the
boundary layer with the overlying troposphere is extremely
important to the accuracy of numerical weather prediction
models. This is particularly apparent in regions of coastal or
oceanic cyclogenesis. Over 40 years ago, Bosart (1981) and
Tracton (1973) found that the existing weather prediction
models of the time did not satisfactorily incorporate the
interaction of the PBL with the troposphere as a major source
of energy for developing cyclones. In a study of the 1979
President’s Day east coast blizzard, Bosart (1981) concluded
that the failure to correctly model the effect of convective scale
processes and oceanic heat and moisture flux in the boundary
layer is a major cause of operational prediction model’s inability
to simulate oceanic and coastal cyclogenesis and storm intensity.

PBLH is defined in a number of different ways and can differ
depending on the technique used to measure it. The standard or
thermodynamic approach utilizes radiosonde measurements of
temperature and moisture. In a convective boundary layer,
heated from below, PBLH is usually defined as that height
where the potential temperature profile increases abruptly with
height while at the same altitude, the relative humidity decreases
significantly. Note however, that any single measurement of the
depth of a convective boundary layer will depend on where the
measurement was made with respect to the convective cells
(updrafts and downdrafts). The convective PBL top over a given
horizontal distance varies and is higher at the position of updrafts
and lower in regions of downdrafts. The region between the lowest
and highest PBLH in a local convective boundary layer is called the
entrainment zone. (Melfi et al., 1985). For a stable boundary layer,
characterized by a temperature inversion at the surface, PBLH is
defined as the height of the top of the inversion (Stull 1988). The
convective PBLH can be estimated using lidar and sodar since the
PBL generally contains more aerosol than the free troposphere
above. Lidar can detect this gradient of aerosol concentration (since
backscatter magnitude is related to aerosol number density) or PBL
cloud top heights, and the height at which these occur is defined as
the PBLH. The detection of PBLH in stable boundary layers using
satellite lidar is more difficult for a number of reasons including a
small or non-existent aerosol gradient at the layer top, masking of
the layer by the previous daytime PBL and the often very shallow
nature of nocturnal or stable layers. Common methods used to
detect PBLH using lidar include the backscatter threshold method
(Melfi et al., 1985; Palm et al., 2005), maximum variance (Jordan
et al., 2010; McGrath-Spangler and Denning, 2012), Haar wavelet
(Davis et al., 1997; Cohn and Angevine 2000) and backscatter
gradient method (Van Pul et al., 1994).

PBLH estimates from space-based lidar systems have provided
critical data for 1) determining regional and seasonal PBLH
variability, 2) comparisons with other definitions of PBLH, and
3) evaluation of PBLH in regional and global models. Jordan et al.

(2010) compared PBLH derived from CALIPSO (The Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation)
backscatter profiles with co-located (temporally and spatially)
PBLH from the NASA Goddard GEOS-5 MERRA (The
Modern Era Reanalysis for Research and Applications
(MERRA) (Rienecker et al., 2008) reanalysis product. The
model PBLH was defined by the lowest model level for which
the turbulent diffusion coefficient drops below 2m2s−1 when values
above this threshold exist in the lowest two levels of the column.
They note this threshold is somewhat arbitrary but it represents
turbulent intensity roughly two orders of magnitude below typical
peak values (∼100 m2/s) in a strongly convective model PBL.
Jordan et al. (2010) found that the model PBLH was higher
than CALIPSO retrievals over much of the equatorial pacific
but over north Africa, the converse was true. Over daytime
Sahara, for instance, where CALIPSO measured PBLH near
6 km, the model values were roughly half of that. McGrath-
Spangler and Denning (2012) compared PBL depths estimated
from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation) lidar backscatter measurements with
model reanalysis and AMDAR (Aircraft Meteorological DAta
Reporting) estimates. They found that lidar-based estimates of
PBL depth tend to be shallower than aircraft estimates in coastal
areas and compared to model reanalysis were greater over the
oceans and areas of the boreal forest and shallower over the arid
and semiarid regions of North America. Liu et al. (2015) compared
ECMWF PBLH with that derived from CALIPSO over the China
region and found that the CALIPSO heights were generally higher
than ECMWF. The CALIPSO PBL heights were obtained through
analysis of the 532 nm backscatter profiles using the maximum
variance method after cloud clearing using the level 2 vertical
featuremask. The ECMWFmodel defines the top of the PBL as the
level where the bulk-Richardson number, based on the difference
between quantities at that level and the lowest model level, reaches
a critical value of 0.25.

Estimates of PBLH from backscatter lidars have been
identified as an important part of the program of record both
currently and as part of a future PBL global observing system
(Teixeira et al., 2021). In this paper we use data from the Cloud-
Aerosol Transport System (CATS) and the Ice Cloud and land
Elevation Satellite-2 (ICESat-2) to estimate PBLH using two
methods: 1) a modified backscatter threshold method and 2) a
machine learning technique using Convolutional Neural
Network (CNN) methods. The results will be compared with
each other and with data from radiosondes and MERRA-2
reanalysis PBL height. Data and Methods will describe the
data used for the analysis and a description of the PBLH
retrieval algorithms. PBLH retrieval results and comparisons
with observations is given in Results with conclusions and
summary in Summary and Conclusion.

DATA AND METHODS

CATS
The Cloud-Aerosol Transport System (CATS) operated on the
International Space Station (ISS), primarily at the 1,064 nm
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wavelength, for 33 month (05 February 2015 to 29 October 2017).
The CATS instrument was designed to both demonstrate new
technologies for future space-based lidar missions and provide
valuable Earth science remote sensing data from the ISS through
vertical profiles of clouds and aerosols (McGill et al., 2015). This
paper uses the CATS Level 1B data products, V3-00, which were
released in October 2018. The primary parameters of interest in
the CATS Level 1B data product are the 1) attenuated total
backscatter (ATB) coefficient, 2) attenuated perpendicular
backscatter (APB) coefficient (both with units of km−1 sr−1),
and 3) linear volume depolarization ratio (Yorks et al., 2016).
These parameters are provided at the 1,064 nm wavelength at a
horizontal resolution of 350 m (along-track) and vertical
resolution of 60 m. CATS data products have been utilized to
study aerosol impacts on the climate system (Rajapakshe et al.,
2017; Christian et al., 2019) and aerosol transport (Hughes et al.,
2016; McGill et al., 2020; O’Sullivan et al., 2020).

CATS data is well suited for PBLH detection and has the
potential for determining the diurnal variability of the PBLH on
seasonal and regional scales (because its orbit is not sun-synch).
CATS provides robust 1,064 nm attenuated backscatter data with
high 1,064 nm signal-to-noise ratio (SNR), especially at nighttime
(Pauly et al., 2019). This SNR results in low minimum detectable
backscatter (MDB), the lowest backscatter value that PBL clouds
and the aerosol mixing height can be detected (Yorks et al., 2016).
Additionally, the total backscatter signal at 1,064 nm has a smaller
molecular contribution, especially near the surface, compared to
longer wavelengths (Yorks et al., 2021). CATS also observed
different local times each overpass, covering the full diurnal cycle
roughly every 60 days due to the 51.8° inclination angle of the ISS
orbit. This sampling enabled several investigations of cloud and
aerosol seasonal, regional, and diurnal variability (Noel et al.,
2018; Chepfer et al., 2019; Lee et al., 2019; Yu et al., 2021).

The Ice, Cloud and land Elevation Satellite-2
The Ice, Cloud and land Elevation Satellite (ICESat), which
operated from 2003 until 2009 was the first satellite lidar to
study the earth’s surface and atmosphere (Abshire et al., 2005;
Spinhirne et al., 2005). ICESat-2, the successor to ICESat, was
launched into a 92° inclination, precessing orbit in September of
2018 and has been in continuous operation since October of that
year (Abdalati et al., 2010;Markus et al., 2017). Like CATS, ICESat-
2 is not in a sun-synchronous orbit and thus can examine diurnal
changes of the quantities it measures. ICESat-2 carries only one
instrument–the Advanced Topographic Laser Altimeter System
(ATLAS) that utilizes a high repetition rate (10 KHz), low per pulse
energy (500 µJ), 532 nm laser and photon counting detectors.
Though specifically designed and optimized to obtain high
resolution altimetry measurements of the Earth’s surface,
ICESat-2 also has an atmospheric channel to record backscatter
from clouds and aerosols from 14 km altitude to the surface at a
horizontal and vertical resolution of 280 and 30m, respectively.

ATLAS employs a diffractive optical element (DOE) to split
the laser pulse into 6 individual beams that are simultaneously
emitted from the satellite. Three of the beams have nominal
energies of about 25 μJ per pulse (weak beams) and the other 3
have energies roughly 4 times the weak beams (strong beams).

The altimetry measurements utilize all 6 laser beams while for the
atmospheric measurements, backscatter data are captured only
from the 3 strong beams. Each strong/weak beam pair is
separated by about 3 km on the ground (across track). The
ICEsat-2 data used in this paper for the retrieval of PBLH are
the average of the calibrated backscatter from the 3 strong beams
stored on the version 004 ATL09 data product. For more
information on the ICESat-2 atmospheric data products,
please see Palm et al. (2020) and Palm et al. (2021).

Description of Algorithms
As mentioned in the introduction, there have been numerous
approaches used to retrieve PBLH from ground based and
satellite lidar. Here we employ and compare the results of two
techniques. The first is a modified version of a technique first used
in Melfi et al. (1985) called the threshold technique. This method
is based on establishing a backscatter threshold and then
searching the lidar profile from just above the surface upward
for the height where the backscatter magnitude falls below the
threshold value. The second is a machine learning technique that
uses the output of the first method to “train” a neural network to
identify where the PBL top is most likely located.

Threshold Method
The threshold method was first applied to aircraft lidar data
obtained during the MASEX field campaign (Melfi et al., 1985)
and subsequently used for PBLH estimation using data from GLAS
(Geoscience Laser Altimeter System) aboard ICESat (Palm et al.,
2005). A modified version of that algorithm is used here. The
algorithm consists of two steps: 1) a long-distance horizontal
averaging of the backscatter profiles to find a low resolution
(called coarse) PBLH and 2) a shorter-distance horizontal
averaging of the profiles comprising the coarse average, that are
then searched in a narrow vertical window centered on the coarse
average PBLH for a higher resolution (called fine) PBLH.The coarse
and fine horizontal averaging distances depend on the solar
elevation angle. Since both CATS and ICESat-2 have markedly
lower signal to noise ratios in daylight than in nighttime, the
daytime (solar elevation angle >0) averaging distance is much
larger than that of nighttime (solar elevation angle <0). For the
coarse averaging distance, we used 64 and 24 km, for daytime and
nighttime, respectively. The fine averaging distance is 1/8 of the
coarse averaging distance. This process results in a PBLH horizontal
resolution of 8 and 3 km for daytime and nighttime, respectively.
During the data averaging process, the backscatter profiles are
vertically re-aligned such that the ground bin is always in the
same bin. This is very important when averaging data in rough or
mountainous terrain because if this is not done, surface signal can
contaminate the lower few hundred meters of the profile and cause
erroneous retrievals. In addition, for ICESat-2, folding of
atmospheric scattering above 15 km to the 0–3 km altitude can
be a problem in the tropics (see Palm et al., 2021 for more
information). The cloud folding flag present on the ATL09 data
product is used to filter out profiles suspected of containing
significant folding in the coarse averaging process.

After the coarse averaging, the profile backscatter average
between 200 and 400 m above the surface (S300) is compared
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with a predefined threshold (T300). For T300 we used a value of 1.0
× 10−6 m−1sr−1 for ICESat-2 and 1.0 × 10−7 m−1sr−1 for CATS
(since CATS uses 1,064 nm and the molecular scattering is an
order of magnitude less at that wavelength). If S300 is less than
T300, then no attempt is made to detect the PBLH for that average
profile (PBLH is set to zero). This condition occurs when there are
enough overlying opaque clouds present through the coarse
average distance to have significantly attenuated the signal. If
the 200–400 m average is greater than T300, the profile is
examined starting at 300 m above the surface and proceeding
upward until two consecutive bins fall below a second threshold
(Ttop) defined as 0.70xS300. If this condition occurs below 7 (4) km
above the surface over land (water), the first (lower in height) bin
of the 2 consecutive bins determines the PBLH. If this condition is
not reached within 7 (or 4) km of the surface, then PBLH is set to
zero. If the resulting PBLH at the coarse resolution is non-zero, it
is then used to define a vertical window 1 km wide around which
the fine average profiles are searched for the PBLH. The fine
search begins at the bottom of the 1 km wide window and
proceeds upward, again searching for 2 consecutive bins that
fall below Ttop. If found below the window top, the fine PBLH is
set to the first (lower) of the 2 bins. If it is not found before
reaching the top of the window, the fine PBLH is set to the coarse
average PBLH. If the coarse PBLH is zero, all corresponding fine
PBLH are set to zero.

Convolutional Neural Network Method
A convolutional neural network (CNN) was trained to estimate
PBLH using the PBLH determined from CATS data using the
more traditional threshold technique and the raw (photon
counts) CATS 1064 nm data as input. For this study, 1 month
of CATS data was used as the “truth” dataset, enough for the
CNN to accurately estimate PBLH from the CATS data. One
month of data was chosen because it was large enough to contain
a representative sampling of PBL cloud and aerosol scenes that
are representative of the PBLH, yet small enough to train the
CNN relatively quickly. Previously published studies that trained
CNNmodels suggest using a training dataset that is ∼20% of your
prediction dataset provides accurate predictions (Shahin et al.,
2004; Yorks et al., 2021). Supervisedmachine learning algorithms,
such as CNN, have been utilized for feature recognition and
object detection in images for years (Gidaris and Komodakis,
2015). While CNN techniques have been used for other Earth
Science applications (Maskey et al., 2018; Pradhan et al., 2018),
these are the first published results of CNN PBLH predictions
using space-based lidar data. One advantage of the CNN
technique is that the predictions are fast compared to more
traditional techniques [20 s to process a single CATS data file
(one half orbit)], although the training of the CNN model can
take more time (3–5 h).

The CNN architecture and training method used in this study
to estimate PBLH were similar to what was defined in Yorks et al.
(2021). However, there were some key differences. The primary
difference was how the training dataset was created. The entire
PBL (not exclusively the top) was labeled in the raw CATS image
by interpolating between points determined by the threshold
approach described in The Threshold Method Section. Up-

sampled CATS Level 2 data were used to assist in giving more
realistic definition to the PBL shape in the raw lidar image. Areas
where the lidar signal was attenuated, or the threshold approach
did not determine a PBL height were filtered out. The other
difference between the methodology in Yorks et al. (2021) is that
here binary feature classification was used as opposed to multiple
feature classification; however, this only implies an adjustment to
the output layer of the CNN. The training dataset of PBLH
defined by the threshold technique had horizontal resolutions of
7 km (night) and 80 km (day), different than the resolutions
described in Threshold Method.

The CNN technique is able to match the accuracy of the
threshold technique, at night, but at much finer horizontal
resolutions. Figure 1A shows the 1,064 nm CATS attenuated
total backscatter (km−1 sr −1) for a nighttime scene over the
middle of the Pacific Ocean where marine aerosols and PBL
clouds are present, with the PBLH from the threshold technique
(red dots) and CNN (yellow dots) overlaid. Both techniques
appear to be accurately predicting the PBLH, as the red and
yellow dots align well with the tops of the PBL clouds and marine
aerosol layer present in the backscatter image. The difference in
PBLH between the two techniques (CNN-threshold) is plotted in
Figure 1B. On average, the two techniques agree to 228.8 m
(absolute mean difference). The root mean square difference
(RMSD) for this case is 301.2 m. This agreement is impressive
given the CNN predictions are made at a horizontal resolution of
350 m, a factor of 10–20 improvement compared to the
horizontal resolution of 3–8 km used in the traditional
threshold technique. The CNN model uses the spatial
correlation of the raw CATS signal at raw horizontal
resolution (350 m), searching for the types of gradients that
the threshold technique has related to the PBLH. Differences
between the two techniques are expected since the finer resolution
of the CNN model prevents the surface and cloud smoothing
issues in the threshold technique, and, in some cases, the spatial
correlation can overcome scenes with lower SNR. Yorks et al.
(2021) showed that the CNN model increased the number of
layers detected in CATS data (any resolution) by 30%, and
enabled detection of 40% more atmospheric features at finer
horizontal resolutions.

The fine resolution of the CNN predications enables more
accurate detection of the PBLH during complex scenes in daytime
CATS data. The 1,064 nm CATS attenuated total backscatter
(km−1 sr−1) for a daytime scene over the Atlantic Ocean and just
off the west coast of Africa is shown in Figure 2A. As CATS
approaches Africa it observes marine PBL clouds (12:14-12:15
UTC), then amarine aerosol layer with a lofted dust layer above at
an altitude of 2–4 km from 12:15 to 12:17 UTC. The PBLH from
both techniques match well with the tops of the PBL clouds and
properly ignore the dust aerosols lofted into the free troposphere.
There is very good agreement between the two techniques for this
part of the scene, as shown in Figure 2B, even with the factor of
20 finer horizontal resolution employed by the CNNmethod. The
mean absolute error is 96.0 m and the RMSE is 117.0 m. However,
the mean error is 1.7 km and RMSE is 2.2 km from 12:17:30 to 12:
19:00 UTC, where a complex cloud scene is observed by CATS.
The threshold technique estimates a PBLH that is higher than the
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CNN method and the clouds visible in the CATS 1064 nm ATB
image. This is likely the result of the coarse horizontal averaging
required by the threshold technique (80 km) for this daytime

scene, which artificially smeared these clouds, resulting in higher
PBLH detections. The finer resolution of the CNN technique
predictions enabled PBLH estimates that appear more accurate,

FIGURE 1 | (A) CATS 1064 nm attenuated total backscatter along the track shown in the map inset for June 17, 2015 at roughly 10:21 UTC with the PBL height
overlaid from the threshold (red dots) and CNN (yellow dots) techniques. (B) The difference (CNN-threshold) for the two techniques for the same scene.

FIGURE 2 | (A) CATS 1064 nm attenuated total backscatter along the track shown in the map inset for September 15, 2015 at 12:14-12:19 UTC with the PBL
height overlaid from the threshold (red dots) and CNN (yellow dots) techniques. (B) The difference (CNN-threshold) for the two techniques for the same scene.
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given they better align with the cloud tops visible in the CATS
1064 nm ATB image. However, this CNN technique is not
without limitations. During daytime over land, the lower SNR
of the CATS 1064 nm data reduces the accuracy of the technique
and often prevents an estimate from being predicted.

RESULTS

Threshold Algorithm
We have run the threshold algorithm on four case studies
where the ICESat-2 satellite orbit track comes within 20 km
of a radiosonde station and within roughly an hour or two of
the sonde launch. Though here we show the results of only
two of the cases, the other two results are very similar.
Figure 3A displays the calibrated backscatter for a
nighttime ICESat-2 pass that comes within 20 km of the
radiosonde station at La Paz, Mexico (latitude 24.11,
longitude −110.32) on October 16, 2018. Drawn on the
backscatter image are the coarse (red) and fine (yellow)
PBL heights from the threshold algorithm. The potential
temperature and relative humidity sounding, acquired at 12
UTC, is shown in Figure 3B. The time of the ICEsat-2
overpass at this location was about 10:59 UTC (4:59 AM

local time). The PBL top as indicated by the temperature and
moisture profiles is shown as the horizontal red dashed line.
The approximate location of the point along the ICESat-2
track that is closest to the radiosonde station is indicated by
the vertical white line on the backscatter image in Figure 3A.
Generally, the well mixed, convective PBL top is indicated by
an abrupt increase of potential temperature with height and
a corresponding drop in the relative humidity. In Figure 3B
this occurs at about 1.8 km. The three PBL top retrievals
from the threshold algorithm closest to the radiosonde give
heights of 1.8. 2.0 and 2.1 km. The higher two heights are
likely influenced by the cumulus cloud between 310 and
330 km on the x axis. Such PBL height variability is not
uncommon over a distance of 40–50 km.

Figure 4 is the same as Figure 3 but displays data for a daytime
ICESat-2 pass that came within 20 km of the radiosonde station at
Chichijima, Japan (latitude 27.09, longitude 142.19) on January
10, 2019. The sounding, shown in Figure 4B, was acquired at 00
UTC and the ICEsat-2 overpass was at 01:45 UTC (10:45 AM
local time). The top of the PBL as indicated by the potential
temperature and relative humidity is near 1.9 km (red, dashed
horizontal line). The PBL height as retrieved form the ICESat-2
backscatter using the threshold algorithm at the point nearest the
sonde location is about 2.0 km. The results shown in Figures 3, 4,

FIGURE 3 | (A) ICESat-2 calibrated backscatter along the track shown in the map inset for October 16, 2018 at roughly 10:59 UTC with coarse (red asterisks) and
fine (yellow plus signs) PBL height overlain. (B) The potential temperature (red) and relative humidity (green) from the La Paz, Mexico radiosonde at 12:00 UTC. The
position of La Paz is marked on the map with a red ‘x” and the white vertical line in (A) marks the closest approach of ICESat-2 to La Paz.

FIGURE 4 | (A) Same as Figure 3 except for an ICESat-2 pass on January 10, 2019 at 01:45 UTC over Chichijima, Japan and (B) the Chichijima radiosonde
temperature (red) and moisture profile (green) at 00 UTC.
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and others not shown here, indicate that the threshold algorithm
performs well for both nighttime and daytime PBL height
retrieval using ICESat-2 data.

The threshold algorithm was also applied to CATS L1B
1064 nm calibrated backscatter data. Because the CATS
wavelength is 1,064 nm (ICESat-2 is 532 nm), the threshold
limit (T300 defined in Threshold Method) is smaller by a factor
of 10. Other than that adjustment, no changes were made to the
algorithm before it was run on the CATS data. Note also that the
CATS vertical resolution is 60 m versus 30 m for ICEsat-2.
Figure 5A shows an image of CATS data over the Caribbean

on June 1, 2017 at 07:22 UTC (04:10 local time) and Figure 5B is
a transect over the central Pacific that passes just east of Hawaii
on June 1, 2017 at 11:55 UTC (01:55 Hawaii local time). The
yellow + signs represent the coarse PBLH retrievals from the
threshold algorithm.

Results shown in Figure 5A demonstrate the ability to resolve
the relatively small aerosol gradient at the top of the marine PBL
which is embedded in an elevated aerosol layer (possibly of
Saharan origin). This is sometimes difficult for algorithms to
do but is imperative for an accurate retrieval of PBLH. Figure 5B
shows a typical open-ocean marine PBL that likely consists of two
distinct layers–the shallower well mixed layer about 800–1,000 m

FIGURE 5 | (A) CATS calibrated 1,064 nm backscatter data over the south Caribbean Sea on June 1, 2017 showing a marine PBL embedded in a thicker aerosol
layer. (B)CATS calibrated 1,064 nm backscatter for a transect over the Pacific Ocean passing just east of Hawaii on June 1, 2017. The coarse PBL top as retrieved from
the threshold algorithm is indicated by the yellow plus signs on both images.

FIGURE 6 | Average PBL height derived from application of the
threshold algorithm to ICESat-2 data spanning all of 2019 and displayed in
3 month segments for a grid resolution of 2 × 2 degree.

FIGURE 7 | MERRA-2 PBL height at 14:00 local time for each quarter
of 2019.
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thick capped by a weak inversion and a higher layer capped by the
trade wind inversion at around 2 km. Evidence of this double
inversion structure is seen in the 12 UTC June 1, 2017 radiosonde
from Lihue, Hawaii (not shown) and is a typical occurrence over
much of the open ocean.

The threshold algorithm has been run on the entire year of
2019 ICESat-2 data, comprised of 5,084 orbits, to create a global
map of PBLH. The result is displayed in Figure 6, grouped by
season and displayed on a 2 × 2 degree grid. The PBL heights
range from about 800 m to 1.5 km over ocean and do not change
much from season to season, but it is noted that in the winter
hemisphere the PBL heights are higher over ocean, especially in
the northern hemisphere east of continents. This is mainly due to
the larger air-sea temperature difference causing higher surface
heat flux and convection. The low PBL heights over ocean just
west of continents is expected and plainly seen in the data. This is
generally due to the upwelling of cold water which suppresses
convection. These features are consistent with those noted by
McGrath-Spangler and Denning (2013). Over land PBLH ranges
from 2 to 3 km, with higher values over desert and arid regions
during summer. Note that both night and day are used here for
PBLH retrieval and that during nighttime over land, the lidar will
largely be discerning the residual (daytime) PBL layer from the
day before. At night the threshold technique using the CATS and
ICESat-2 data is unable to retrieve the nocturnal layer due to its
shallow depth and weak aerosol gradient at its top. Nighttime
satellite PBL retrievals over land largely detect the top of the prior
days convective PBL. Because of this fact, when comparing the
ICESat-2 and CATS PBLH over land withmodel PBLH estimates,
it is best to compare with the model data valid at mid-afternoon
local time (∼2PM). While there are techniques to differentiate the
nocturnal stable and residual layers, they have only been applied to
ground-based lidar systems that are located near (10 s of meters)
these layers, giving them higher signal-to-noise ratio and enabling
layer detection at finer spatial resolutions (Lewis et al., 2013).

Figure 7 displays the MERRA-2 reanalysis PBLH valid at 14:
00 local time for each point on the globe. A local time of 14:00 was
chosen because it corresponds to the maximum PBL height for
most land areas and is likely to be best correlated with the lidar
retrievals (at night over land, the lidar senses mainly the residual
layer from the day before). The time of comparison over ocean
does not matter due to the much smaller diurnal response of
maritime PBLH. Over ocean, the MERRA-2 PBLH are
considerably lower on average (800 m) than those of ICESat-2
(1,200 m) but exhibit similar patterns and seasonal differences as
the ICESat-2 PBLH. For instance, east of continents over ocean
the MERRA-2 PBL heights are higher in the winter hemisphere
where cold air is advected from the land causing higher heat flux
over the warmer water. MERRA-2 and ICESat-2 also exhibit
lower PBLH off the west coast of major continents, due mainly to
the upwelling of cold ocean water. The general pattern of the two
oceanic PBLH agree, with areas of higher MERRA-2 PBLH
corresponding to areas of higher ICESat-2 PBLH. Figure 8
displays only the maritime PBLH for both ICESat-2 and
MERRA-2, but with a difference in data scaling so that the
PBLH patterns are more discernable. Throughout most of the
ocean, areas of higher and lower PBLH correspond. Ding et al.
(2021) also found similar patterns and a low-bias in the MERRA-
2 PBLH over oceans when comparing theMERRA-2 data to AIRS
and COSMIC Radio Occultation estimates of PBLH.

Over most of the land surface the MERRA-2 PBLH agrees
well with ICESat-2, with notable exceptions being Antarctica,
Greenland and northern high latitudes in winter. However, even
in summer the MERRA-2 data show a marked decrease of PBLH
north of about 58° latitude, which is not evident in the ICESat-2
retrievals. A PDF of MERRA-2 and ICESat-2 PBLH for 2019 is
shown in Figure 9. The shape and widths of the ocean PDF
(dashed) are similar, but the ICESat-2 peak is near 1,250 m

FIGURE 8 | 2019 oceanic PBL height for ICESat-2 (top) and MERRA-2
(bottom). Note that each are scaled differently to bring out the correlation
between the two PBLH results. FIGURE 9 | (A) MERRA-2 ocean (dashed) and land (solid) PBL height

normalized probability distribution for 14:00 local time, January–December
2019. (B) Same as (A) except for all ICESat-2 PBLH data.
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whereas for MERRA-2 it is about 900 m. The land PDFs are
similar for PBLH greater than about 2 km, but markedly
different for PBLH less than that. The MERRA-2 peak for
land occurs near 700 m with a considerable number of
smaller heights. These are likely the mid and high latitude
winter PBL heights and summer high latitude heights. The
lower solar angle producing less daytime land heating is the
probable cause of these low model PBL heights. The ICESat-2
land PBLH do not show this seasonal high latitude effect and the
distribution is shifted to higher PBLH values (average of about
1800 m over land). These differences are probably due to the
smaller high latitude daytime heating that will obviously reduce
convective turbulence thereby leading to lower MERRA-2
PBLH. It is not known why the lidar-retrieved PBLH does
not show this effect and a separate study would be required
to understand these differences more fully. We have included
maps of ICESat-2 minus MERRA-2 PBL height in
Supplementary Figure S2. These show large areas of the
ocean where the comparison agrees to within 100–200 m but
most land areas have considerable disagreement. Also included
in Supplementary Figure S1 are the percentage of time the
2019 ICESat-2 PBLH retrievals were made for each 1 × 1 degree
grid box. This is computed as the number of successful PBLH
retrievals made divided by the number of times that profiles
were examined within a given grid box times 100.

Convolutional Neural Network Algorithm
The convolutional neural network (CNN) algorithm explained in
Convolutional Neural Network Method was applied to CATS
nighttime data from 2016 and the resulting PBLH retrieval is
shown in Figure 10A. For comparison, the results of the
threshold algorithm applied to the same dataset are shown in
Figure 10B. Recall that the CNN algorithm is trained using
results from the threshold algorithm but has the distinct
advantage in that it can work with uncalibrated backscatter
data and it can achieve much higher horizontal resolution

results. In fact, at least for nighttime data, the CNN algorithm
can retrieve PBLH at the resolution of the acquired data (350 m
for CATS). We show only nighttime granules because the solar
background noise inherent in full resolution daytime granules
causes a problem with the CNN technique. De-noising or
horizontal averaging of the data will be required to achieve
satisfactory results for daytime data. This is an area we are
actively working on and hope to achieve reliable results for
daytime data in the near future. We also plan to apply the
CNN technique to ICESat-2 data once the daytime noise
issues have been resolved.

Referring to Figure 10, there are several notable similarities
and differences between the CATS PBLH using the two
techniques. The magnitude and patterns of the PBLH over
land are very similar, especially over the African continent,
Middle East, India, and parts of South America and Southeast
Asia. These are regions that typically experience higher aerosol
loading and thus more accurate detection of PBLH (or nighttime
residual layer height in many cases) using the threshold
technique. However, the CNN technique appears to be lower
than the threshold technique (for both CATS and ICESat-2) in
areas of high terrain, such as the Rocky Mountains (western US),
Himalayas, and Andes Mountains. Furthermore, the CNN
technique has lower PBL heights in the northern latitudes over
land, more comparable to the MERRA-2 results in Figure 7 than
the threshold technique using ICESat-2 and CATS data. One
possible explanation for this would be the ability of the CNN
technique to detect more accurate cloud top heights due to its
finer resolution, as shown in Figure 1. Over ocean, the CNN
PBLH are lower than the threshold algorithm values with
averages of 1.26 and 1.40 km, respectively.

In Figure 11we show the comparison betweenMERRA-2 PBL
height at 14:00 local time (upper four panels) and the average
CNN PBL height derived from all CATS nighttime granules
(lower 4 panels) for 3 month segments during 2016. Here we
are showing only theMERRA-2 PBL height between 51S and 51N
latitude, which roughly corresponds to the latitudinal limits of the
ISS orbit. The CNN PBL height patterns over ocean are similar

FIGURE 10 | Average PBL height derived from the analysis of all CATS
2016 night granules using the CNN algorithm (A) and threshold algorithm (B).

FIGURE 11 |MERRA-2 2016 seasonal plots of PBL height at 14:00 local
time (upper 4 plots) between 51S and 51N latitude and CATS average
seasonal PBL height derived from all 2016 nighttime granules using the CNN
algorithm (lower 4 plots).
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though they are about 300 m higher on average than MERRA-2.
The CNN marine PBL heights show the higher PBLH east of
major continents in the winter hemisphere and the lower marine
PBL heights in the summer hemisphere, which is consistent with
MERRA-2 and was also noted in the 2019 ICESat-2 results
(Figure 6). The CNN and MERRA-2 PBL height values and
patterns over land are generally consistent. However, notable
differences exist mainly over the western U.S. and Australia where
CNN PBL height is considerably lower than MERRA-2. It is not
clear why this is so, though it may be related to the fact that only
night granules are used in the CNN analysis. The 2019 ICESat-2
seasonal retrievals shown in Figure 6 (which used day and night
data) do not show these low PBL height values in those regions.
Also notable are lower CNN PBLH over northern Asia that agree
better withMERRA-2 than did the threshold technique applied to
2019 ICESat-2 data.

Figure 12 shows the CATS 2016 PDFs comparing the CNN
(dashed) and threshold algorithm (solid) PBL height over land (a)
and ocean (b). Over land the peaks occur at 1.35 and 1.5 km and
the average PBLH is 1.90 and 1.83 for CNN and threshold
algorithms, respectively. Over ocean the peaks of the
distributions are slightly lower than over land (1.2 and 1.3 km)
and the average PBLH is 1.26 and 1.40 km for CNN and threshold
algorithms, respectively. The widths of the ocean distributions are
considerably narrower than for over land, which is consistent
with the much lower variability of PBLH over ocean compared to
land. We believe the lower CNN PBLH values for both land and
ocean compared to the threshold results are due to the horizontal
averaging employed by the threshold technique. Averaging the
data over relatively large horizontal distance will tend to smear
out the resulting backscatter profile (in the vertical) and just a few

penetrating cumulus clouds that have reached higher than most
will lead to a higher PBL height from the threshold technique.
Conversely, the CNN method operates with no horizontal
averaging and, while the CNN algorithm will return higher
PBL height for these penetrating convective cells, they will be
compensated by many other lower PBL heights between
such cells.

Also shown in Figure 12 is a PDF of the 2016 MERRA-2 PBL
heights at 14:00 local time for data between 51S and 51N latitudes
(hatched line) for land (a) and ocean (b). The PDF of MERRA-2
PBL heights over land lack an obvious peak and are broader than
those of either the CNN or threshold algorithm results. This
might be due to a greater variability of observed atmospheric
conditions in the MERRA-2 reanalysis. The average MERRA-2
land PBL height is 1.7 km compared to 1.90 and 1.83 for CNN
and threshold algorithms, respectively. The shape of theMERRA-
2 ocean PDF is similar to the CNN and threshold algorithm
results, but is slightly more narrow, and shifted toward lower PBL
heights. The median PBLH values for MERRA-2, CNN and
threshold techniques over ocean are 0.9, 1.2 and 1.4 km,
respectively.

SUMMARY AND CONCLUSION

In this work we have demonstrated the ability to retrieve PBL
height from ICESat-2 and CATS backscatter lidar data on a global
scale. Two techniques were presented, the first of which, called the
threshold method, sets a backscatter threshold value based on the
average calibrated, attenuated backscatter between 200 and 400 m
above the surface of horizontally averaged profiles (64 km for
daytime data, 24 km for night). The averaged profile is then
searched upward from 400 m above the surface to a maximum
altitude of 7 km (4 km over ocean) for two consecutive bins that
fall below the determined threshold. If found, the first bin of
which is set as the coarse height of the PBL. The profiles
comprising the horizontal average are themselves analyzed at a
higher resolution and in a narrow window around the coarse PBL
height to obtain a finer (8x) horizontal resolution PBL height.
Two case studies were presented that compared the threshold
PBL height retrievals with nearly coincident (in space and time)
radiosonde temperature and moisture profiles and showed good
agreement with the conventional temperature inversion/moisture
decrease definition of PBL top. The threshold algorithm was also
applied to ICESat-2 data from 2019 and CATS data from 2016.
The 2019 PBL height retrievals were compared with those from
the MERRA-2 reanalysis and displayed a high degree of spatial
correlation with the model heights but were about 400 m higher
on average over ocean and over a km higher in northern
hemisphere high latitude regions. The ocean results are
consistent with McGrath-Spangler and Denning, (2012), who
found that CALIPSO PBL height retrievals were higher over
ocean than the MERRA-2 reanalysis. Over Africa, South America
and Australia, the PBL heights agreed fairly well but the ICESat-2
heights were often 200–400 m lower than the MERRA-2 heights.

The second technique is based on a machine learning method
known as a Convolutional Neural Network (CNN). This

FIGURE 12 | Normalized probability distributions of PBL height for land
(A) and ocean (B) for all 2016 night CATS granules. The solid, dashed, and
hatched lines correspond to results from the threshold and CNN algorithms
and MERRA-2 reanalysis (14:00 Local time) between 51S and 51N,
respectively.
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technique requires an extensive training dataset, and a month of
PBL heights determined from the threshold method was used for
this purpose. The distinct advantage of the CNNmethod is that it
can work with raw, uncalibrated data and provide a much finer
horizontal resolution. The CNN algorithm was applied to CATS
2016 nighttime raw (uncalibrated) data at full horizontal resolution
(350m) and showed very robust PBL height retrieval that agreed
well with the threshold technique in some cases, but also diverged
from it in others. These discrepancies were probably due to the
horizontal averaging required by the threshold technique, and it is
likely that the CNN result is better in these cases. Overall,
compared to the threshold algorithm, the CNN technique
produced somewhat lower (∼200 m) PBL height over the oceans
and over mountainous and high latitude land areas. The CNN
results were compared with MERRA-2 PBL height at 14:00 local
time for 2016. As with the 2019 ICESat-2 comparison, the CNN
results had a high spatial correlation with MERRA-2 over ocean
but were on average about 300 m higher. Over land, notable
discrepancies were over the western U.S. and Australia, where
CNN PBLH were considerably lower than MERRA-2. However,
over high northern latitude land masses, the CNN technique
produced lower PBLH that better agree with MERRA-2 than
the 2019 threshold technique comparison over this region.

Though the MERRA-2 reanalysis PBL heights shown in this
study varied considerably from those derived from the satellite lidar
data, one must remember that the definition of PBL height used by
MERRA-2 is very different than that used to define PBL height from
lidar backscatter profiles. PBL height from lidar is based on finding
the height where a large gradient of scattering occurs, which is
typically more aligned with the base of the capping temperature
inversion. Models use varying definitions of PBL top and the
MERRA-2 definition used here is based on the turbulent
diffusion coefficient, which is obviously quite different. Because of
this, the two cannot expect to agree exactly but the general spatial
patterns should be similar and this has been seen inmuch of the data
shown here.

In conclusion, satellite lidars like those presented here can
provide useful information on planetary boundary layer height on
a global scale. However, satellite lidars have their limitations, such
as the inability to detect the PBL through attenuating clouds,
daytime noise impacting horizontal resolution and accuracy, and
sparse spatial coverage. This work demonstrates what a simple,
single channel backscatter satellite lidar can accomplish for PBL
height detection. Further, it shows that machine learning
algorithms have the potential of increasing the accuracy and
resolution of PBL height detection from space. With
improvements to the algorithms presented here, such as
differentiation between the nighttime stable and residual
layers, and better daytime performance, future backscatter
lidar instruments can provide a critical role in future PBL
observing systems.
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