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Lidar and polarimeter aerosol microphysical retrievals require calculating single-scattering
properties that are computationally expensive. One of the easiest ways to speed up these
calculations is to use a look-up table. Two important currently available look-up tables were
created about 15 years ago. Advancements in modern computational hardware allows us
to create a new look-up table with improved precision over a larger range of aerosol
properties. In this new and improved Lorenz-Mie look-up table we tabulate the light
scattering by an ensemble of homogeneous isotropic spheres at arbitrary wavelengths
starting from 0.355 μm. The improved look-up table covers spherical atmospheric
aerosols with radii in the range of 0.001–100 μm, with real parts of the complex
refractive index in the range of 1.29–1.65, and with imaginary parts of the complex
refractive index in the range of 0–0.05.We test twelve wavelengths from 0.355 to 2.264 μm
and find that the elements of the normalized scattering matrix as well as the asymmetry
parameter, the aerosol absorption, backscatter, extinction, and scattering coefficients are
precise to within 1% for 99.99% of cases. The look-up table together with C++, Fortran,
Matlab, and Python codes are freely available online.

Keywords: lidar, polarimeter, Lorenz-Mie theory, scattering matrix and optical coefficients, look-up table, scale
invariance rule

1 INTRODUCTION

Recently there is a growing interest in combining simultaneous lidar and polarimeter measurements
to perform retrievals of vertically-resolved aerosol properties. For example, it is expected that the
combination of lidar and polarimeter observations will significantly reduce uncertainties in aerosol
radiative forcing (National Academies of Sci, 2018).

In remote sensing, lidars are active instruments that can contribute a highly accurate assessment
of the vertically-resolved distribution of atmospheric aerosols. There are many different types of
lidars, but our Lorenz-Mie look-up table (LUT) unit tests focus on the NASA LaRC airborne second-
generation high spectral resolution lidar (HSRL-2), which makes three-wavelength lidar
measurements of the atmosphere (Burton et al., 2018). HSRL-2 measurements result in the
aerosol backscatter and extinction coefficients at wavelengths 0.355 (UV) and 0.532 μm (VIS)
accompanied by the attenuated backscatter coefficient at 1.064 μm.

Polarimeters are passive sensors that have greater sensitivity to the absorption properties of
aerosols, but the sensitivity to vertical distribution is limited. There are many different polarimeters
too, but our unit tests focus on the channels provided by the airborne NASAGISS Research Scanning
Polarimeter (RSP) (Cairns et al., 1999). The RSP has nine spectral channels that are divided into two
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groups based on the type of detector used: visible/near infrared
bands at 0.41, 0.469, 0.555, 0.67, 0.864, and 0.96 μm, accompanied
by shortwave infrared bands at 1.594, 1.88, and 2.264 μm.

Retrievals of aerosol microphysical properties using lidar and
polarimeter data separately or combined require significant light
single-scattering calculations that can consume a majority of the
computational time. In this paper, we describe the improved LUT
(which we call: SIR LUT) that uses scale invariance rule (SIR)
built on Mishchenko (Mishchenko, 2006) to speed up these
calculations with a precision target of 1% for all the optical
properties. We also target the accuracy (bias) to be negligible
compared to precision. The ± 1% precision was imposed to
reduce forward model errors in modeling state-of-the-art
airborne lidar and polarimeters, as well as the next generation
of satellite polarimetric sensors.

The fundamental design of this Lorenz-Mie LUT for lidar
and polarimetric sensors builds on the spherical kernels LUT
(SK LUT) (Dubovik and King, 2000; Dubovik et al., 2002a;
Dubovik et al., 2006). The SK LUT is already well established
and has multiple applications including but not limited to
AERONET (Dubovik et al., 2006), GRASP (Dubovik et al.,
2011; Dubovik et al., 2014), and many others. The SIR LUT
thus represents an improvement of a previously developed
approach, but we also describe its methodology in detail to
further document this powerful approach and to highlight its
beauty, elegance and simplicity. While using the same
theoretical underpinnings, we used modern computing
resources to calculate a significantly more precise LUT which
we share with the community. Simulation tests show that
precision of SIR LUT for all optical properties always exceeds
that of SK LUT by up to 34%.

Throughout this paper, we will follow the notation used by
Dubovik et al. (2006). Our LUT targets spherical aerosols,
i.e., Lorenz-Mie scattering theory is applied (Van de Hulst,
1981; Bohren and Huffman, 1983; Mishchenko et al., 2002),
but this theoretical approach can also be extended to non-
spherical aerosols (Dubovik and King, 2000; Dubovik et al.,
2002a; Dubovik et al., 2006; Dubovik et al., 2011; Dubovik
et al., 2014).

2 SCATTERING MATRIX AND OPTICAL
COEFFICIENTS

A unit test framework was developed to test the following list of
aerosol inherent optical properties (IOPs) that we target for fast
and precise estimation.

The normalized matrix that relates the incident and the
scattered Stokes parameters in the standard Lorenz-Mie theory
of light scattering by homogeneous isotropic spheres can be
represented as (Van de Hulst, 1981; Bohren and Huffman,
1983; Mishchenko et al., 2002):

P(Θ,m, λ) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P11(.) P12(.) 0 0
P12(.) P11(.) 0 0
0 0 P33(.) P34(.)
0 0 −P34(.) P33(.)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where Θ is the scattering angle in the range from 0+ to 180+, λ is
the wavelength (μm), and m � mR − i·mI is the complex
refractive index (CRI) consisting of the real part mR (no unit)
and the imaginary part mI (n.u.).

The four independent elements of the normalized scattering
matrix P(Θ,m, λ) can be computed for each vertically-resolved
atmospheric layer as

Pii′(Θ,m, λ) � 1
sca(m, λ) ∫

rmax

rmin

Cii′(Θ,m, λ, r) n(r) dr, (2)

where r is the particle radius (μm), n(r) � dN(r)/dr is the
particle size distribution (PSD) function (μm−1cm−3) such
that n(r)dr represents the number of particles with radius
between r and r + dr per cm3 of air, and N(r) is the number of
particles per cm3 in the size range [0, r], i.e., N(r) � ∫r

0
n(r*)dr*

(Seinfeld and Pandis, 2006). The terms Cii′(Θ,m, λ, r) �
πr2Qii′(Θ,m, λ, r)(m2sr−1) describe the directional scattering
cross sections corresponding to matrix elements
Pii′(Θ,m, λ) (sr−1) with subscript ii′ � {11, 12, 33, 34},
whereas Qii′(Θ,m, λ, r) (sr−1) describe the directional
efficiencies, and πr2(m2) is the geometrical cross section
(Van de Hulst, 1981; Bohren and Huffman, 1983;
Mishchenko et al., 2002). In the ideal case, the integration
should be done over the radius range from rmin � 0 to
rmax � ∞, but a non-zero rmin and a finite value of rmax

must be chosen for numerical computations.
As a reminder, the aerosol lidar backscatter coefficient

β(m, λ) (Mm−1sr−1) can be computed as

β(m, λ) � 1
4π

∫rmax

rmin

C11(180°,m, λ, r) n(r) dr

� sca(m, λ) P11(180°,m, λ)
4π

.

(3)

The aerosol scattering coefficient sca(m, λ) (Mm−1) that appears
in Eqs. 2, 3 and the aerosol extinction coefficient
α(m, λ) (Mm−1) can be computed as

{sca, α}(m, λ) � ∫rmax

rmin

Csca,α(m, λ, r) n(r) dr, (4)

where Csca,α(m, λ, r) � πr2Qsca,α(m, λ, r) (m2) is a scattering
(extinction) cross section and Qsca,α(m, λ, r) (n.u.) is a
corresponding efficiency (Van de Hulst, 1981; Bohren and
Huffman, 1983; Mishchenko et al., 2002).

The aerosol absorption coefficient (Mm−1) is another valuable
aerosol IOP to be computed as

abs(m, λ) � α(m, λ) − sca(m, λ). (5)

The ensemble-averaged asymmetry parameter (n.u.) finalizes our
list of aerosol optical properties to be tested by our unit test
framework:

〈cos(m, λ)〉 � 1
2
∫180°

0°
P11(Θ,m, λ) sinΘ cosΘ dΘ, (6)

where the P11(Θ,m, λ) element of the normalized
scattering matrix P [see Eq. 1] is traditionally referred
to as the phase function and the division by sca(m, λ)
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in Eq. 2 ensures that the following normalization condition is
satisfied:

1
2
∫180°

0°

P11(Θ,m, λ) sinΘ dΘ � 1. (7)

We already mentioned that precise computation of the elements
of the normalized scattering matrix P [see Eq. 1] and
accompanying single-scattering properties [see Eqs. 3–6]
requires significant amount of time. For the purpose of
retrieval of aerosol microphysical properties, it is convenient
to find an efficient way to compute all these aerosol IOPs to
within ± 1% precision using a precomputed LUT.

3 PRINCIPLES OF LOOK-UP TABLE

In order to reduce the size of the dataset that must be stored in
computer memory, the LUT takes advantage of features that are
universal and allow us to develop and apply a generalized
approach for all the tabulated IOPs.

One can see that Eqs. 2–4 share some commonality. The core
structure of these equations can be generalized as

p � ∫rmax

rmin

Cp(.)n(r) dr � ∫rmax

rmin

Cp(.) dN(r)
d ln r

d ln r

� ∫rmax

rmin

Cp(.)
4
3
πr3

dV(r)
d ln r

d ln r,
(8)

where p � {Pii′(Θ,m, λ), β(m, λ), sca(m, λ), α(m, λ)}. The other
common feature of Eqs. 2–4 is that it is optimal to perform the
numerical integration on a logarithmic scale because it is often
assumed in atmospheric sciences that the PSD n(r) � dN(r)/dr
has lognormal shape (Seinfeld and Pandis, 2006). The cross
sections Cp(. . . , r) � πr2Qp(. . . , r) are also often plotted and
analyzed on a logarithmic scale because they exhibit smoother
variability in equal relative steps Δr/r (i.e., in equal logarithmic
steps, since dr/r � d ln r) rather than in equal absolute steps Δr
(Dubovik et al., 2006).

In Eq. 8 we used

dN(r)
d ln r

� r
dN(r)
dr

� rn(r), (9)

dV(r)
d ln r

� 4
3
πr3

dN(r)
d ln r

� v(r) dN(r)
d ln r

, v(r) � 4
3
πr3, (10)

and switched to the volume distribution dV(r)/d ln r because, as
a rough approximation of atmospheric conditions, aerosol PSDs
are equipartitioned in volume (Thomalla and Quenzel, 1982). In
addition, light scattering by an ensemble of small particles
depends on the particle surface area or volume rather than on
the number concentration (Van de Hulst, 1981; Bohren and
Huffman, 1983; Mishchenko et al., 2002).

Let us split the finite range of radii [rmin, rmax] into a set {rj}
consisting of M≫ 1 grid bins that are logarithmically equidistant
and distributed between r1 � rmin and rM � rmax with a constant
step size Δ ln r � (ln rM − ln r1)/(M − 1). Now we can reduce the

integral of Eq. 8 to its approximation by a finite sum (Twomey,
1977):

p � ∫rmax

rmin

Cp(.)
v(r)

dV(r)
d ln r

d ln r ≈ ∑M
j�1

Cp,j,λ

dV(rj)
d ln r

. (11)

Equation 11 is based on the assumption that the PSD
dV(r)/d ln r is a smooth function of lnr and can be
quadratically approximated within the narrow range
rj−1 ≤ r ≤ rj+1 of discrete radii on a logarithmic scale. We would
like to emphasize that for improved precision we use the
quadratic approximation aj + bj ln r + cj ln

2 r of the PSD
instead of the linear (trapezoidal) approximation that has been
used previously (Twomey, 1977; Dubovik et al., 2006). Following
the original generalized procedure for the approximation of a
PSD (Twomey, 1977), the quadratic coefficients aj, bj, and cj are
computed corresponding to the volume distribution function
dV(r)/d ln r at three consecutive radii rk � rj−1, rj, and rj+1:

dV(rk)
d ln r

� aj + bj ln rk + cj ln
2 rk. (12)

Equation 12 can be expressed in terms of the quadratic
approximation coefficients as

aj � 1

2(Δ ln r)2
⎡⎣dV (rj−1)

d ln r
ln rj ln rj+1

− 2
dV(rj)
d ln r

ln rj−1 ln rj+1 +
dV (rj+1)
d ln r

ln rj−1 ln rj⎤⎦,
bj � 1

2(Δ ln r)2
⎡⎣ − dV (rj−1)

d ln r
ln(rjrj+1)

+ 2
dV (rj)
d ln r

ln (rj−1rj+1) − dV (rj+1)
d ln r

ln (rj−1rj)⎤⎦,
cj � 1

2(Δ ln r)2
⎡⎣dV (rj−1)

d ln r
− 2

dV (rj)
d ln r

+ dV (rj+1)
d ln r

⎤⎦.

(13)

The range [rj, rj+1] makes the following contribution to the
integral in Eq. 11:

∫rj+1

rj

Cp(.)
v(r) (aj + bj ln r + cj ln

2 r) d ln r. (14)

Equations 13 and 14 may be grouped by terms that include
dV(rj−1)/d ln r, dV(rj)/d ln r, or dV(rj+1)/d ln r (Twomey, 1977).
We will focus only on the contribution of dV(rj)/d ln r to the
discretization in Eq. 11:

[ln rj−1 ln rj+1(Δ ln r)2 ∫rj+1

rj

Cp(.)
v(r) d ln r

− ln(rj−1rj+1)
(Δln r)2 ∫rj+1

rj

ln r
Cp(.)
v(r) d ln r

+ 1

(Δ ln r)2 ∫
rj+1

rj

ln2 r
Cp(.)
v(r) d ln r]

dV (rj)
d ln r

+/.

(15)
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The multiplicative factor dV(rj)/d ln r also contributes to the
ranges [rj−1, rj] and [rj+1, rj+2]. Adding the contributions of the
three subranges, we finally can obtain the formula for coefficient
Cp,j,λ of Eq. 11:

Cp,j,λ � 3 ln rj−2 ln rj−1
8(Δ ln r)2 ∫rj

rj−1

Qp(., r, λ)
r

d ln r

− 3 ln (rj−2rj−1)
8(Δ ln r)2 ∫rj

rj−1
ln r

Qp(., r, λ)
r

d ln r

+ 3

8(Δ ln r)2 ∫
rj

rj−1
ln2 r

Qp(., r, λ)
r

d ln r

− 3 ln rj−1 ln rj+1
4(Δ ln r)2 ∫rj+1

rj

Qp(., r, λ)
r

d ln r

+ 3 ln (rj−1rj+1)
4(Δ ln r)2 ∫rj+1

rj

ln r
Qp(., r, λ)

r
d ln r

− 3

4(Δ ln r)2 ∫
rj+1

rj

ln2 r
Qp(., r, λ)

r
d ln r

+ 3 ln rj+1 ln rj+2
8(Δ ln r)2 ∫rj+2

rj+1

Qp(., r, λ)
r

d ln r

− 3 ln (rj+1rj+2)
8(Δ ln r)2 ∫rj+2

rj+1
ln r

Qp(., r, λ)
r

d ln r

+ 3

8(Δ ln r)2 ∫
rj+2

rj+1
ln2 r

Qp(., r, λ)
r

d ln r.

(16)

The values of coefficients Cp,j,λ are independent of the PSD and
depend only on the scattering angle Θ (directional scattering),
CRIm, and wavelength λ [see Eq. 16]. We switched to efficiencies
Qp(., r, λ) instead of cross sections Cp(., r, λ) for convenience in
the following discussion.

The sets of coefficients {Cp} can be computed once with high
precision for the selected scattering angles (directional scattering)
and CRIs, and stored as an LUT for each aerosol IOP p. Crucially, we
only need to prepare these coefficients at a single “reference”
wavelength λr which will be chosen to be the shortest wavelength
desired (see Section 4.1). Aerosol IOPs for longer wavelengths
λ ≥ λr can be estimated using the results at the reference
wavelength and the scale invariance rule (SIR) of electromagnetic
scattering (Dubovik et al., 2006; Mishchenko, 2006).

The discretization in Eq. 11 requires that the PSDs are smooth
and wide enough to cover a significant number of densely
distributed radii bins. In the case of narrow, steep PSDs, the
discretization becomes less accurate because a strongly oscillating
function dV(r)/d ln r can’t be accurately approximated by a
quadratic function on a sparse grid of radii bins.

Later we will show that Eq. 16 provides an easy and elegant
way to quickly compute all the aerosol IOPs of interest [see Eqs.
2–6], for a wide range of wavelengths using an LUT referenced to
a single wavelength.

3.1 Lognormal Particle Size Distribution
The following numerical unit tests use a particular type of
function as a PSD n(r). An earlier study mathematically

proved that the random process of sequential particle crushing
naturally leads to a lognormal distribution of particle sizes
(Kolmogorov, 1941). The monomodal lognormal PSD is
experimentally confirmed to be a good approximation for the
shape of naturally occurring aerosol PSDs in the atmosphere
(Seinfeld and Pandis, 2006), and can be considered as an example
of function n(r) in Eqs. 2–4:

n(r) � dN(r)
dr

� nt
r

���
2π

√
ln σ

exp[ − (ln r − ln rmed)2
2 ln2 σ

], (17)

where rmed describes the count median radius with respect to the
number concentration distribution. The count median radius is
defined as the radius above which there are as many particles as
there are particles with radii below rmed. The term σ is the
geometric standard deviation whereas ln σ is commonly
referred to as the mode width, and nt is the total number
concentration.

The same PSD on the logarithmic scale can be expressed in
terms of volume [see Eq. 10] as

dV(r)
d ln r

� 4
3
πr3

nt���
2π

√
ln σ

exp[− (ln r − ln rmed)2
2 ln2 σ

]. (18)

In many cases it is more convenient to analyze the monomodal
lognormal PSD in terms of effective radius reff �
rmed exp(2.5 ln2 σ) and effective variance ]eff � exp(ln2 σ) − 1.
Our analysis of the LUT performance (see Section 4.5)
includes these two quantities. In our numerical simulations for
polarimeter observables (see Section 4.7) we also will use a
bimodal PSD that is a sum of the fine and coarse mode PSDs
[see Eq. 18], each defined by its total number concentration,
effective radius and effective variance.

However, the LUT can be used with any custom PSD that is
smooth and wide enough to cover a significant number of densely
distributed radii bins.

4 LOOK-UP TABLE

4.1 Selection of the Reference Wavelength
The fundamental decision in the design of the LUT is the choice
of reference wavelength λr used to compute the stored coefficients
{Cp} [see Eq. 16]. This choice has a theoretical and practical basis
to optimize the application of the LUT.

For the reference wavelength of the LUT we decided to use the
shortest wavelength among all remote sensing instruments of
interest including the two mentioned in Section 1,
i.e., λr � 0.355 μm. Let us justify our choice by noting that the
size parameter x � 2πr/λ is used for all the Lorenz-Mie
computations (Van de Hulst, 1981; Bohren and Huffman,
1983; Mishchenko et al., 2002). The size parameter
conveniently relates the wavelength and radius such that the
Lorenz-Mie scattering properties for a given radius and
wavelength are the same as those at another wavelength after
adjusting the radius. For example, an aerosol with a radius of
1.4 μm observed at a wavelength λ � 2.264 μm will be
characterized by the same size parameter and identical
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Lorenz-Mie scattering properties as an aerosol with radius 0.355
2.264 ×

1.4 ≈ 0.22 μm observed at the reference wavelength λr � 0.355 μm:

x � 2π
1.4
2.264

� 2π
r
λ
� 2π

0.355
2.264 · 1.4
0.355

� 2π
λr
λ r

λr
. (19)

As a remark, Eq. 19 states that a shorter wavelength
delivers a greater range of size parameters for a given
range of radii.

If the CRI is fixed then Eq. 19 establishes a direct connection
between the efficiencies [see Eqs. 2–4] at wavelengths λ and λr
(for simplicity, we assume λ ≥ λr) using a simple scaling in the
radius domain given by

Qp(., r, λ) � Qp (., λr
λ
r, λr). (20)

A direct connection between the efficiencies can also be expressed
in terms of integrals using a linear scaling of the integration
range as

∫rmax

rmin

Qp(., r, λ)d ln r � ∫λr
λ rmax

λr
λ rmin

Qp(., r, λr) d ln r. (21)

Equations 20 and 21 are the key properties for understanding how
this type of LUTworks and can be seen as a practical application of the
scale invariance rule (Mishchenko, 2006). Equation 21 can be verified
numerically or proved analytically with the assumption that the
efficiency Qp(., r, λ) can be approximated as

Qp(., r, λ) ≈ ∑
j�1

∞

qp,j(.)xj, (22)

where the appropriate coefficients qp,j(.) depend on the scattering
angle Θ (directional scattering) and the CRI m.

Let us directly compute and plot (see Figure 1) the absorption
efficiency Qabs(m, λ, r) � Qα(m, λ, r) − Qsca(m, λ, r) at
wavelengths 0.355 and 2.264 μm in order to provide a
graphical demonstration of Eq. 20. We will use the CRI m �
1.65 − i · 10−5 that corresponds to an almost non-absorbing
aerosol. Figure 1 shows that the absorption efficiencies at two
selected wavelengths repeat each other with a constant scaling
factor in the radius domain. The same conclusion also applies to
the other types of efficiencies too [see Eqs. 2–4]. Equation 20
offers a simple way to obtain the efficiencies at longer wavelengths
λ if the corresponding efficiency at a shorter reference wavelength
λr is already known. For example, in order to plot the absorption
efficiency at λ � 2.264 μm from 0+ to 1.4 μm radius (from point A
to point C of dashed line in Figure 1), we can substitute 1.4 μm
with 0.355

2.264 · 1.4 ≈ 0.22 μm radius and perform an affine stretch of
the precomputed efficiency at λr � 0.355 μm (from point A to
point B of solid line in Figure 1).

From Figure 1 it is reasonable to conclude that the numerical
integration over radii in Eqs. 2–4 for a given precision will require
smaller integration steps at shorter wavelengths. The oscillations
of the absorption efficiency at the wavelength 2.264 μm (see
Figure 1, dashed line) are noticeably less pronounced
compared to the oscillations seen in the efficiency at 0.355 μm
(see Figure 1, solid line). The uniform scaling transformation is
applied in the radius domain and uses only a partial range of the
efficiency precomputed at the shortest wavelength. As the
wavelength increases, the oscillations with radius become
smoother, corresponding to a stretching of the oscillations at a
shorter wavelength (see Figure 1). Smoother functions of radius
are easier to precisely integrate. Thus, it is easier to numerically
compute precise values in Eqs. 2–6 at a wavelength of 2.264 μm
compared to 0.355 μm. With this feature in mind, we can expect
that the performance of the SIR LUT in general will also improve
as the wavelength λ increases, if we choose the shortest
wavelength of interest to be the reference wavelength λr.

Figure 1 also helps to graphically illustrate Eq. 21. For
example, Eq. 21 demonstrates that integration of the
absorption efficiency at a wavelength of 2.264 μm (see
Figure 1, dashed line) in the radii range from 0.7 to 1.4 μm
will result in the same value as integration at 0.355 μm (see
Figure 1, solid line) in the range from ∼ 0.11 to ∼ 0.22 μm. Note
the logarithmic scale of the vertical axis of Figure 1 during the
visual analysis.

Theoretical reasoning supported by numerical simulations
justify choosing the shortest wavelength as the reference
wavelength λr. To accommodate existing and anticipated
future passive and active sensors, we choose λr � 0.355 μm.
Equations 20 and 21 allow us to relate the Lorenz-Mie
scattering calculations at this reference wavelength to longer
wavelengths for any PSD. In Section 4.4 we will benefit from
using this key property.

4.2 Look-Up Table Parameters
The quadratures that define the precision of the SIR LUT, its
speed and number of stored coefficients {Cp} [see Eq. 16] are now
discussed. It is clear that a reduction of stored information can
have a negative effect on the precision of the SIR LUT. At the

FIGURE 1 | Normalized absorption efficiencies at wavelengths 0.355
and 2.264 μmare related by a uniform scaling transformation which is a type of
Euclidean affinity transformation.
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same time, it is inefficient to store redundant information that
must be read and kept in RAM. The SIR LUT represents balance
between the two conflicting criteria of precision and size.

4.2.1 Quadrature of Radii Grid Bins
Let us start with the quadrature of radii {rj} that was briefly
mentioned in Section 3. Based on numerical simulations and
earlier studies (Dubovik and King, 2000; Dubovik et al., 2002a;
Dubovik et al., 2002b; Dubovik et al., 2006), we made a decision to
use 650 logarithmically equidistant grid bins to cover a particle size
range from rmin � 10−3 to rmax � 100μm: 10−31 , 1.018 × 10−32 ,
1.036 × 10−33 , 1.055 × 10−34 , . . ., 98.2649, and 100650 μm. Most of
the values are displayed after rounding. The subscripts correspond to
the index j in Eq. 11, and is provided for reference purposes.

As we discussed in Section 4.1, the computation of efficiencies
Qp(.) [see Eqs. 2–4] is made using the size parameter. A single
size parameter value corresponds to different particle radii and
wavelength pairs. If the desired radius r at wavelength λ ≥ λr is
known then the corresponding radius paired with λr in the SIR
LUT will be [see also Eq. 19]:

rλr �
λr
λ
r. (23)

The exact range of sizes should be used if the optical properties at two
different wavelengths are compared. Otherwise, the scattering
particle systems are different. Thus, if the integration in Eqs. 2–4
at an arbitrary wavelength λ is also carried out from 10−3 to 100 μm,
then the computations at different wavelengths would require the
SIR LUT to cover the different radii range:

• from 10−3 to 100 μm at λ � λr � 0.355 μm;
• from 0.355

0.41 × 10−3 ≈ 8.7 × 10−4 to ∼ 87 μm at λ � 0.41 μm;
• from ∼ 1.6 × 10−4 to ∼ 16 μm at λ � 2.264 μm.

One can see that the minimum radius at all wavelengths λ> λr
falls below the radii range covered by LUT. In practice, for typical
aerosol PSDs, this impact is expected to be small, and as the
wavelength increases, the contribution of ultrafine aerosols is
reduced. The SIR LUT supports integration over the following
radii ranges at different wavelengths:

• from 10−3 to 100 μm at λ � λr � 0.355 μm;
• from 0.41

0.355 × 10−3 ≈ 1.2 × 10−3 to ∼ 120 μm at λ � 0.41 μm;
• from ∼ 6.4 × 10−3 to ∼ 640 μm at λ � 2.264 μm.

Thus, increasing the wavelength of interest λ increases the
minimum (rmin,λ) and the maximum (rmax,λ) radii, resulting in a
larger range of covered radii. The increase in rmin,λ means that the SIR
LUT ignores nanoparticles with radii below 10−3 μm at a wavelength
of 0.355 μm and below ∼ 6.4 × 10−3 μm at 2.264 μm.Asmentioned,
the impact of this for aerosol PSDs is negligible. Scattering of light in
this regime is best described by the Rayleigh scattering (Van de Hulst,
1981; Bohren and Huffman, 1983; Mishchenko et al., 2002).

The selected reference wavelength λr and radii range result
in the SIR LUT that covers the range of size parameters x
from ∼ 0.018 to ∼ 1,770.

4.2.2 Quadrature of Scattering Angles
Another decision that affects the number of stored coefficients
{Cp} [see Eq. 16] is the choice of a finite set of scattering angles Θ
(angular quadrature). The SIR LUT includes 123 scattering angles
Θ in the range between 0+ and 180+ (see Table 1). One may use
an appropriate interpolation scheme to estimate the values of
aerosol IOPs of interest for the other scattering angles too.

We would like to emphasize that the use of this angular
quadrature helps to reduce the size of the SIR LUT and optimize
its information content. The angular quadrature near scattering
angles of 0+ and 180+ has 0.2+ spacing because the elements of the
normalized scattering matrix P [see Eq. 1] can rapidly change there
(Hansen and Travis, 1974). The rate of change in P is relatively small
between scattering angles of 10+ and 170+ that allows a coarser
angular quadrature with 2+ spacing.

The SK LUTuses an angular quadrature consisting of 181 scattering
angles with an equidistant step of 1+ (Dubovik and King, 2000;
Dubovik et al., 2002a; Dubovik et al., 2006). This step is too coarse
to precisely describe the angular change in the elements ofmatrixP [see
Eq. 1] near scattering angles of 0+ and 180+ (Hansen andTravis, 1974).

Let us demonstrate the advantage of our angular quadrature with
the help of numerical simulations. The asymmetry parameter [see Eq.
6] is a good candidate for a quantitativemetric because its computation
requires integration over the entire range of scattering angles Θ.

As example input parameters, we select the CRIm � 1.3 − i · 0.05
and a lognormal PSD with nt � 1 cm−3, rmed � 1.5 μm and σ � 2
[see Eq. 17]. These parameters are quite unrealistic for ambient
aerosols in the visible spectrum (Dubovik et al., 2002b), but we would
like to ensure that our “± 1%” requirement is fulfilled across a wide
range of scenarios. We selected this particular scenario because it is
one of the most difficult cases that we managed to find.

We perform the integration in Eq. 6 using Simpson’s rule on an
equidistant grid consisting of 10,001 scattering anglesΘ. Out of these
10,001 angles total, the values of phase function are calculated
precisely only at a subset of scattering angles, and the rest result
from quadratic interpolation. For the tests, we use 101,181 (from 0+

to 180+ with the equidistant step of 1+ as in (Dubovik and King,
2000;Dubovik et al., 2002a; Dubovik et al., 2006)), 201, . . ., and 2,001
scattering angles. The most precise calculation of the asymmetry
parameter is therefore the one integrated using a grid of 2,001
scattering angles, and we use this as the reference value. In order to
compute the values of the phase function P11(Θ,m, λ) at a
wavelength λ � 0.355 μm, the Lorenz-Mie computations are
made using the Bohren and Huffman code (Bohren and
Huffman, 1983). The integration in Eq. 2 is performed for the 2 ×
107 logarithmically equidistant radii bins in the range from 10−3 to
100 μm (see Section 4.5 for more details).

Figure 2 and Table 2 show the results of the simulations. One
can see that the value of the asymmetry parameter computed using
101, 181, and 201 of scattering angles is different bymore than 1% of
the reference value. The “ ± 1%” requirement is fulfilled for the cases
of 401 or more scattering angles (see Figure 2 and Table 2). The
requirement is also fulfilled by the LUT (see horizontal dashed line at
Figure 2 andTable 2).With this we conclude that our quadrature of
123 scattering angles (see Table 1) performs about as well as an
equidistant grid consisting of 2,001 scattering angles.
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4.2.3 Quadrature of Complex Refractive Indexes
The choice of the CRI quadrature is the last factor which must be
chosen to balance the precision of the SIR LUT against the
number of stored coefficients {Cp} [see Eq. 16]. Based on our
numerical simulations and earlier studies (Dubovik and King,
2000; Dubovik et al., 2002a; Dubovik et al., 2002b; Dubovik et al.,
2006), we decided to use 31 · 75 � 2,325 CRIs:

• 31 real parts (mR) of the CRI in the range between 1.29 and
1.65 with a step 0.012 (see Table 3);

• 75 imaginary parts (mI) of the CRI: 0, and 74
logarithmically equidistant values between 10−5 and 5 ×
10−2 (see Table 4, most of the values are shown rounded).

Sequential numbers for the real (jR in Table 3) and imaginary
(jI in Table 4) parts are provided to help navigation inside the SIR
LUT file (see Section 4.3).

4.3 Structure of Look-Up Table File
In Section 3 we described the theoretical background of the SIR
LUT and in Section 4.2 provided a justification for the selection
of quadratures that formed the actual LUT. Starting from this
section, we switch our focus on the matters related to the practical
application of the SIR LUT.

We computed the coefficients {Cp} [see Eq. 16] at a reference
wavelength λr and stored them in a file on the computer’s hard drive.
The SIR LUT file is binary and consists of a header (3,536 bytes, see
Table 5) that is followed by 31 · 75 � 2,325 data records (1,284,408
bytes per record, see Table 6) for each CRI separately (see Section
4.2.3). The total size of the file is equal to 3,536 + 2,325 · 1,284,408 �
2,986,252,136 bytes. We intentionally limited the size of the SIR LUT
file to 3 GB because the majority of modern blade servers have at least
4 GBof RAMper core. The SIR LUTfile can then be uploaded into the
memory of each core of the blade to further speed up the
computations. In the future, we plan to refine the quadratures for
the radii and CRIs when the progress in computational hardware will
allow us to increase the size of LUT file.

The header contains information defining the reference
wavelength and the quadratures for the radii, scattering angles,
and CRIs (see Table 5).

Each data record of the SIR LUT contains the sets of values {Cp}
that were computed using Eq. 16 at the reference wavelength λr �
0.355 μm (see Table 6). For the computations we used a reliable and
accurate Lorenz-Mie scattering program (Mishchenko et al., 2002;
Mishchenko, 2019). We slightly modified the program to make it

TABLE 1 | Scattering angles Θ included into the SIR LUT.

jΘ Θ jΘ Θ jΘ Θ jΘ Θ jΘ Θ jΘ Θ jΘ Θ

1 0° 19 7° 37 40° 55 76° 73 112° 91 148° 109 176°
2 0.2° 20 8° 38 42° 56 78° 74 114° 92 150° 110 176.5°
3 0.4° 21 9° 39 44° 57 80° 75 116° 93 152° 111 177°
4 0.6° 22 10° 40 46° 58 82° 76 118° 94 154° 112 177.5°
5 0.8° 23 12° 41 48° 59 84° 77 120° 95 156° 113 178°
6 1° 24 14° 42 50° 60 86° 78 122° 96 158° 114 178.2°
7 1.2° 25 16° 43 52° 61 88° 79 124° 97 160° 115 178.4°
8 1.4° 26 18° 44 54° 62 90° 80 126° 98 162° 116 178.6°
9 1.6° 27 20° 45 56° 63 92° 81 128° 99 164° 117 178.8°
10 1.8° 28 22° 46 58° 64 94° 82 130° 100 166° 118 179°
11 2° 29 24° 47 60° 65 96° 83 132° 101 168° 119 179.2°
12 2.5° 30 26° 48 62° 66 98° 84 134° 102 170° 120 179.4°
13 3° 31 28° 49 64° 67 100° 85 136° 103 171° 121 179.6°
14 3.5° 32 30° 50 66° 68 102° 86 138° 104 172° 122 179.8°
15 4° 33 32° 51 68° 69 104° 87 140° 105 173° 123 180°
16 4.5° 34 34° 52 70° 70 106° 88 142° 106 174°
17 5° 35 36° 53 72° 71 108° 89 144° 107 175°
18 6° 36 38° 54 74° 72 110° 90 146° 108 175.5°

FIGURE 2 | Example asymmetry parameter computation. The vertical
dotted line marks the result from the angular quadrature used in the SK LUT.

TABLE 2 | Computed values of the asymmetry parameter.

Number of Θ grid
bins

〈cos(m, λ)〉 Relative difference (%)

101 0.989622 1.99
181 0.960103 −1.05
201 0.960131 −1.05
401 0.967307 −0.31
601 0.969269 −0.11
801 0.969861 −0.05
/ / /

2,001. The reference value 0.970321 –

Computed from the SIR LUT 0.974039 0.38
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suitable for parallel computation of the coefficients Cp,j,λr [see Eq. 16],
but the core part of the program remained intact. We used 100,000
points over each integration range of radii [rj, rj+1] by setting the

program input parameters N � 1,000 (number of subintervals within
[rj, rj+1]) and NK � 100 (number of Gaussian division points)
(Mishchenko et al., 2002; Mishchenko, 2019). All the SIR LUT
related computations were performed on blade servers equipped
with Intel Xeon “Skylake” processors on the NASA LaRC K-Cluster.

The {C11}, {C12}, {C33}, and {C34} sets in Table 6 are two
dimensional arrays that are stored line by line, i.e., 650 lines
(corresponding to the radii quadrature, see Section 4.2.1) with
123 columns each (corresponding to the scattering angles
quadrature, see Section 4.2.2).

The beginning position in the SIR LUT file for the data record that
corresponds to a certain CRI can be computed using the sequential
numbers of the real and imaginary parts (see Section 4.2.3) as 3,536 +
1,284,408 · (75 · (jR − 1) + jI − 1) bytes. For instance, if one needs the
data record that corresponds to the CRI with real part mR � 1.362
(jR � 7) and imaginary partmI � 2.6 × 10−4 (jI � 30) then the pointer
inside of the SIR LUT file should be set at the position of 615,234,968
bytes from the beginning of file.

We also share with the community codes written in C++, Fortran,
Python and Matlab that can be used to efficiently compute all aerosol
IOPs of interest [see Eqs. 2–6] from the SIR LUT.

4.4 Usage of Look-Up Table
To make the practical use of the SIR LUT, it is necessary to
develop a way of computing the coefficients Cp,j,λ at longer
wavelengths λ using coefficients Cp,j,λr precomputed at the
reference wavelength λr. At this point, we have already
decided on reference wavelength and quadratures that define
the structure of the SIR LUT and highlighted the useful properties
of efficiencies by applying the scale invariance rule (Mishchenko,

TABLE 3 | Real parts of the CRI covered by the SIR LUT.

jR mR jR mR jR mR jR mR jR mR jR mR jR mR

1 1.29 6 1.35 11 1.41 16 1.47 21 1.53 26 1.59 31 1.65
2 1.302 7 1.362 12 1.422 17 1.482 22 1.542 27 1.602
3 1.314 8 1.374 13 1.434 18 1.494 23 1.554 28 1.614
4 1.326 9 1.386 14 1.446 19 1.506 24 1.566 29 1.626
5 1.338 10 1.398 15 1.458 20 1.518 25 1.578 30 1.638

TABLE 4 | Imaginary parts of the CRI covered by the SIR LUT.

jI mI jI mI jI mI jI mI jI mI jI mI

1 0 14 4.1×10–5 27 1.8×10–4 40 8.4×10–4 53 3.8×10–3 66 1.7×10–2
2 10–5 15 4.6×10–5 28 2.1×10–4 41 9.5×10–4 54 4.3×10–3 67 2×10–2
3 1.1×10–5 16 5.1×10–5 29 2.3×10–4 42 1.1×10–3 55 4.8×10–3 68 2.2×10–2
4 1.3×10–5 17 5.8×10–5 30 2.6×10–4 43 1.2×10–3 56 5.4×10–3 69 2.5×10–2
5 1.4×10–5 18 6.5×10–5 31 2.9×10–4 44 1.3×10–3 57 6.1×10–3 70 2.8×10–2
6 1.6×10–5 19 7.3×10–5 32 3.3×10–4 45 1.5×10–3 58 6.9×10–3 71 3.1×10–2
7 1.8×10–5 20 8.2×10–5 33 3.7×10–4 46 1.7×10–3 59 7.7×10–3 72 3.5×10–2
8 2×10–5 21 9.2×10–5 34 4.2×10–4 47 1.9×10–3 60 8.7×10–3 73 4×10–2
9 2.3×10–5 22 10–4 35 4.7×10–4 48 2.1×10–3 61 9.8×10–3 74 4.4×10–2
10 2.5×10–5 23 1.2×10–4 36 5.3×10–4 49 2.4×10–3 62 1.1×10–2 75 5×10–2
11 2.9×10–5 24 1.3×10–4 37 5.9×10–4 50 2.7×10–3 63 1.2×10–2
12 3.2×10–5 25 1.5×10–4 38 6.7×10–4 51 3×10–3 64 1.4×10–2
13 3.6×10–5 26 1.6×10–4 39 7.5×10–4 52 3.4×10–3 65 1.6×10–2

TABLE 5 | Structure of the SIR LUT header.

Description Type Size (bytes) Content

Reference wavelength (μm) Float 4 0.355
Number of radii grid bins Int 4 650
{rj} set of radii bins (μm) 650*float 2,600 See Section 4.2.1
Number of scattering angles Int 4 123
Angular quadrature {Θ} 123*float 492 See Section 4.2.2
Number of real parts Int 4 31
{mR} set of real parts 31*float 124 See Section 4.2.3
Number of imaginary parts Int 4 75
{mI} set of imaginary parts 75*float 300 See Section 4.2.3
Total 3,536

TABLE 6 | Structure of the SIR LUT data record.

Description Type Size (bytes) Content

Real part of CRI (mR) Float 4 See Section 4.2.3
Imaginary part of CRI (mI ) Float 4 See Section 4.2.3
{Cα} set 650*float 2,600 See Eqs. 4, 16
{Csca} set 650*float 2,600 See Eqs. 4, 16
{C11} set 650*123*float 319,800 See Eqs. 2, 16
{C12} set 650*123*float 319,800 See Eqs. 2, 16
{C33} set 650*123*float 319,800 See Eqs. 2, 16
{C34} set 650*123*float 319,800 See Eqs. 2, 16
Total 1,284,408
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2006). We return to theoretical derivations one last time to
complete the final assembly by collecting these fragments into
a working mechanism.

As discussed in Section 4.1, since it is the size parameter that
drives the single-scattering computations, the integration of
efficiencies at longer wavelengths can be directly expressed
through the integration of efficiencies calculated at a shorter
wavelength. Equation 21 allows us to apply a linear scaling of
the quadratic approximation range [see Eq. 12] from [rj−1, rj+1]
to [λrλ rj−1, λrλ rj+1] in order to switch in Eq. 16 from an arbitrary

wavelength λ ≥ λr to the reference wavelength λr. After
repeating the PSD quadratic approximation procedure [see
Eqs. 12–16], the coefficient Cp,j,λ in Eq. 16 can be
computed as

λr
λ
[3 ln λrλ rj−2 ln λrλ rj−1

8(Δ ln r)2 ∫λr
λ rj

λr
λ rj−1

Qp(·, r, λr)
r

d ln r

−
3 ln

λ2r
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8(Δ ln r)2 ∫λr
λ rj
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d ln r]· (24)

The common multiplier λr
λ in front of the bracket

appears in Eq. 24 to compensate the division by radius r
during each integration. If desired, one can verify the
equivalence of Eqs. 16 and 24 numerically or prove it
analytically using Eq. 22.

In practice, it is necessary to use an interpolation technique
to estimate the coefficient Cp,j,λ because in the general case the
scaled radius λr

λ rj does not coincide with any of the SIR LUT
radius quadrature points {rj} (see Sections 3 and 4.2.1). As an
option, quadratic interpolation may be used with the known
LUT values of coefficient at radius quadrature points rk−1, rk,
and rk+1:

Cp,j,λ ≈
λr
λ
[Cp,k−1,λr

(λr
λ
rj − rk)(λr

λ
rj − rk+1)

(rk−1 − rk)(rk−1 − rk+1)

+ Cp,k,λr

(λr
λ
rj − rk−1)(λr

λ
rj − rk+1)

(rk − rk−1)(rk − rk+1)

+ Cp,k+1,λr

(λr
λ
rj − rk−1)(λr

λ
rj − rk)

(rk+1 − rk−1)(rk+1 − rk)
], (25)

where the index k is generally selected to fulfill rk ≤ λr
λ rj ≤ rk+1

when the quadrature point rk−1 is available for the case λ ≥ λr and
the quadrature point rk+1 can go up to rmax � 100μm. If the index
k is found to be equal to unity then the coefficient Cp,j,λ is
computed using Eq. 25 at the radius quadrature points r1, r2,
and r3. If the scaled radius λr

λ rj is too small and not covered by the
SIR LUT at all (see discussion related to the increase of rmin,λ in
Section 4.2.1) then the coefficient Cp,j,λ vanishes. As the
wavelength of interest λ increases, the contribution from the
smallest particles is lost with the relatively minor impact.

Different interpolation techniques, instead of quadratic as in
Eq. 25, also may be applied. One should keep in mind that
quadratic interpolation provides reasonable results and requires
only nine multiplications and three divisions that can be done
quite fast considering that 650 interpolations are needed for each
aerosol IOP p [see Eq. 11].

Equation 25 offers a simple way to compute the coefficients
Cp,j,λ at longer wavelengths using the precomputed and stored
coefficients Cp,j,λr. One may skip all the mathematical theory
behind Eq. 25 as it might look complicated. In the end, the
elegance of this LUT approach allows us to exchange the
integration in Eqs. 2–4 at longer wavelengths with an
integration at a shorter reference wavelength over a range of
smaller radii.

4.5 Validation of the Scale Invariance Rule
Look-Up Table: Unit Tests
To demonstrate the improved capabilities of the SIR LUT, we will
compute the aerosol IOPs of interest [see Eqs. 2–6] using the SIR
LUT [see Eqs. 11, 25] and compare them to simulated truth
values (see Section 4.5.1).

At the beginning we set a ± 1% relative difference for
all single-scattering properties [see Eqs. 2–6] as the precision
target. The ± 1% precision shall be achieved at all the
wavelengths of interest, i.e., at {λ} � {0.355, 0.41, 0.469,
0.532, 0.555, 0.67, 0.864, 0.96, 1.064, 1.594, 1.88, 2.264} μm (see
Section 1). In Section 4.1 we anticipated that the targeted
precision would be most difficult to achieve at the shortest
wavelength, i.e. at λ � 0.355 μm, despite the fact that it is the
reference wavelength.

We compute the relative difference for the aerosol IOPs p �
{β(m, λ), sca(m, λ), α(m, λ), abs(m, λ), 〈cos(m, λ)〉} [see Eqs.
3–6] as
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δp � p − pt
pt

· 100%, (26)

where pt is the simulated truth value for the aerosol IOP p.
For the elements of the normalized scattering matrix P [see

Eq. 2] the relative difference is computed slightly differently:

δPii′(Θ) �
Pii′(Θ) − Pii′,t(Θ)
max
Θ

∣∣∣∣Pii′,t(Θ)
∣∣∣∣ · 100%, (27)

where Pii′,t(Θ) is the simulated truth of the normalized scattering
matrix element Pii′(Θ). We compare the difference between the
SIR LUT and the simulated truth values with the maximum
absolute simulated truth value because at some scattering angles
Θ the value of Pii′,t(Θ) element may be close to zero or vanish for
natural reasons. It is important to reproduce the shape of Pii′,t(Θ)
functions around their peaks, which for aerosols mainly occur at
scattering angles Θ close to 0+ and 180+ (see Section 4.2.2). By
contrast, a 1% disagreement when the absolute value of the
element is small tends to be more acceptable for our purposes
of modeling lidar and polarimeter observables.

4.5.1 Simulated Truth
It is now time to clarify the aerosol IOPs {pt, Pii′,t(Θ)} that we
consider to be the simulated truth for comparisons in the unit
tests. To compute the true IOPs {pt, Pii′,t(Θ)}, we have to decide
which CRIs, PSDs, and scattering angles Θ, as well as the
integration range [rmin, rmax] and integration settings to use in
Eqs. 2–6.

During retrievals of aerosol microphysical properties using
real lidar and polarimeter data, the values of the CRIs will not
necessarily coincide with the CRI quadrature of the SIR LUT (see
Section 4.2.3). A two-dimensional interpolation scheme is used
to obtain the off-CRI-grid values of aerosol IOPs {p, Pii′(Θ)}
using several values of the same IOP estimated using the LUT at
CRI grid points. We recommend the use of quadratic
interpolation [see Eq. 25] in two dimensions since we found it
to be fast and reliable.

In the unit tests we shall focus on the off-grid CRIs that
are covered but not directly included into the SIR LUT (see
Section 4.2.3) and that are realistic from the perspective
of ambient aerosols (Dubovik et al., 2002b). Keeping this in
mind, we selected to use the set consisting of 18 · 101 � 1,818
CRIs: 18 real parts (mR) of the CRI in the range between 1.31 and
1.65 with a step of 0.02, and 101 imaginary parts (mI) of the CRI
consisting of 0, and 100 equidistant values between 2.5 × 10−4 and
0.04975 with a step of 5 × 10−4. Among these 1,818 CRIs there are
six that form a subset {m} � {1.35, 1.41, 1.47, 1.53, 1.59, 1.65} that
intersects with the CRI quadrature of the SIR LUT (see Section
4.2.3). It is reasonable to expect high precision of the SIR LUT at
CRIs ∈ {m}. We will use this property of the {m} subset as an
additional benchmark test to help evaluate the quality of our
unit tests.

Let us use a monomodal lognormal distribution (see Section
3.1) as the function n(r) in Eqs. 2–6 to simulate an ambient
aerosol PSD (Kolmogorov, 1941; Seinfeld and Pandis, 2006). The
count median radius rmed [see Eq. 18] in our unit tests will vary

from 0.075 to 1.501 μm with a constant step of 0.002 μm (for a
total of 714 values). Twelve geometric standard deviations σ [see
Eq. 18] in the range from 1.35 to 2.01 with a constant step of 0.06
will accompany each median radius. It is enough to consider a
single total number concentration nt � 1 cm−3 [see Eq. 18] to
evaluate relative differences in the single-scattering properties.
These 714 · 12 � 8,568 PSDs cover a wide range of aerosol size
distributions (Dubovik et al., 2002b).

Thus, the total number of CRI–PSD unit tests is equal to
1,818 · 8,568 � 15,576,624 at each wavelength of interest {λ}.

Recall from Section 4.2.2, the SIR LUT uses a quadrature of
123 scattering angles that precisely represents the aerosol
asymmetry parameter as well as equidistant quadratures with
many more angles. Therefore, we use this scattering angle
quadrature in our unit test dataset as well. Let us compute the
simulated truth elements Pii′,t(Θ) of normalized scattering
matrices [see Eq. 1] for the same angular quadrature.

Putting it all together, we track 5 + 4 · 123 � 497 relative
differences [see Eqs. 26, 27] of aerosol IOPs [see Eqs. 2–6]
with a ± 1% precision target.

For all wavelengths of interest let us compute the simulated
truth {pt, Pii′,t(Θ)} by integrating over the radius range [rmin �
0.001 μm, rmax � 100 μm] that the SIR LUT uses at a wavelength
of 0.355 μm (see Section 4.2.1). This radius integration range
covers themajority of ambient fine and coarse mode aerosol PSDs
(Dubovik et al., 2002b). With nanoparticles included into
integration at all wavelengths, we can evaluate the losses of
information about nanoparticles by the SIR LUT with the
increase of wavelength (see discussion related to the increase
of rmin,λ in Section 4.2.1).

The only remaining decision is how many radius
quadrature points are used if Simpson’s rule is applied to
the numerical integration in Eqs. 2–6. The absorption
coefficient at λ � 0.355 μm is an IOP that can help us make
this decision. In Section 4.2.1 we selected the CRI m � 1.65 −
i · 10−5 as an example where the absorption efficiency oscillates
with an amplitude exceeding two orders of magnitude (see
Figure 1, solid curve). Such highly oscillatory functions
require a very narrow integration step to produce a precise
result. For such cases, if we increase the number of
logarithmically equidistant radii bins by factor of ten, we
expect the computed absorption coefficient to converge and
the relative difference to decrease and approach zero. We set
the parameters of the aerosol PSD to nt � 1 cm−3, rmed � 0.7 μm
and σ � 1.35 [see Eq. 18].

To compute the simulated truth values, the Lorenz-Mie single-
scattering calculations were performed using the well-established
Bohren and Huffman program (Bohren and Huffman, 1983). As
a reminder, the SIR LUT coefficients (see Section 4.3) were
computed using the Mishchenko et al. program (Mishchenko
et al., 2002; Mishchenko, 2019). By cross-checking the two
Lorenz-Mie programs we achieved a high level of confidence
in the unit tests.

4.5.2 Results of the Unit Tests
Table 7 lists the results of the numerical integration. As the
number of radius quadrature points increases, the value of the
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absorption coefficient converges, as expected. After the number of
points reaches 105, the ± 1% precision level is achieved, but even
more points are needed to converge to the value that would be
considered the simulated truth. The relative difference between
the 107 and 2 × 107 radius quadrature points is close to numerical
zero, which is the best we can expect in terms of convergence.

The absolute value of the absorption coefficient in this test is
small because the imaginary part of CRI is very close to zero. We
intentionally selected this almost non-absorbing aerosol because
during the SIR LUT development stage we experienced the most
difficulties in achieving ± 1% precision for the low absorbing
particles.

Based on Table 7, we made a decision to compute all the
simulated truth aerosol IOPs {pt, Pii′,t(Θ)} [see Eqs. 2–6] by
applying Simpson’s rule using 2 × 107 logarithmically equidistant
radius quadrature points in the range from 10−3 to 100 μm.Wemay
have to use even more quadrature points if, in the future, the SIR
LUT is extended to havemore imaginary parts of the CRI between 0
and 10−5. One can see that solid curve in Figure 1 has multiple
spikes at least two orders of magnitude from the basic trend. For
imaginary parts below 10−5 we expect to see efficiencies that are
even more oscillatory compared to the solid curve of Figure 1.

Moving further, we computed the simulated truth values
for all the aerosol IOPs [see Eqs. 2–6] at twelve wavelengths
{λ} and compared them [see Eqs. 26, 27] to the corresponding
LUT values [see Eqs. 11, 25]. The targeted ± 1% precision
level was achieved in all cases except for the P12(Θ) element
of the normalized scattering matrix, which turned out to be
the most difficult aerosol IOP to tabulate. All the other
aerosol IOPs were computed using the SIR LUT within the
targeted precision.

Figures 3, 4 and Table 8 show the details of the CRI–PSD unit
tests at two minimum wavelengths of interest that lead to a
relative error [see Eq. 27] larger than ± 1% for the element
P12(Θ). Panels (A) and (B) of Figures 3, 4 detail the locations of
the problematic PSDs in terms of median radius and geometric
standard deviation (A), and effective radius and effective variance
(B). Panel (C) of Figures 3, 4 depicts the locations of problematic
CRIs, and panel (D) provides the histograms of relative
differences for only the unit tests that failed to reach the 1%
precision.

One can see that the problematic PSDs describe coarse mode
aerosols with an effective radius exceeding 3.5 μm and an effective
variance exceeding 0.45 (see panel (B) of Figures 3, 4). These
effective radii and variances correspond to large aerosols with
sizes that are sparsely covered by our logarithmically equidistant
distributed set {rj} of radius quadrature points (see Sections 3 and
4.2.1). All the problematic CRIs have an imaginary part around
zero (see panel (C) of Figures 3, 4). We thus expect that the
Q12(Θ,m, λ � 0.355μm, r) directional scattering efficiency for
small imaginary parts oscillates even more vigorously than the
absorption efficiency (see solid curve of Figure 1). If we find it
necessary to improve the precision of P12(Θ), in the next version
of the SIR LUT we will need to have more radius quadrature
points M (see Section 4.2.1), denser coverage of imaginary parts
of CRI around zero (see Section 4.2.3), and possibly use
additional integration points to compute the values of

simulated truth and the SIR LUT coefficients [see Eq. 16]. The
current version of the SIR LUT allows us to estimate the P12(Θ)
element of the normalized scattering matrix to within ± 2.5%
(see panel (D) of Figures 3, 4 and Table 8).

Let us point out that panel (C) of Figures 3, 4 is missing the
points corresponding to the subset {m} mentioned earlier.
Interestingly, the CRI point (1.41, 0) ∈ {m} is absent from
panel (C) but two of its closest neighbors (1.39, 0) ∉ {m} and
(1.43, 0) ∉ {m} are marked as the problematic CRIs. Intuition
suggests that the CRI point between those two also has a potential
to be problematic. We expect to have the highest precision of the
SIR LUT at the points of the CRI quadrature and one of them is
the point (1.41, 0) ∈ {m}, which explains its absence from panel
(C). We consider this feature to be an additional indicator of
proper behavior by the SIR LUT.

Panel (D) of Figures 3, 4 show the histograms of P12(Θ) relative
differences [see Eq. 27] for the problematic CRI–PSD unit tests out

TABLE 7 | Computed values of the aerosol absorption coefficient.

Number of radius
quadrature points

Abs (Mm-1) Relative difference (%)

103 0.00175102 −5.135
104 0.00208741 13.388
105 0.00184286 0.104
106 0.00184106 0.007
107 0.00184094 ∼0
2×107. The simulated truth value 0.00184094 –

Computed from the SIR LUT 0.00183823 −0.147

FIGURE 3 | Outliers in P12(Θ) computations from the SIR LUT at λ �
0.355 μm. Description of labels is given in text.
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of 15,576,624 total tests spanning the entire scattering angle
quadrature consisting of 123 angles (see Section 4.2.2). The ± 1%
precision target was not achieved 1,494 times at a wavelength of
0.355 μm (7.8 × 10−5%; see Figure 3D and Table 8) and 529 times
at 0.41 μm (2.8 × 10−5%; see Figure 4D and Table 8). In Section
4.1 we anticipated improvement in the SIR LUT precision as the
wavelength increases and Figures 3, 4 together with Table 8
confirm this behavior. The trend of a reduction in the number of
problematic cases continues as the wavelength increases and the
number drops to zero at 0.532 μm.

To increase confidence in the precision of the SIR LUT, we
conducted an additional test using 1,000,000 random
λ–CRI–PSD unit tests. A uniform random number generator
provided evenly distributed values of wavelength λ in the range
from 0.355 to 2.264 μm, count median radius rmed from 0.075 to
1.5 μm, geometric standard deviation σ from 1.35 to 2.01, real

part of the CRI mR from 1.31 to 1.65, and imaginary part of the
CRI mI from 0 to 0.05. Using these random inputs, we computed
the simulated truth values for all the aerosol IOPs [see Eqs. 2–6]
and compared them to the corresponding SIR LUT values [see
Eqs. 11, 25]. The ± 1% precision was not achieved in eleven cases
for the aerosol absorption coefficient and once for the P12(Θ)
element of the normalized scattering matrix. All these cases have
an imaginary part of the CRI between 0 and 10−5. Qualitatively,
the assessment is very similar to what is shown in Figures 3, 4.

With the presented results of numerical simulations, we
conclude that the performance of the SIR LUT for all the
aerosol IOPs of interest is precise to within ± 1% except for a
few cases where P12(Θ) is within ± 2.5%. The impact of the
precision of P12(Θ) on polarimeter observables will be explored
in Section 4.7.

4.6 Validation of the Spherical Kernels
Look-Up Table: Unit Tests
An important topic to consider is the precision of the SK LUT that
is currently in use and served as the inspiration for the SIR
LUT (Dubovik and King, 2000; Dubovik et al., 2002a; Dubovik
et al., 2006). It is first necessary to understand what improvements,
if any, are achieved using quadratic approximation of the aerosol
PSD [see Eq. 12] and by the cost of increasing the number of stored
coefficients (see Sections 4.2–4.3). We will also provide more
details on the aerosol lidar backscatter and extinction
coefficients. For the other aerosol IOPs we provide histograms
with relative differences. It is sufficient to explore only the 0.355
and 0.532 μm wavelengths to study if the precision of the SK LUT
also improves as the wavelength increases. For brevity, we skip the
wavelength of 1.064 μm that is also used by the HSRL-2
instrument. The relative difference comparisons are made using
the same simulated truth values for the 15,576,624 unit tests that
are described in Section 4.5.

Figures 5–10 and Table 9 show the results of comparisons.
Each dot in the panels (A–C) of Figures 5–8 indicates that ± 1%
relative difference was not achieved for at least one HSRL-2
UV–VIS observable for a given CRI or PSD. The histograms in
panel (D) of Figures 5–8 and all panels of Figures 9, 10 plot the
distribution of relative differences [see Eqs. 26, 27] that are
greater than ± 1%.

FIGURE 4 | Outliers in P12(Θ) computations from the SIR LUT at λ �
0.41 μm. Description of labels is given in text.

TABLE 8 | Overview of the SIR LUT performance.

IOP λ= 0.355μm λ= 0.41 μm

Min Max Accuracy Outliers Min Max Accuracy Outliers

(%) (%) (%) Number (%) (%) (%) Number

β −0.63 0.81 −5×10–2 0 −0.58 0.62 −5×10–2 0
sca −10–2 5×10–3 −3×10–3 0 −10–2 5×10–3 −3×10–3 0
α −4×10–3 5×10–3 5×10–5 0 −4×10–3 5×10–3 −7×10–5 0
abs −5×10–2 10–2 5×10–3 0 −4×10–2 10–2 5×10–3 0
〈cos〉 −2×10–3 4×10–3 10–3 0 −2×10–3 4×10–3 10–3 0
P11 −8×10–3 10–2 −2×10–4 0 −8×10–3 10–2 3×10–4 0
P12 −2.24 1.59 3×10–4 1,494 −1.66 1.17 3×10–4 529
P33 −8×10–3 10–2 3×10–4 0 −8×10–3 10–2 3×10–4 0
P34 −0.15 0.09 3×10–4 0 −0.12 0.07 4×10–4 0
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In this test of the SK LUT, we found that the backscatter
coefficient at 0.355 μm had the worst accuracy and precision (see
Figure 5 and Table 9). The ± 1% relative difference was not
achieved 13,473,394 times at a wavelength of 0.355 μm (86.5%)
and 12,094,591 times at 0.532 μm (77.65%). The relative
differences of HSRL-2 UV–VIS observables are within ± 35%
at 0.355 μm (see Figure 5D and Table 9) and ± 31% at 0.532 μm
(see Figure 7D and Table 9). The relative difference also
improves as the wavelength increases as we anticipated in
Section 4.1 for this type of LUT, and which we have already
seen for the SIR LUT in Section 4.5. The improvement is
relatively minor and every CRI and PSD was found to result
in a computed lidar backscatter coefficient with a relative
difference of greater than ± 1% at least once (see panels
(A–C) of Figures 5, 7).

All four relative difference histograms (see panel (D) of
Figures 5–8) of the HSRL-2 UV–VIS observables are
asymmetric, and indicate a tendency of the SK LUT to
overestimate the HSRL-2 observables. It is unexpected to see
an overestimation here, because of the significant difference in the
integration range for radius. We computed the simulated truth
values with the integration range up to rmax � 100 μm [see Eqs. 3,
4]. By contrast, the SK LUT stops at ∼ 33.9 μm in terms of
particle radius (Dubovik and King, 2000; Dubovik et al., 2002a;
Dubovik et al., 2006). The information between ∼ 33.9 and
100 μm is lost, and that naturally should lead to
underestimations. The reason for systematic overestimates is
unknown but will be investigated separately.

Compared to the lidar backscatter coefficient, the accuracy
and precision of the extinction coefficient are noticeably better
(see Figures 6, 8 and Table 9). The ± 1% relative difference was
not achieved 1,330,281 times at a wavelength of 0.355 μm (8.54%)
and 2,029,788 times at 0.532 μm (13.03%). The relative
differences are within ± 3% at both 0.355 (see Figure 6D and
Table 9) and 0.532 μm (see Figure 8D and Table 9). It is
unexpected to see that the SK LUT precision for the
extinction coefficient degrades with the increase of wavelength,
but the interesting feature is that degradation appears to be
approximately proportional to the scaling factor 0.532

0.355 ≈ 1.5.
The same scaling factor of ∼ 1.5 can be noticed in terms of
the effective radius too. The estimations with SK LUT show
precision issues for PSDs with effective radius up to 1.2 μm at
wavelength 0.355 μm and up to 1.8 μm at 0.532 μm (see panel (B)
of Figures 6, 8). Most probably, this decrease in precision
happens because of features specific to the extinction
efficiencies that are amplified by the fact that the SK LUT has
only 41 radius quadrature points (Dubovik and King, 2000;
Dubovik et al., 2002a; Dubovik et al., 2006) compared to 650
for the SIR LUT (see Section 4.2.1). It is known that extinction
efficiencies are the most oscillatory for the values of the size
parameter x ≥ 10 (Van de Hulst, 1981; Bohren and Huffman,
1983; Mishchenko et al., 2002). As the size parameter increases,
the extinction efficiencies asymptotically approach a constant
value. As a result, it is sufficient to use fewer radius quadrature
points to characterize the extinction efficiency function for PSDs
of larger particles; this leads to more precise extinction
coefficients for coarse mode aerosols by the SK LUT.

The accuracy and precision of the SK LUT for the
absorption coefficient (see panel (A) of Figures 9, 10 and
Table 9) and all the four elements of the normalized
scattering matrix (see panels (C–F) of Figures 9, 10 and

FIGURE 5 | Outliers in β355 computations from the SK LUT. Description
of labels is given in text.

FIGURE 6 | Outliers in α355 computations from the SK LUT. Description
of labels is given in text.
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Table 9) also degrade as the wavelength increases. Only the
P12(Θ) element has a fairly symmetric histogram of
relative differences (see panel (D) of Figures 9, 10).
Panels (C–F) of Figures 9, 10 and Table 9 reflect the
results of comparisons that were done only at 101

scattering angles which are common between the angular
quadratures of the SIR LUT (see Section 4.2.2) and the SK
LUT (Dubovik and King, 2000; Dubovik et al., 2002a;
Dubovik et al., 2006).

One can see that the degradation with increasing
wavelength in the relative difference of the aerosol IOPs is a
general feature of the SK LUT. We do not plot the results of
comparisons for the third HSRL-2 wavelength at 1.064 μm for
brevity, but the relative difference further degrades compared
to 0.532 μm. We believe that it is related to the use of only 41
radius quadrature points, which is most probably not enough
to fulfill the conditions of Nyquist–Shannon–Kotelnikov
sampling theorem, which states that twice as many
quadrature points are needed compared to the oscillation
frequency (Lüke, 1999).

In summary, the new SIR LUT significantly improves upon the
precision of the SK LUT at a cost of a factor of ninety in computer
RAM. We recommend using the improved SIR LUT to model
lidar and polarimeter observables from high precision
instruments.

FIGURE 7 | Outliers in β532 computations from the SK LUT. Description
of labels is given in text.

FIGURE 8 | Outliers in α532 computations from the SK LUT. Description
of labels is given in text.

FIGURE 9 |Overview of the SK LUT outliers at λ � 0.355 μm. Description
of labels is given in text.
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4.7 Validation of the Scale Invariance Rule
and Spherical Kernel Look-Up Tables With
Stokes Parameters
As a final test, let us compute and compare the Stokes parameters of
scattered light for a selection of simulated cases.We will focus on the

Stokes parameters I, Q, U, and the degree of linear polarization
DLP � �������

Q2 + U2
√

/I (Van de Hulst, 1981; Bohren and Huffman,
1983; Mishchenko et al., 2002). The Stokes parameters will be
computed at the top of the atmosphere using the Advanced
Doubling-Adding code for the Earth’s atmosphere including
molecular scattering (Hansen and Travis, 1974; Stamnes et al.,
2018). We will consider 3,024 cases that are formed by seven
real parts (from 1.35 to 1.65 with a step 0.05), four imaginary
parts (0, 0.001, 0.005, and 0.03) of the CRI, three fine (reff ,f � 0.1, 0.2,
and 0.3 μm) and coarse mode (reff ,c � 0.9, 1.8, and 3.6 μm) effective
radii coupled with single fine (]eff ,f � 0.3) and coarse (]eff ,c � 0.6)
mode effective variances [see Eq. 18], accompanied by four fine
mode (0.04, 0.08, 0.3, and 0.6) and three coarsemode (0.04, 0.08, and
0.16) atmospheric optical depths.

We continue targeting ± 1% precision for all the Stokes
parameters and use Eq. 27 as a measure because I, Q, U, and
DLP depend on the scattering angle Θ. Let us use the extreme
wavelengths of {λ}, i.e., 0.355 and 2.264 μm, to reveal the
λ-dependency in the quality of performance of LUTs.

We computed 160 scattering angles Θ between −65+ and 65+

for the 3,024 cases, resulting in 483,840 test points, andwe compared
the simulated truth values of I, Q, U, and DLP for each of them to
the corresponding values computed with each of the two LUTs.
We found that for all 483,840 test values the SIR LUT reached the
± 1% precision for all the Stokes parameters. The SK LUT
demonstrated precision better than ± 1% only at wavelength
λ � 0.355 μm.

Figure 11 shows the results of comparisons for the SK LUT at
λ � 2.264 μm, but again only for the tests that failed to reach the
1% precision. The ± 1% test failed 642 times for I (0.13%; see
panel (A) of Figure 11), 6,663 times for Q (1.38%; see panel (B) of
Figure 11), 7,817 times for U (1.62%; see panel (C) of Figure 11),
and 8,533 times for DLP (1.76%; see panel (D) of Figure 11).
Figure 11 confirms that degradation with increasing wavelength
is a general feature of the SK LUT and the increase of wavelength
has negative impact on the precision of estimations.

With these results we conclude that the performance of the SIR
LUT for polarimeter observables stays within ± 1% without
degrading at increasing wavelength. Also, as another conclusion,
it is interesting to see that precise computation of Stokes parameters
requires fewer radii grid bins compared to the elements of the
normalized scattering matrix and lidar observables.

FIGURE 10 | Overview of the SK LUT outliers at λ � 0.532 μm.
Description of labels is given in text.

TABLE 9 | Overview of the SK LUT performance.

IOP λ= 0.355μm λ= 0.532 μm

Min Max Accuracy Outliers Min Max Accuracy Outliers

(%) (%) (%) Number (%) (%) (%) Number

β −22.1 34.1 6.05 13,473,394 −16.5 30.6 4.49 12,094,591
sca −2.5 3.3 0.99 10,018,378 −2.1 3.3 0.93 10,432,117
α −1.8 2.6 0.67 1,330,281 −1.8 2.6 0.62 2,029,788
abs −0.7 90.8 1.04 1,303,511 −0.7 91.8 1.09 1,870,540
〈cos〉 −1.2 1.4 −0.39 8,326 −1.2 3.7 −0.35 44,104
P11 −3.5 4.1 −0.02 10,942,269 −3.7 4.3 −0.03 18,754,373
P12 −75.4 80.2 −0.15 99,240,602 −80.7 79.7 −0.22 133,411,322
P33 −3.5 4.1 −0.02 10,937,936 −3.7 4.3 −0.03 18,744,124
P34 −4.7 8.1 −0.03 21,940,573 −4.7 27.8 −0.04 29,401,117
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5 CONCLUSION

The SIR LUT provides an improved aerosol inherent optical
properties LUT that can be used with advanced lidar and
polarimeter aerosol microphysical retrievals as well as other
remote sensing and in situ applications. Depending on the
aerosol IOP, the SIR LUT improves precision by up to 34%
compared to the SK LUT. The design of the LUT takes into
account mathematical features of Lorenz-Mie scattering theory
and can be applied to a range of wavelengths starting at 0.355 μm
and a range of aerosol PSDs. The theoretical background of the
LUT design was published as a minor part of earlier studies. In
this contribution we attempted to provide a complete and
thorough description of the most important mathematical
aspects of the SIR LUT.

We introduced several theoretical and practical improvements
to the existing LUT approach. We implemented quadratic
approximation of the aerosol PSD since we found it improves
precision over linear approximation. The new irregular angular
quadrature allows us to use fewer scattering angles and improves
precision at the same time. The range of size parameters was
widened and now covers values from ∼ 0.018 to ∼ 1,770. Due to
our access to superior computational hardware, we also increased
the number of radius quadrature points to the extent that it fulfills
the conditions of Nyquist–Shannon–Kotelnikov sampling
theorem. The larger number of radius quadrature points solves
the SK LUT’s issue that causes degraded accuracy and precision of
the aerosol IOPs as the wavelength increases.

For verification, we used two reliable Lorenz-Mie single-
scattering programs developed by two independent and well
established scientific groups in the field of light scattering by
small particles. One program was used to compute the
coefficients of the SIR LUT itself at the reference wavelength of
0.355 μm. The other program was used to compute the simulated
truth data at twelve wavelengths of interest via direct integration of
the aerosol PSD using Simpson’s rule. Aerosol IOPs computed from
the SIR LUT are precise to within ± 1% with the exception that
P12(Θ) is precise to within ± 2.5% when the imaginary part of the
CRI is below 10−5. As anticipated, the shortest tested wavelength
delivers the least precise results in terms of aerosol IOPs and the
precision of the SIR LUT improves as the wavelength increases.
Further improvements in the precision of IOPs will likely require
more radius quadrature points and denser coverage of the CRI that
will increase the size of the SIR LUT.

Overall, the precision of aerosol IOPs computed from the SIR
LUT is nearly equivalent to direct integration of the PSD using
Simpson’s rule with 2 × 107 of logarithmically equidistant radius
quadrature points from 10−3 to 100 μm, but can be used to make
calculations about 1,000 times as quickly. The SIR LUT and
examples of its use in several programming languages including
C++, Fortran, Matlab, and Python are publicly available for the
benefit of community at the web page https://science.larc.nasa.gov/
polarimetry.
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FIGURE 11 | Selected Stokes parameters. Overview of the SK LUT
outliers at λ � 2.264 μm. Description of labels is given in text.
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