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Accurately monitoring forest fire activities is critical to understanding carbon dynamics and
climate change. Three-dimensional (3D) canopy structure changes caused by fire make it
possible to adopt Light Detection and Ranging (LiDAR) in burned forest classification. This
study focuses on the effects of spatial resolution when using LiDAR data to differentiate
burned and unburned forests. The National Aeronautics and Space Administration’s
(NASA) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission provides LiDAR
datasets such as the geolocated photon data (ATL03) and the land vegetation height
product (ATL08), which were used in this study. The ATL03 data were filtered by two
algorithms: the ATL08 algorithm (ILV) and the adaptive ground and canopy height retrieval
algorithm (AGCH), producing classified canopy points and ground points. Six typical
spatial resolutions: 10, 30, 60, 100, 200, and 250mwere employed to divide the classified
photon points into separate segments along the track. Twenty-six canopy related metrics
were derived from each segment. Sentinel-2 images were used to provide reference land
cover maps. The Random Forest classification method was employed to classify burned
and unburned segments in the temperate forest in California and the boreal forest in
Alberta, respectively. Both weak beams and strong beams of ICESat-2 data were included
in comparisons. Experiment results show that spatial resolution can significantly influence
the canopy structures we detected. Classification accuracies increase along with coarser
spatial resolutions and saturate at 100 m segment length, with overall accuracies being
79.43 and 92.13% in the temperate forest and the boreal forest, respectively. Classification
accuracies based on strong beams are higher than those of using weak beams due to a
larger point density in strong beams. The two filtering algorithms present comparable
accuracies in burned forest classification. This study demonstrates that spatial resolution is
a critical factor to consider when using spaceborne LiDAR for canopy structure
characterization and classification, opening an avenue for improved measurement of
forest structures and evaluation of terrestrial vegetation responses to climate change.
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INTRODUCTION

Forests store a huge amount of carbon and play a critical role in
controlling global carbon balancing and cycling (Rödig et al., 2019).
However, increased frequency and extent of fires are a growing
concern (Balch et al., 2017; Cattau et al., 2020; Liu and Yang, 2020)
and threaten the sustainability of terrestrial ecosystems. Fires have
become more severe and destructive in response to a warming
climate (Schoennagel et al., 2017), with many examples such as the
2018 California wildfire, the 2019 Amazon forest fire, and the 2020
Australia wildfire. These extreme fire events emphasize the necessity
of fire occurrence monitoring and forecasting over space and time
(Fusco et al., 2019). Classifying burned forests is crucial to forest
dynamics monitoring and fire risk analysis (Hawbaker et al., 2020).
Burned forest data are also employed for the estimation of terrestrial
ecosystems responses to climate change (Aragão et al., 2018), and the
projection of future climate. Accurately classifying burned forests
serves as a basis for the analysis of monitoring carbon emissions and
understanding the effects of climate change on ecosystems.

Remotely sensed data have been adopted for regional or global
burned forest classification for decades (Chuvieco et al., 2019). Fire-
induced changes such as vegetation removal, canopy thinning, and
charcoal deposition, cause spectral shifts, which favor the application
of multispectral remote sensing images. Spectral indices like
differenced Normalized Burn Ratio (dNBR) index (Fraser et al.,
2017), classification methods like Random Forest (Gibson et al.,
2020), and time-series analysis method (Roteta et al., 2019) are
commonly used in fire monitoring. However, optical images are
limited in capturing three-dimensional (3D) vegetation structures,
which makes it difficult to obtain under canopy fire information and
canopy height measurements. Light detection and ranging (LiDAR)
offers an opportunity to provide 3D canopy structures, which is an
essential complement to existing image-based approaches in burned
area mapping (Liu et al., 2020). Airborne LiDAR has been applied for
classifying fire severity and forest fuel types with good accuracy (Wang
and Glenn, 2009; Montealegre et al., 2014). Wang and Glenn (2009)
mapped fire severity at 5m spatial resolution based on height
differences of pre- and post-fire airborne LiDAR data with an
overall accuracy of 84%. Montealegre et al. (2014) employed a
logistic regression model to classify forest fires at 25m spatial
resolution based on post-fire airborne LiDAR data, producing an
accuracy of up to 85.5%. Garcia et al. (2017) integrated post-fire
airborne LiDAR data and Landsat images to estimate consumed
biomass at 30m spatial resolution. Fernandez-Manso et al. (2019)
combined Hyperion data and airborne LiDAR data to analyze burn
severity in Mediterranean forests at 30m spatial resolution. Although
airborne LiDAR captures detailed vegetation structures with high
accuracy, the application over large areas is constrained due to
high expenses and large data volumes associated with data
acquisition and processing.

Spaceborne LiDAR is instrumental for global monitoring with
fixed footprint and revisit time (Popescu et al., 2018;
Neuenschwander and Pitts, 2019), providing large coverage and
repeatable observations. National Aeronautics and Space
Administration’s (NASA) first Ice, Cloud, and land Elevation
Satellite (ICESat) mission, which carried the Geoscience Laser
Altimeter System (GLAS), launched in January 2003 and

stopped operation in October 2009. The footprint and the
sampling distance of GLAS beams were 65 and 170m,
respectively, with a wavelength of 1,064 nm (Zwally et al., 2002).
GLAS recorded backscattered energy with a full-waveform
measurement for each footprint. The waveform data were used
to evaluate fire disturbance in Alaska forests (Goetz et al., 2010).
Moreover, García et al. (2012) used GLAS data to characterize
canopy fuels in southern forests in the United States. However, the
footprint of ICESat is coarse and the samples are sparse, which limit
the acquisition of finer 3D details. NASA’s Global Ecosystem
Dynamics Investigation (GEDI), a current full-waveform lidar
mission, provides significant improvements in the footprint size
(25 m) and the sampling distance (60 m) at a wavelength of
1,064 nm (Duncanson et al., 2020). However, GEDI only collects
data between 51.6° North and 51.6° South, which limits its
application to ecoregions in higher latitudes.

NASA’s Ice Cloud and land Elevation Satellite-2 (ICESat-2)
mission, launched in September 2018 with the Advanced
Topographic Laser Altimeter System (ATLAS) (Leigh et al.,
2015), is a promising solution to the drawbacks of the initial
ICESat mission. ATLAS, a photon counting LiDAR with a 14m
footprint and the along track sampling distance of 0.7 m, is sensitive
to a single photon level (Popescu et al., 2018). ATLAS emits three
pairs of beams with a wavelength of 532 nm. Each pair contains a
strong beam and a weak beam distinguished by a designed energy
ratio of 4:1. The ICESat-2 mission provides datasets like the
geolocated photon data (ATL03), which comprises precise
latitude, longitude and elevation of each photon point where a
photon interacts with land surface. Some photon filtering algorithms
like an adaptive ground and canopy height retrieval algorithm
(Popescu et al., 2018) and ICESat-2 land and vegetation product
algorithm (Neuenschwander and Pitts, 2019) were created to remove
noise and retrieve ground and canopy photon points in ATL03.
Neuenschwander and Pitts (2019) produced the Land and
Vegetation height product (ATL08) based on the classified
ATL03 photon points. The ATL08 product, with a nominal
spatial resolution of 100m by 14m, provides various canopy and
terrain related metrics in each segment such as mean canopy height,
max canopy height, canopy openness, and the number of canopy
points. Liu et al. (2020) leveraged ATL08 data to classify burned
forests along ICESat-2 ground tracks with an overall accuracy of up
to 83%. Information on the vertical structure of burned and
unburned segments is useful for scaling up canopy characteristics
related to fire damage, fire risk, and fire-caused carbon emissions.

Previous studies were focused on a specific spatial resolutionwhen
using LiDAR data in fire analysis, e.g., 5, 30, and 100m. However, it
must be noticed that spatial resolution has significant impacts on land
cover classification (Roth et al., 2015) and canopy structure
characterization (Gwenzi et al., 2016). Reese et al. (2002)
estimated forest parameters like wood volume with Landsat data
and found that the accuracy was better over larger areas (e.g., 19
hectares) than at the pixel level. Moreover, the relationship between
spectral data and leaf area index was better based on Moderate
Resolution Imaging Spectroradiometer (MODIS) data than using
Landsat data (Cohen et al., 2003). Roth et al. (2015) classified species
distribution with Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) data at 20, 40, and 60m spatial resolutions, concluding that
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coarser spatial resolution contributes to higher accuracy. Gwenzi et al.
(2016) compared the accuracies of 14, 25, and 50m segment lengths
when using simulated ICESat-2 photon counting data to depict
canopy height, highlighting that 25m is a good choice. Yet, few
studies have fully investigated the effects of spatial resolution when
classifying burned forests with LiDAR data.

In this study, we sought to analyze the effects of spatial
resolution on burned forest classification based on ICESat-2
photon counting data. ATL03 data from typical forests, the
temperate forest in California and the boreal forest in Alberta,
were filtered by two algorithms, the adaptive ground and canopy
height retrieval algorithm (hereafter, AGCH) and the ICESat-2
land and vegetation product algorithm (hereafter, ILV). Twenty-six
canopy related metrics were calculated based on filtered photon
points at different spatial resolutions, i.e. 10, 30, 60, 100, 200, and
250 m. The Random Forest method was leveraged to classify
burned forests along ICESat-2 ground tracks. Sentinel-2 images-
derived landcover maps were adopted to avoid interference of
different land cover types. The main goal was to investigate the
effects of spatial resolution on burned forest classification using
LiDAR data. Our specific objectives were: 1) to analyze the scale
effects of LiDAR data on canopy characterization 2) to compare the
accuracies of burned forest classification with ICESat-2 data at
different spatial resolutions; 3) to compare the differences between
strong beams and weak beams in burned forest classification.

MATERIALS AND METHOD

Study Sites
Two study areas (Figure 1), the temperate forest in northern
California, United States, and the boreal forest in Alberta,

Canada, were employed to compare canopy structures of
different forest ecosystems and the influence of fire
disturbances. For the temperate forest in northern California,
two major fire events occurred over the study site (Figure 2). The
Carr Fire happened west of Shasta Lake, starting on July 23, 2018,
and was contained on August 30, 2018. The Delta Fire started on
September 5, 2018, and stopped on October 7, 2018, in Shasta-
Trinity National Forest. The elevation of this region ranges from
500 to 1,600 m. The whole region is dominated by species
including gray pine (Pinus sabiniana), ponderosa pine (Pinus
ponderosa), blue oak (Quercus douglasii), canyon live oak
(Quercus chrysolepis), and Douglas-fir (Pseudotsuga menziesii)
with scattered shrubs, grasslands, and bare grounds (Liu et al.,
2020).

For the boreal forest in Alberta, Canada (Figure 2), a large
wildfire happened in the Slave Lake district on May 13, 2019, and
formed a fire complex. After burning for about 60,000 hectares,
this fire was contained in late June 2019. The elevation of this
region ranges from 400 to 800 m. Dominant species are black
spruce (Picea mariana), white spruce (Picea glauca), balsam fir
(Abies balsamea), lodgepole pine (Pinus contorta), and jack pine
(Pinus banksiana) with a few shrubs like sheep-laurel (Kalmia
angustifolia) and Labrador tea (Rhododendron groenlandicum).
Due to high latitudes, boreal forests tend to have long winter
seasons and short growing seasons.

Data
ICESat-2/ATLAS Data
ATL03 data provide accurate geolocation (x, y, z) of each photon
point where a photon interacts with the land surface. However,
due to the fact that ATLAS emits green beams (532 nm), there are
many solar background noises in ATL03 (Neuenschwander and

FIGURE 1 | Locations of two study areas: the temperate forest in northern California, United States, and the boreal forest in Alberta, Canada.
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Pitts, 2019) and signals will often be obstructed by clouds. ATL03
data are distributed in hdf5 format with an average file size of
3–4 GB per granule. In this study, the ATL03 data whose ground
track went through the burned areas were downloaded from the
National Snow & Ice Data Center (NSIDC). For the temperate
forest in California, ATL03 data acquired from April to
December, which were close to the fire time (July to October),
in both 2018 and 2019 after the fire events were downloaded. As
for the boreal forest in Alberta, ATL03 data within April and
October, which were close to the fire time (May to June), in both
2019 and 2020 after the fire event were obtained. There were
twelve granules and nineteen granules for the temperate forest fire
and the boreal forest fire (Figures 2D,H; Supplementary Table
S1), respectively. ATL08 data corresponding to the selected
ATL03 products were also downloaded for further analysis. In
ATL08, the cloudy and empty segments were filled with a huge
value, 3.4028 × 1038, which were removed in this study to avoid
cloud interference.

Reference Maps
Sentinel-2 Multi-Spectral Instrument (MSI) data were used to
produce reference landcover maps since 10 m spatial resolution
provides more details than ICESat-2/ATLAS’s 14 m footprint.

Sentinel-2 images were atmospherically corrected with the
Sen2Cor tool. In this study, only bands two to four, band 8,
and bands 11–12 of Senitnel-2 data were employed, where the
bands 11–12 were resampled to 10 m. For the temperate forest in
California, pre- and post-fire Sentinel-2 images were obtained on
July 12, 2018, and October 15, 2018 (Figure 2), respectively. For
the boreal forest site, a pre-fire image was acquired on May 20,
2018, since there were no clear images before the fire event in
2019. Post-fire images were acquired on September 12, 2019. For
each study area, the Iterative Self-Organizing Data Analysis
Technique (IsoData) was employed to classify the pre-fire
Sentinel-2 image into 20 classes in ENVI 5.5 (Harris
Geospatial Solutions). Based on Google Maps and visual
interpretations, the 20 classes were merged into forest and
non-forest types. 200 randomly selected samples, 100 for
forest and 100 for non-forest, were created to assess
classification accuracy. The confusion matrix was established
based on the visual interpretation of Google Maps and
Sentinel-2 images for each sample. Overall accuracy (OA) and
kappa of the forest map in the temperate forest in California were
87% and 0.74, respectively. As for the boreal forest, OA and kappa
were 87.5% and 0.75, respectively. In the temperate forest of
northern California, the fire perimeters were downloaded from

FIGURE 2 | Sentinel-2 data for both study sites: (A) pre-fire image, (B) post-fire image, (C) forest map and (D) burn map in the temperate forest, California; (E) pre-
fire image, (F) post-fire image, (G) forest map and (H) burn map in the boreal forest, Alberta. All images were displayed in a false-color composite (Near Infrared-Red-
Green). The black boundaries of burned regions in burn maps were fire perimeters.
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the CalFire (https://frap.fire.ca.gov/mapping/gis-data/). For the
boreal forest in Alberta, fire perimeters were downloaded from
the Alberta Wildfire (https://wildfire.alberta.ca/resources/
historical-data/spatial-wildfire-data.aspx). These fire perimeters
were rasterized to 10 m spatial resolution to produce fire masks
(or so-called burn maps) (Figures 2D,H). 200 randomly created
samples, 100 for the burned region and 100 for the unburned
region, were used to establish a confusion matrix for each burn
mask. Based on interpretations of pre- and post-fire Sentinel-2
images as well as Google Maps, OA and kappa of the burn map in
the temperate forest were 82.5% and 0.65 (Supplementary Table
S2), respectively. For the boreal forest in Alberta, OA was 84%
and kappa was 0.68 (Supplementary Table S3).

Filtering ATL03 Data
Two typical photon filtering/classification algorithms, the
adaptive ground and canopy height retrieval algorithm
(AGCH) (Popescu et al., 2018) and the ICESat-2 land and
vegetation product algorithm (ILV) (Neuenschwander and
Pitts, 2019), were adopted to remove noise points and classify
ground and canopy points (Figure 3). We used filtered results
from the two algorithms to avoid potential biases from a single
method. For the AGCH method, ATL03 data were filtered
following the procedures in Popescu et al. (2018). In the ILV
method, labels (noise, ground, or canopy) of signal photon points
in ATL03 were recorded in the corresponding ATL08 product
based on the Data Product Algorithm Theoretical Basis
Document (ATBD). Therefore, we read those labels from
ATL08 to match ATL03 (Supplementary Figure S1).

Ground surfaces were derived by fitting smooth splines in R
(version 3.5.1) with the classified ground points. Subtracting the
ground surface from point elevations, we got actual canopy height
(also called relative height). To compare the effects of spatial
resolutions, canopy heights were summarized within fixed
segment length, i.e., 10, 30, 60, 100, 200, and 250m. These
segment lengths were chosen based on popular spatial resolutions
of remote sensing data. For instance, 10, 30, and 60m refer to
Sentinel-2 and Landsat data. Moreover, 60m is close to the footprint
of ICESat/GLAS (65m). 100m is the original segment length of the
ATL08 product. As for 200m, it is double of ATL08 segment length
which illustrates the effects of merging two 100m segments. 250m is
a spatial resolution of MODIS data. Twenty-six canopy related
metrics (Table 1) were derived based on the filtered ATL03
points and corresponding relative canopy height in each segment.
In this study, both weak beams and strong beams were filtered and
employed in further comparisons.

To figure out which metrics are changing significantly along
with spatial resolutions, a non-parametric method, the Kruskal-
Wallis rank sum test, was employed in R. The Kruskal-Wallis test
is a rank-based method that is often employed to determine
whether there are statistically significant differences among
different groups. When the test result is significant (p < 0.05),
we can further use multiple comparisons to figure out which
groups are significantly different. The non-parametric multiple
comparisons in the “npmc” package in R was adopted in this
study to further investigate whether the differences of any two
groups are significant. On the other hand, when the Kruskal-
Wallis test is not significant (p > 0.05), the values in different
groups can be regarded as close and comparable.

Classifying Burned Forest
The RandomForest classificationmethodwas employed in this study
to classify burned segments of ICESat-2 data from unburned ones.
We chose the Random Forest method because it has no assumptions
on data distributions (non-parametric) and can process high-
dimensional data (Maxwell et al., 2018). Moreover, the Random
Forestmethod doesn’t require extra testing samples since themodel is
generalized using a bootstrap procedure (Breiman, 2001). Each
segment was overlaid with the corresponding forest map first to
select forest segments (Figure 4). If over 90% of pixels within a
segment were forest (in this study, a pixel was counted even though
only part of it is within the segment), this segment would be defined
as a forest segment. In the same way, the forest segments were
overlaid with the corresponding burn map. If over 90% of pixels
within a forest segment were burned, this forest segment would be
defined as a burned forest segment. Conversely, if over 90% of pixels
were unburned, this forest segment would be labeled as an unburned
forest segment.

Due to the existence of outliers in canopymetrics, a range of µ ± 2σ
was employed to exclude extreme values in eachmetric, where µ is the
average and σ is the SD. For a specific metric, the average value (µ)
and the SD (σ) of forest segments were calculated and those forest
segments whose values were beyond the range of (µ−2σ, µ+2σ) were
regarded as outliers and removed. After removing outliers, there were
3,683 and 6,518 (SupplementaryTable S4) 100m forest segments left
in the temperate forest and the boreal forest, respectively, based on the

FIGURE 3 | Flow chart for the analysis of scale effects on burned forest
classification with ICESat-2 LiDAR data.
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AGCH filtering algorithm using strong beams. Twenty-six canopy
metrics of each segment were input into the Random Forest model
with a corresponding label: 0-unburned, 1-burned. Samples in the
temperate forest were used for training in the R package
“randomForest” with 1,000 trees. The best number of splits, which

means the best number of predictors in a bootstrap step, was
determined by a minimum out of bag (OOB) error. In this study,
the minimum OOB error was adopted to calculate classification
accuracy (overall accuracy � 1-OOB error). The same routine was
employed to train another RandomForestmodel for the boreal forest.
We didn’t combine samples from the temperate forest and the boreal
forest to produce a single RandomForestmodel becausewewanted to
get the best classification accuracy for each forest type but not an
average accuracy.Moreover, the temperate forest and the boreal forest
have significantly different canopy structures (Figures 5, 6, 8) which
favor separate models.

RESULTS

Canopy Structures at Different Scales
Average values of canopy metrics are changing along with spatial
resolutions in both burned and unburned samples (Figure 5), which
means spatial resolutions can influence canopy structures we detected.
Moreover, spatial resolution impacts measurements in both the
temperate forest (Figure 5) and the boreal forest (Figure 6).
Burned samples have lower numbers of canopy photons than the
unburned ones, which is due to biomass consumption and sparser
canopy after the fire. For the maximum canopy height (max), the
values are also increasing when spatial resolutions get coarser, which is
because high points are averaged by those low points when spatial
resolutions are finer (10 or 30m). Similar patterns were found in
samples produced by the ILV algorithm (Supplementary Figures
S2, S3).

Based on the Kruskal-Wallis test, we found that, for the
unburned samples in the temperate forest (Figure 5),
proportion of points within 5 and 10m (pd5_10) and

TABLE 1 | Twenty-six canopy related metrics and their definitions.

Short name Long name Descriptions

h_mean Mean canopy height Mean of individual relative canopy heights within the segment
openness Canopy openness Standard Deviation of all photons classified as canopy photons within the segment to provide inference of canopy

openness
num_grd Number of ground photons The number of the photons classified as terrain within the segment
num_cpy Number of canopy photons The number of photons classified as canopy or top of canopy within the segment
RHx Relative canopy height metrics Height metrics based on the cumulative distribution of relative canopy heights. The height metrics are calculated at the

following percentiles: 25, 50, 75, 90, 95, 98%
min Minimum canopy height The minimum of relative individual canopy heights within the segment
max Maximum canopy height Relative maximum of individual canopy heights within the segment
cc Canopy coverage Proportion of canopy points over all points
num_toc Number of top of canopy photons The number of photons classified as top of canopy within the segment
toc_roughness Top of canopy roughness Standard deviation of the relative heights of all photons classified as top of canopy within the segment
CV Coefficient of variation openness/h_mean
sd_ratio Standard deviation ratio toc_roughness/openness
relief Canopy relief ratio (h_mean-min)/(max-min)
cc2 Canopy coverage above 2 m Proportion of canopy points above 2 m over all points
cc4 Canopy coverage above 4 m Proportion of canopy points above 4 m over all points
pd0_5 Points proportion within 0–5 m Proportion of canopy points within 0–5 m over all points
pd5_10 Points proportion within 5–10 m Proportion of canopy points within 5–10 m over all points
pd10_15 Points proportion within 10–15 m Proportion of canopy points within 10–15 m over all points
pd15_20 Points proportion within 15–20 m Proportion of canopy points within 15–20 m over all points
pd20_25 Points proportion within 20–25 m Proportion of canopy points within 20–25 m over all points
pd25 Points proportion above 25 m Proportion of canopy points above 25 m over all points

FIGURE 4 | Overlaying segments with reference maps (forest map or
burn map) to select training datasets, where the segments were 100 m in
length and 14 m in width. The same routine works for segments with 10, 30,
60, 200, and 250 m length.
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proportion of points within 10 and 15m (pd10_15) were not
varying significantly, which means they were stable while the rests
were changing significantly. For the burned temperate forest
samples, only canopy coverage above 2 m (cc2) was stable. As
for the unburned boreal forest samples (Figure 6), canopy coverage
above 4 m (cc4) and proportion of points within 0–5 m (pd0_5)
were stable while for the burned ones mean canopy height
(h_mean) and 75th percentile of relative height (RH75) were stable.

Based on the non-parametric multiple comparisons
implemented in the “npmc” package, the maximum

canopy height is sensitive to spatial resolutions
(Figure 7). For the unburned segments in both the boreal
forest and the temperate forest, the values of maximum
canopy height are significantly different along with
increasing segment lengths. Similar patterns were found
in the burned segments of the temperate forest and the
boreal forest, except at the 200 and 250 m segment
lengths. As shown in Figure 7, the differences of
maximum canopy height between 200 m segments and
250 m segments are not significant in burned forests.

FIGURE 5 | The average value of each canopy related metric in the temperate forest in California based on the AGCH algorithm using strong beams, where the error
bars are standard errors. P values are the significance of the Kruskal-Wallis test.
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The canopy structures of the temperate forest and the
boreal forest also have great differences. In Figure 5, the
average value of maximum height at 100 m length is 30.09 m
for the unburned temperate forest. However, for the boreal
forest, the average maximum height at 100 m length is only
15.24 m for the unburned samples (Figure 6). Canopy
coverage (cc) in the unburned temperate forest is 0.86
while it is 0.68 in the unburned boreal forest at 100 m
length. Average values of canopy openness (openness) in
the unburned temperate forest and boreal forest are 7.82

and 3.58 at 100 m length, respectively. These metrics
indicate that the temperate forests are taller with higher
canopy coverage and variations. However, structure
changes in the boreal forest during fires were greater since
the average values of most metrics decreased by more than
50% in Figure 8. Besides, the two algorithms present similar
abilities to capture canopy structure changes as the relative
changes (the ratio of differenced value and pre-fire value) are
significantly correlated, r � 0.82 (p < 0.01) and 0.67 (p < 0.01)
in the temperate forest and the boreal forest, respectively.

FIGURE 6 | The average value of each canopy related metric in the boreal forest in Alberta based on the AGCH algorithm using strong beams, where the error bars
are standard errors. P values are the significance of the Kruskal-Wallis test.
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Burned Forest Classification at Different
Scales
The Random forest classification method was employed to
classify the burned and the unburned segments in strong
beams along ICESat-2 ground tracks. The overall accuracies
are increasing at first when segment lengths get coarser in both
the temperate forest and the boreal forest (Figure 9). When the
segment length reaches 100 m, the classification accuracies
start to saturate. For 200 and 250 m segment lengths, the
accuracies are comparable or even lower than that of 100 m.
Moreover, samples produced by both algorithms get good

classification accuracies though the accuracies of the AGCH
algorithm derived samples are slightly higher. For the boreal
forest, the classification accuracies are higher than those of the
temperate forest, which is due to greater canopy structure
changes after fires (Figure 8). Table 2 illustrates that the
accuracies of 100 m segment length and 30 m length are
significantly different in the temperate forest, indicating the
significant influence of spatial resolutions on burned forest
classification. The accuracies of 100 m segments and 10 m
segments are also significantly different in the temperate
forest. For the boreal forest, the accuracies of 100 m

FIGURE 7 |Comparisons of the maximum canopy height using non-parametric multiple comparisons test: the x-axis shows segment lengths and the y-axis shows
averages maximum canopy height derived from the AGCH algorithm. Different letters mean the datasets are significantly different.

FIGURE 8 | Relative changes [ � 100%*(average of burned samples–average of unburned samples)/average of unburned samples] of metrics in (A) the temperate
forest and (B) the boreal forest using the AGCH algorithm and the ILV algorithm derived samples at 100 m segment length in strong beams.
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segments are significantly different from those of 30 and 10 m
segments.

Classification results of burned segments along ICESat-2
ground tracks match the reference burn maps well
(Figure 10), where segments are produced at 100 m
segment length with strong beams. Segments derived from
the two photon classification algorithms get similar
classification results and comparable accuracies. The
classification accuracies of burned vegetation in the boreal
forest using samples from the AGCH algorithm and the ILV
algorithm are 92.13 and 91.32%, respectively. For the
temperate forest, the overall accuracies of burned segment
classification using the AGCH and the ILV derived samples
are 79.43 and 78.75%.

Comparisons of Strong Beams and Weak
Beams
Average values of the twenty-six canopy related metrics using
weak beams are presented in Supplementary Figures S4–S7.
These metrics vary along with spatial resolutions like those in
strong beams, e.g. the maximum canopy height (max) increases
along with coarser spatial resolutions. At 100 m segment length,
we calculated the ratio of signal photons (ground photons and
canopy photons) between strong beams and weak beams derived

from the AGCH algorithm in the unburned temperate forest and
the unburned boreal forest, 3.92 and 3.72, respectively, which are
close to the designed energy ratio of 4:1. Less energy emitted from
the ICESat-2/ATLAS instrument means fewer photons can get
back, leading to fewer photon measurements in weak beams.

Figure 11 shows comparisons of typical canopy height related
metrics such as RH50, RH75, RH95, cc2, and cc4 between
samples from strong beams and weak beams at 100 m segment
length. Metrics in weak beams are significantly higher than those
in strong beams in the temperate forest based on samples from
both the AGCH and the ILV algorithms. For the boreal forest,
metrics in weak beams are significantly larger using the AGCH
algorithm while smaller using the ILV derived samples. These
metrics are significantly different comparing weak beams and
strong beams, which indicates that point density impacts the
measurements of canopy structures.

The classification accuracies of samples from both strong
beams and weak beams are increasing along with spatial
resolutions and saturate at 100 m segment length (Figure 12).
Moreover, the accuracies of samples from the AGCH algorithm
and the ILV algorithm have similar patterns. Based on Table 2,
the differences of accuracies between 100 m segment length and
other segment lengths are not significant except 30 and 10 m
lengths, using weak beams in the temperate forest. For the boreal
forest, the accuracy of 100 m segments is significantly different

FIGURE 9 | Accuracies of burned forest classification at different segment lengths based on the AGCH algorithm and the ILV algorithm derived samples using
strong beams: (A) the temperate forest and (B) the boreal forest. The dash lines show the 100 m segment length.

TABLE 2 | Accuracies of burned forest classification along ICESat-2 ground tracks using segments derived from the AGCH and the ILV algorithms with strong beams, where
the accuracies in parentheses come from weak beams. The Pair-wise proportion test in R, which can avoid family-wise error, was employed to compare the differences
between classification accuracy of 100 m segments and accuracies of other segment lengths. * for p < 0.05, ** for p < 0.01 and *** for p < 0.001.

Temperate forest Boreal forest

Lengths (m) AGCH ILV AGCH ILV

10 72.51%*** (70.21%***) 73.81%*** (68.71%***) 87.62%*** (82.89%***) 86.35%*** (83.37%***)
30 76.67%** (71.04%**) 75.13%*** (69.74%*) 89.49%*** (84.78%***) 89.14%*** (85.13%***)
60 78.08% (73.21%) 76.84% (71.49%) 91.21% (86.99%) 90.57% (86.85%)
100 79.43% (74.34%) 78.75% (72.96%) 92.13% (88.32%) 91.32% (87.86%)
200 81.05% (75.11%) 78.56% (73.12%) 92.49% (88.79%) 91.68% (88.49%)
250 80.22% (74.98%) 77.88% (73.58%) 91.99% (87.96%) 92.32% (87.82%)
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from those of 30 and 10 m segments. It is worth noting that,
samples of weak beams always have lower accuracies than those
of strong beams (Figure 12). This is due to lower point density
since energy in weak beams is only ¼ of that in strong beams.
With lower point density, it is more difficult to distinguish real
ground points, canopy points, and noises, causing more errors in
metrics calculation and burned forest classification.

DISCUSSION

Effects of Spatial Resolutions
This study focuses on the effects of spatial resolutions on burned
forest classification using LiDAR data. ICESat-2 photon counting
data were summarized at different segment lengths to match
commonly adopted spatial resolutions, i.e., 10, 30, 60, 100, 200,
and 250 m. The Random Forest method was employed for burned
segment classification. As shown in Figures 5, 6, most canopy
related metrics will change along with spatial resolutions, e.g., the
number of canopy photons andmaximum canopy height increase
with coarser spatial resolutions. In fact, the maximum height
starts from the mean canopy height (when each point is a
segment) and converges to the highest point in the whole
region (when the whole region is a segment) when spatial
resolution gets coarsened. Overall, spatial resolution can
influence canopy structures we detected. This reminds
scientists that it is necessary to keep the same spatial
resolutions when comparing structure changes or monitoring
forest dynamics. Matching data with different spatial resolutions
directly can produce misleading results.

Moreover, classification accuracies in both the temperate
forest and the boreal forest are good (Figure 9), which
demonstrates the capability of spaceborne LiDAR in capturing
forest structure changes (Liu et al., 2020). The classification
accuracies increase when spatial resolutions get coarser and
then saturate at 100 m segment length. Although samples with
10 m spatial resolution can provide more detailed information,
the corresponding classification accuracies are significantly lower.
100 m segment length provides good classification accuracy and

relatively better spatial details than 200 and 250 m segment
lengths. Furthermore, data derived from the two typical
photon filtering algorithms, the AGCH and the ILV, present
comparable accuracies and similar trends in burned forest
classification. These results confirm that 100 m segment length
is a good choice for burned forest classification using spaceborne
LiDAR data. As for 30 m spatial resolution, scientists can
selectively use it since the corresponding classification
accuracies are still acceptable.

The impact of spatial resolution on burned forest classification
is mainly due to its control on intra-class and inter-class canopy
structure variabilities. When spatial resolution gets coarser, intra-
class variability tends to decrease, contributing to higher
classification accuracy (Roth et al., 2015). At fine spatial
resolutions (e.g., 10 m), more detailed information can be
recorded such as young trees with low canopy height or trees
from different species, causing more variations in canopy
structures (increase in intra-class variability) and lower
classification accuracy. However, in coarse spatial resolutions
(e.g., 100 m), a segment will cover multiple species or trees
with different ages, wiping out variations caused by ages or
species and decreasing intra-class variability. Thus,
classification accuracies increase with coarser spatial
resolutions. Jeffreys–Matusita (JM) distance is a commonly
used metric in classification, which combines both intra-class
variability and inter-class variability to analyze the separability of
different classes (Wang and Glenn, 2009). The effective range of
the JM distance is 0–1.4142, with large values for high
separability. As shown in Figure 13, the JM distances increase
along with coarser spatial resolutions, indicating an increase of
inter-class variability and a decrease of intra-class variability,
producing high separability.

Photon Point Density
The classification accuracies of burned forests with strong beams
are higher than those of using weak beams in both the temperate
forest and the boreal forest (Figure 12), which is mostly influenced
by photon point density. Low photon point density leads to more
errors in data processing, resulting in low classification accuracies.

FIGURE 10 | Classification results of the burned forest with strong beams at 100 m segment length using: samples in the temperate forest derived from (A) the
AGCH and (B) the ILV algorithms; samples in the boreal forest derived from (C) the AGCH and (D) the ILV algorithms. Each segment was labeled by the location of its
center most photon point.
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FIGURE 11 | Comparisons of metrics from strong beams and weak beams based on samples derived from (A) the AGCH algorithm and (B) the ILV algorithm,
where median means the median value of a metric and p is the significance between samples of weak beams and strong beams based on the Mann-Whitney test.

FIGURE 12 | Accuracies of burned forest classification at different spatial resolutions using both weak beams and strong beams by: samples derived from (A) the
AGCH and (B) the ILV algorithms in the temperate forest; samples derived from (C) the AGCH and (D) the ILV in the boreal forest. The dash lines show the 100 m
segment length.

Frontiers in Remote Sensing | www.frontiersin.org July 2021 | Volume 2 | Article 66625112

Liu et al. Scale Effects of ICESat-2 Data

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


First, there are many noisy points caused by the solar background
in ICESat-2/ATLAS photon counting data. It is difficult to
effectively distinguish signal photons from background noises
when point density is low since photon filtering algorithms, e.g.,
the AGCH and the ILV, leverage point density to kick out
background noises. Second, the classification of photons into
ground points and canopy points is challenging with low point
density as ground photon points are always rare in forest regions,
especially under a dense canopy. Low photon point density will
directly decrease the number of ground points, increasing the
possibility of misclassification. Thus, more canopy photons will be
misclassified as ground points, causing errors in canopy structure
detection. Third, photon point density itself is closely related to the
accuracy of canopy characterization and biomass estimation (Singh
et al., 2015). Singh et al. (2015) found that the accuracy of biomass
estimation was good until the point density decreased under 40% of
the original dataset. In Jakubowski et al. (2013), prediction
accuracies of canopy related metrics were largely invariant at
moderate to high pulse densities while declined at low densities.
These results are consistent with the comparisons of classification
accuracies using samples from strong beams and weak beams.
Researchers should pay more attention to the effects of photon
point density when using weak beams.

Limitations
In this study, different spatial resolutions are employed to
summarize ICESat-2 photon counting LiDAR data and classify
burned and unburned forest segments. Our results demonstrate
that spatial resolutions can significantly impact the forest structures
we detected and the accuracy of burned forest classification.
However, due to the limitation of data availability (fire
perimeters and high resolution reference burn maps), only the
temperate forest and the boreal forest were adopted in the analysis.
We thank that Canada and United States update their fire
databases very quickly so that fire perimeters in the temperate
forest and the boreal forest are available. We agree that other forest
types, e.g., tropical forest or subtropical forest, are also very
important in the biosphere. More forest types should be
investigated in further studies, especially the tropical forest. We
hope there will be more accurate and high resolution fire-related
datasets available to support the science community.

CONCLUSION

This study is the first to analyze the effects of spatial resolution on
burned forest classification using spaceborne LiDAR data. ICESat-
2/ATLAS photon counting data were summarized at different
segment lengths, i.e., 10, 30, 60, 100, 200, and 250 m, to match
commonly used spatial resolutions. Two typical photon filtering
algorithms, the AGCH and the ILV, were selected for data
processing to avoid biases from a single algorithm. ICESat-2
data in the temperate forest in northern California, the
United States, and the boreal forest in Alberta, Canada, were
classified with the Random Forest method. Results show that
canopy structure characterization is significantly influenced by
spatial resolutions. The classification accuracies of burned
forests increase along with coarser spatial resolutions and
saturate at 100 m segment length. Moreover, the accuracies of
burned forest classification based on strong beams are higher than
those of weak beams. Segments derived from the two filtering
algorithms get comparable classification accuracies. These findings
demonstrate that spatial resolution will influence canopy
characterization and fire monitoring. Furthermore, 100 m is a
good choice for burned forest classification which provides
decent classification accuracy and spatial details. As more
spaceborne LiDAR data are available and accumulating, e.g.,
ICESat-2 data and GEDI data, further research studies can
explore more applications of LiDAR data in fire management
and extend the use of LiDAR data to applications in ecological
recovery and carbon dynamics.
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