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We present the first application of the Snow Covered Area and Grain size model (SCAG) to
the Visible Infrared imaging Radiometer Suite (VIIRS) and assess these retrievals with finer-
resolution fractional snow cover maps from Landsat 8 Operational Land Imager (OLI).
Because Landsat 8 OLI avoids saturation issues common to Landsat 1–7 in the visible
wavelengths, we re-assess the accuracy of the SCAG fractional snow cover maps from
Moderate Resolution Imaging Spectroradiometer (MODIS) that were previously evaluated
using data from earlier Landsat sensors. Use of the fractional snow cover maps from
Landsat 8 OLI shows a negative bias of −0.5% for MODSCAG and −1.3% for VIIRSCAG,
whereas previous MODSCAG evaluations found a bias of −7.6% in the Himalaya. We find
similar root mean squared error (RMSE) values of 0.133 and 0.125 for MODIS and VIIRS,
respectively. The Recall statistic (probability of detection) for cells with more than 15%
snow cover in this challenging steep topography was found to be 0.90 for both MODSCAG
and VIIRSCAG, significantly higher than previous evaluations based on Landsat 5
Thematic Mapper (TM) and 7 Enhanced Thematic Mapper Plus (ETM+). In addition,
daily retrievals from MODIS and VIIRS are consistent across gradients of elevation, slope,
and aspect. Different native resolutions of the gridded products at 1 km and 500m for
VIIRS and MODIS, respectively, result in snow cover maps showing a slightly different
distribution of values with VIIRS having more mixed pixels and MODIS having 7% more
pure snow pixels. Despite the resolution differences, the snow maps from both sensors
produce similar total snow-covered areas and snow-line elevations in this region, with R2

values of 0.98 and 0.88, respectively. We find that the SCAG algorithm performs
consistently across various spatial resolutions and that fractional snow cover maps
from the VIIRS instruments aboard Suomi NPP, JPPS–1, and JPPS–2 can be a
suitable replacement as MODIS sensors reach their ends of life.
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INTRODUCTION

Earth’s cryosphere is rapidly diminishing in extent and volume
(Bormann et al., 2018). Seasonal duration of the snow cover has
become shorter (Dettinger and Cayan, 1995; Derksen and Brown,
2012), and earlier onset of snowmelt leads to earlier streamflow in
snow-dominated basins (Stewart et al., 2005). Global climate
models show that more countries will experience water stress in
the future, particularly those that rely on melt of snow and ice for
their water resources (Arnell, 1999). Observational datasets of
glaciers show mass loss on a global scale (Zemp et al., 2015). In
the mid-latitudes especially, glaciers ablate faster when the winter
snow cover disappears earlier (Painter et al., 2013). Interannual
variability and trends in snow cover result from variability in
snowfall and the rate of snowmelt, which is driven by the energy
balance at the snow surface and is especially sensitive to snow
albedo. A comprehensive view of changes and variability in snow
extent and albedo can be observed directly only with satellite
remote sensing.

Spaceborne sensors observing in the visible and near-infrared
parts of the spectrum have long been popular instruments for
detection and monitoring of snow cover (Dozier, 1989; Hall et al.,
2002; Dietz et al., 2012). For clean snow, the spectral reflectance
can be modeled from its grain size and the wavelength-dependent
complex index of refraction of ice (Wiscombe and Warren, 1980;
Dozier and Painter, 2004). For both ice and water, absorption
through the solar spectrum varies by eight orders of magnitude,
from highly transparent in the visible to nearly opaque in the
shortwave-infrared (Warren and Brandt, 2008). Thus, snow
reflects nearly all radiation in the visible spectrum but absorbs
strongly in the longer wavelengths (Figure 1), making it
distinguishable from most other natural substances. When
dust and industrial pollutants are present in snow, its
reflectance drops in the visible and part of the near-infrared
spectrum (400 –876 nm), where 63% of the at-surface solar
irradiance occurs (Painter et al., 2012b; Bair et al., 2019).

The Moderate-resolution Imaging Spectroradiometer
(MODIS, Justice et al., 1998) and the Visible Infrared Imaging
Spectrometer Suite (VIIRS, Justice et al., 2013) collect data at
spatial resolutions of 250 m to 1 km depending on the instrument
band. The gridded Level 2 surface reflectance products are
provided at 500 m for MODIS and 1 km for VIIRS. At these
moderate spatial resolutions, with a daily return interval and
global coverage, these sensors have been instrumental in
capturing heterogeneous snow cover at the global scale both in
complex terrain and at regional to watershed scales (Dozier and
Painter, 2004). The MODIS and VIIRS surface reflectance data
are also well suited to examine snow cover surface properties in
addition to snow cover, such as grain size and light-absorbing
impurities (Painter et al., 2012b) that collectively drive the
variability in snow albedo.

The snow mapping technique that is applied most commonly
to data from multispectral satellites and used worldwide to map
snow for products like MOD10A1 (Hall and Riggs, 2007) and the
VIIRS Snow Cover product (Justice et al., 2013; Key et al., 2013)
uses a computationally simple algorithm developed in the 1980s,
when computers were more primitive. This approach, the

Normalized Difference Snow Index (NDSI), was developed
using band difference ratios (Dozier, 1989) and exploits the
fact that snow is bright in the visible and dark in the
shortwave-infrared wavelengths. The NDSI algorithm is
effective in identifying snow in homogeneous areas where the
presence of mixed pixels is low and vegetation is sparse, or at the
finest spatial resolutions where most pixels are either entirely
snow-covered or bare. However, for snow in rugged terrain,
mixed pixels predominate at the MODIS resolution (Selkowitz
et al., 2014); and as such, the performance of NDSI is degraded.
While the MOD10A1 algorithm produces fractional snow cover
(Salomonson and Appel, 2004), the value is from a regression of
MODIS NDSI against binary Landsat snow cover maps based on
NDSI. Specifically, the 30m pixels from Landsat are classified as
entirely snow-covered or snow-free before aggregation to 500 m for
the regression analysis as a target variable. The binary classification
of the Landsat data results in a systematic underestimate for snow-
covered pixels with less than 50% snow cover and an overestimate
for pixels with more than 50% snow cover for MODIS data
(Figure 2, in Rittger et al., 2013).

To improve snow mapping for these mixed pixels, the unique
spectra of snow, vegetation, and soil/rock combined with
multispectral measurements led to the development of spectral
un-mixing algorithms that calculate the snow cover fraction
(fSCA) of each pixel (Nolin et al., 1993; Rosenthal and Dozier,
1996; Vikhamar and Solberg, 2003; Sirguey et al., 2009; Bair et al.,
2020). Spectral unmixing solves simultaneous equations to
produce not only fSCA, but also snow surface properties such
as grain size and broadband albedo (Painter et al., 2003; Painter
et al., 2009). Such algorithms can be applied to reflectance data
from any multispectral sensor that includes spectral bands from
the visible through shortwave-infrared, and improvements in
computational efficiency now enable subpixel snow retrievals
from moderate-resolution imagery at the global scale.

While the previous spectral un-mixing algorithms take
advantage of all available bands, the algorithm selected by the
National Oceanic and Atmospheric Administration (NOAA) for
fractional snow cover retrieval was developed for geostationary
satellites and uses only visible reflectance (Romanov et al., 2003).
NASA’s standard snow cover product from VIIRS relies on the
NDSI based method.

The MODIS Snow-Covered Area and Grain-Size algorithm
(Painter et al., 2009) produced operationally for the Western
United States, the Canadian Rockies and Alaska, High-mountain
Asia, the North Pole, and South America demonstrates clear
benefits over the standard global operational MODIS Snow Cover
Products in mixed pixels and during accumulation and melt
(Rittger et al., 2013). MODSCAG data have been used for
estimating sub-canopy snow cover (Raleigh et al., 2013; Rittger
et al., 2020), light absorbing impurities on snow (Painter et al.,
2012b), snow albedo (Bair et al., 2019), persistent ice cover
(Painter et al., 2012a), impacts of wildfire on snowmelt
(Micheletty et al., 2014), and snow water equivalent (SWE)
(Guan et al., 2013; Bair et al., 2016; Rittger et al., 2016). It has
also been used for evaluating climate models (Wrzesien et al.,
2015; Minder et al., 2016); assimilating data into regional-scale
climate models (Oaida et al., 2019); and validating global to
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regional scale models to better understand regional dust and
carbon impacts on snowmelt (Sarangi et al., 2019; Sarangi et al.,
2020).

In this study, we use high-resolution fractional snow cover
maps, derived from the Landsat 8 Operational Land Imager (OLI)
using spectral mixture analysis, to 1) re-evaluate MODSCAG
fractional snow cover maps and 2) provide the first evaluation of
VIIRSCAG maps over the challenging terrain in High Mountain
Asia. The evaluation was conducted using 30 Landsat 8 OLI
scenes, spatially spanning two MODIS/VIIRS tiles in the
sinusoidal grid in the Himalaya. For the evaluation, we use
binary metrics precision, recall, and F-score and fractional
metrics mean difference, median difference, and RMSE.
Landsat 8 OLI images in 2013 were selected late in the melt
and early in the accumulation period, previously shown to be the
most challenging times for accurate snow detection. In addition
to the evaluation with Landsat 8 OLI, we directly compare snow
cover area and snowline elevation from MODSCAG and
VIIRSCAG for a more temporally complete dataset over the
years of 2012–2015.

DATA AND METHODS

The initial validation of MODSCAG and its comparison to widely
used snow cover maps fromMOD10A1 (Rittger et al., 2013) used
Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) images from Colorado,
California, and the Himalaya to understand errors in retrievals
from various snow regimes. Rittger et al. (2013) found that

MODSCAG RMSE was highest and the probability of
detection, also known as recall, was lowest in the Himalaya,
which suggested snow identification was more difficult in that
region, possibly because of steeper terrain relative to other
validation sites in Colorado and California. In addition, this
previous work found the highest errors in all regions early in
the accumulation season, important for recreation such as skiing,
and late in the melt season, when river forecasts are often in error
(Dozier, 2011).

For this study, we considered the spatial extent of the
Himalayan region to include parts of the Amu Darya,
Indus, and Ganges River basins shown in Figure 2. We
searched the USGS database of Landsat 8 OLI imagery in
2013 for all images with cloud cover less than 10% in april
to July (melt season) and September–November (early
accumulation season). We then visually inspected all images
and removed those with any cloud cover. The result was a set of
30 images from 17 unique Landsat Worldwide Reference
System 2 (WRS2) path/rows covering diverse regions of the
Himalaya. This list of images along with the scene-specific
validation statistics listed in the previous section is detailed in
Supplementary Table S1 of the Supplementary Materials. We
selected MODIS and VIIRS images within ± 3 days with the
smallest satellite view zenith angles corresponding to nadir
viewing Landsat 8 OLI images.

The terrain of this study area provides a challenging
environment for both MODIS and VIIRS, possibly more
challenging for VIIRS because of the coarser spatial resolution
relative to MODIS. The climatic characteristics of this domain
vary from west to east with westerlies driving much of the

FIGURE 1 | Spectral sampling differences between OLI, MODIS, and VIIRS shown as sensor bandpasses plotted with snow spectra for fine and coarse snow with
and without light absorbing particles.
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precipitation in the Amu Darya and Western Indus, while the
monsoon also affects the Eastern Indus and Ganges River basins.

Surface Reflectance From MODIS and
VIIRS
MODIS was launched on both the Terra platform in December
1999 and on the Aqua platform in May 2002. Both Terra and
Aqua provide global daily coverage of the earth’s surface with
equatorial crossings at 10:30 and 13:30. VIIRS, aboard Suomi
National Polar-orbiting Partnership (Suomi NPP), was launched
in October 2011 to provide data continuity with long-term data
records from NASA’s Earth Observing System and the planned
Joint Polar Satellite System (JPSS) instruments (Cao et al., 2013).
With near-global daily coverage, moderate resolution retrievals at
11 spectral bands (Figure 1), and a 13:30 overpass time, Suomi
NPP VIIRS provides similar information to that fromMODIS for
snow cover retrievals.

While the daily Aqua overpass aligns temporally with Suomi
NPP overpass, the mid-morning MODIS retrievals from Terra
are generally preferred for snow retrieval due to cloud-cover
considerations. The MODIS instrument aboard Aqua suffered
from loss of 75% of its detectors for Band 6 shortly after launch
(Gladkova et al., 2012). MODIS Band 6 observes radiances in the
spectral range of 1.628–1.652 µm, which is a key bandwidth for
common snow retrieval algorithms as shown in Figure 1. Robust
discrimination between cloud and snow cover can be challenging
(Dietz et al., 2012; Stillinger et al., 2019; White et al., 2020); and as
such, we have visually selected clear-sky scenes for this study.

Pixel distortion created by the combination of MODIS scan
geometry and the earth’s curvature causes edge-of-scan pixels in
MODIS surface reflectance data to be collected from an area

nearly 10 times the size of those viewed from nadir (Dozier et al.,
2008). Therefore, off-nadir observations image different (larger)
areas on the ground than nadir views especially in
topographically complex terrain where the view azimuth
offsets the direction of pixel elongation (Rittger et al., 2020).
To address this shortcoming, the VIIRS instrument uses de-
aggregation of sub-pixels at wide scan angles (>32°, Cao et al.,
2013) to sample at a more constant spatial resolution in the
cross-track direction. This technique reduces edge-of-scan
distortion in VIIRS surface reflectance data (Schueler et al.,
2013) and, in turn, distortion in representation of perceived
snow cover area at the edge of the swath. Because future JPSS
missions plan to carry VIIRS optical instrumentation and
MODIS’s end-of-life is approaching, the future of continued
global fractional snow cover observations will hinge on VIIRS-
based retrievals.

For this study, the MODIS inputs used were MOD09GA L2G
Surface Reflectance 500 m SIN grid from Collection 5 that are
provided by the Land Processes DAAC (lpdaac.usgs.gov). We
used Collection 5 instead of the more recent Collection 6 MODIS
products to allow direct comparison with previous evaluations of
MODSCAG (Rittger et al., 2013). Degradation of visible and
near-infrared bands in Collection 5 has been shown to impact
long-term trends in geophysical variables, yet the impact is small
in an absolute sense (Table 1, in Lyapustin et al., 2014) and below
the stated accuracy of MODIS products. The errors in this paper
for Collection 5 can be considered a high estimate relative to those
if we had used Collection 6. The VIIRS inputs used were the early
release products DSRF1KD L2GD Surface Reflectance 1 km SIN
grid and DGA1KD L2GD Geolocation Angles 1 km SIN grid
from Collection 3110, provided by the Level-1 and Atmosphere
Archive and Distribution System (LAADS).

FIGURE 2 | The twoMODIS tiles and seventeen distinct Landsat tiles used in this study. The comparisons cover parts the Indus, Ganges, and Tarim River basins as
well as the Amu Darya River basin (not labeled) in the southern portion of the Aral River basin as provided by the Global Runoff Data Cetner.
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While the VIIRS moderate resolution data are being resolved
to 750 m in the native grid projection, the Level 2 gridded
products are distributed at 1 km spatial resolution on the
MODIS Sinusoidal Tile Grid for consistency with the 500 m
MODIS archive. Consequently, the spatial resolution of our
snow cover products derived from VIIRS are at 1 km. These
surface reflectance products are likely consistent with those used
to develop the snow retrieval algorithms for the Standard VIIRS
Snow Products, (Key et al., 2013), although these inaugural
studies do not explicitly state the data products used.
However, since our analysis, Collection 3110 has been replaced
by the newer VNP09GA Version 1 Surface Reflectance products.
A comparison of the DSRF1KD and VNP09GA surface
reflectance products shows minor differences in spectral
reflectance over snow (Supplementary Figure S1).

Snow Covered Area and Grain Size
Fractional snow cover and grain size maps are derived from
MODIS and VIIRS surface reflectance inputs using the Snow
Cover and Grain Size (SCAG) algorithm (Painter et al., 2003;
Painter et al., 2009). The algorithm disaggregates pixel-
averaged surface reflectance into a group of individual land
surface components using a combination of reflectance
spectra from pure spectral end member libraries.
Commonly known as spectral mixture analysis, the SCAG
algorithm is based on a set of simultaneous linear equations
that are solved for these individual components (Roberts
et al., 1998).

RS,λ � ∑N
i�1

FiRλ,i + ελ (1)

Fi is the fraction of endmember i; Rλ,i is the hemispherical
directional reflectance factor (HDRF, Schaepman-Strub et al.,
2006) of endmember i at wavelength λ; and ελ is a residual
error. We assume a linear combination of reflectances using
this method, which is appropriate above timberline where the
surface is planar. Below timberline, there are nonlinear
interactions with the canopy; however, we include canopy-
level vegetation endmembers in the SCAG spectral library
that represent multiple scattering and allow the linear
assumption. The spectral library contains 109 snow (of
varying grain size), 3 ice, 20 vegetation, and 17 rock
spectra that were measured in situ (Painter et al., 2003;

Painter et al., 2009) and allows for changes in snow
spectra with viewing angle. The snow spectral HDRF come
from radiative transfer modeling, constrained by snow grain
size (10–1100 μm by 10 μm) and solar zenith angle by 15
degree increments (Painter et al., 2003; Painter et al., 2009).

The SCAGmodel is run iteratively; and with each set of Fi and
Rλ,i, we estimate the RMSE as the difference between the modeled
and observed pixel-averaged reflectance. SCAG chooses the
model with the lowest RMSE that provides estimates of the
snow cover fraction, vegetation fraction, and bare soil or rock
fraction. Fractional snow cover and other endmembers are
normalized by the spectral fraction of photometric shade to
account for topographic effects on irradiance. These model
runs are constrained to endmember fractions in the range of
−0.01–1.01 with an overall RMSE <2.5%, with no three spectrally
consecutive residuals exceeding 2.5%. For pixels that do not meet
these constraints, a second set of model runs is completed using
looser constraints. SCAG selects the model with the fewest
endmembers and the smallest RMSE. The selected endmember
for snow (where it exists) has an associated grain size in the
spectral library, which allows for snow grain size mapping.
Whereas this grain size can be converted to a clean snow
albedo or combined with impurities to estimate the true snow
albedo (Wiscombe and Warren, 1980; Painter et al., 2009), this
step is outside the scope of the work presented here. Historically,
albedo from snow grain sizes derived with SCAG have been
combined with dust impacts on albedo estimated from a separate
algorithm (Painter et al., 2012b), however, recent work shows that
these variables can be solved for simultaneously (Bair et al., 2020).

The SCAG products used in this study are the fractional snow
cover area (fSCA) maps. To account for the spectral differences
between MODIS and VIIRS (Figure 1), the high resolution
spectral libraries (Painter and Dozier, 2004) were resampled to
the VIIRS spectral bands using the relative spectral response data
available from the Center for Satellite Applications and Research
JPSS website.

Landsat TM, ETM+, and OLI
We use surface reflectance from USGS Landsat 8 OLI in this
study. Landsat 5 TM and Landsat 7 ETM+ have been used to
evaluate snow cover products in the past, including those from
MODIS (Salomonson and Appel, 2004; Dozier et al., 2008;
Painter et al., 2009; Bormann et al., 2012; Rittger et al., 2013;
Metsämäki et al., 2015; Yang et al., 2015). TM and ETM+ sensors

TABLE 1 | Summary of binary statistics comparing MODIS and VIIRS fSCA to Landsat fSCA.

MODIS VIIRS

Landsat
5 and 7a

Landsat 8 Landsat 8

Value Mean Min Max Std Mean Min Max Std

Binary Precision 0.980 0.871 0.639 0.989 0.098 0.855 0.587 0.985 0.120
Recall 0.781 0.900 0.677 0.996 0.082 0.889 0.616 0.987 0.096
F-score 0.890 0.883 0.723 0.979 0.083 0.867 0.684 0.976 0.094

aRittger et al., 2013.
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were designed for observing fine radiometric detail in dark ocean
water and when compressed into an 8-bit data stream, result in
saturation of the sensor over snow in bands 1, 2, and 3 (Dozier,
1989; Duguay and Ledrew, 1992).

The more snow cover, the brighter the surface at visible
wavelengths, and the more likely the sensor will become
saturated. When saturation of the sensor occurs, the observed
surface reflectance values are lower than the true reflectance. A
complicating factor is the use of cubic convolution instead of
nearest neighbor processing the USGS uses to resample Landsat
data that can merge values from saturated pixels and unsaturated
pixels making it more difficult to identify affected pixels.

For spectral mixture analysis, the use of the saturated
values would introduce erroneously low reflectance values
leading to an underestimation of fSCA. Therefore, when only
one or two of the visible bands are saturated, spectral mixture
analysis of TM and ETM+ data uses the remainder of the
bands to produce the fSCA model output. When all three
visible bands are saturated there is insufficient information
to apply spectral mixture analysis. Previous work assumed
that pixels saturated in all three visible bands were fully snow
cover (Painter et al., 2009; Rittger et al., 2013), however, it is
possible that they were not.

For this reason, the Landsat 5 TM and Landsat 7 ETM+ are
imperfect sources of validation data leading to a systematic
positive bias in fSCA from Landsat. The previous evaluation of
MODSCAG using these Landsat fSCA estimates as “truth”
found a mean bias of −5.2% over four regions and −7.6% in
the Himalayan region (Rittger et al., 2013). In this paper, we
assess the number of pixels with saturation in previous
comparisons to MODIS snow maps. NDSI and regression-
based approaches (Hall et al., 2002; Salomonson and Appel,
2004; 2006) that assume accurate Landsat snow cover maps
for validation and calibration do not appear to account for
this issue, and the standard NASA global-fractional snow
products still use regression equations based on saturated
sensors.

In contrast to the 8-bit data stream from TM and ETM+, the
optical sensor aboard Landsat 8 OLI, uses a 12-bit data stream
that allows it to see the darkest ocean to the brightest snow
without saturation, allowing the spectral mixture analysis to use
all bands for even the brightest pixels. The higher accuracy of
Landsat 8 data provide the opportunity to update the evaluation
of MODSCAG fractional snow cover maps and contrast it with
the first evaluation of VIIRSCAG performance.

Evaluation Metrics
We use a set of binary metrics previously used to evaluate MODIS
snow cover maps (Rittger et al., 2013) to facilitate comparison to
the previous studies. Assuming Landsat 8 snow cover maps to be
the “truth”, we classify pixels into four possible outcomes: true
positive (TP), true negative (TN), false positive (FP), and false
negative (FN). We calculate the four outcomes for both MODIS
and VIIRS snow maps and consider pixels <15% to be snow-free,
again for consistency with previous studies. Common measures
of a classification algorithm’s performance are calculated using
the four outcomes:

Precision � TP
TP + FP

(2)

Recall � TP
TP + FN

(3)

Accuracy � TP + TN
TP + TN + FP + FN

(4)

F score � 2
Precision x Recall
Precision + Recall

� 2TP
2TP + FP + FN

(5)

We abstain from using the accuracy calculation (Eq. 4) because of
the overwhelming number of TNpixels includedwhen analyzing full
Landsat scenes, which contain large snow-free areas. We find the F
score to be the single most useful metric as it balances Precision and
Recall, penalizing bothmissing snow and falsely identified bare areas
as snow, while excluding extensive snow-free areas (Wilks, 2006).

We use mean difference, median difference, and RMSE to
evaluate performance of the MODIS and VIIRS fractional snow
cover maps. We exclude TN occurrences from the RMSE
calculation because large snow-free areas, especially in the
summer, can result in very small errors (Rittger et al., 2013).
Previous studies (Hall et al., 2002; Salomonson and Appel, 2004,
2006; Painter et al., 2009) did include those in the error statistics,
therefore yielding lower RMSE values when compared to this
study. The RMSE is defined as:

RMSE �
���������������
1
N
∑
N

(f CSCA − f TSCA)2√
(6)

where f CSCA is the fractional snow cover from MODIS and VIIRS
products and f TSCA is the fractional snow cover from the Landsat 8
OLI validation data.

We use mean absolute error (MAE) to quantify the
discrepancy between the snow fraction for MODIS f MSCA, and
that of VIIRS f VSCA:

MAE � ∑n
i�1
∣∣∣∣f VSCA − f MSCA

∣∣∣∣
n

(7)

We use Landsat 8 OLI data employing the SCAG algorithm to
compare with the coarser maps from both MODIS and VIIRS.
After mapping fractional snow cover at 30 m spatial resolution,
we coarsen the data by identifying the subset of Landsat pixels
within each MODIS or VIIRS pixel (∼256 values) and then
averaging those values. Similar to previous MODSCAG
validation (Rittger et al., 2013), we find that coarsening
MODIS from 500 m to 2 km significantly improves both the
binary and fractional statistics, indicating a MODIS geolocation
error between 1 and 2 pixels as found in other studies (Wolfe
et al., 2002). Similarly, we find the same reduction in errors when
coarsening the VIIRS data from 1–4 km. We isolate the errors
from the SCAG algorithm by performing the analysis at these
coarser spatial resolutions.

RESULTS

In this section we briefly discuss the impact of saturation on 30 m
snow maps from from Landsat 5 TM and Landsat 7 ETM+. We
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FIGURE 3 | Percent of snow-covered pixels saturated in any of the Landsat TM and ETM+ visible channels (bands 1, 2, and 3). The x axis is related to the Himalayan
scenes analyzed in Rittger et al., (2013).

FIGURE 4 |Column 1: 30 m Landsat 8 OLI false color using bands 6, 4, and 2 in Universal Transverse Mercator projection zone 42, Column 2: 30 m Landsat 8 OLI
fractional snow cover in Universal Transverse Mercator projection zone 42. Column 3: 30 m Landsat 8 OLI fractional snow cover resampled to 500 m in sinusoidal
projection, Column 4: 500 m MODIS fractional snow cover in sinusoidal projection, Column 5: 1 km VIIRS fractional snow cover in sinusoidal projection. All fSCA images
use the same color scale.
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then compare the binary and fractional statistics for snowmaps in
the melt and early accumulation periods fromMODIS and VIIRS
with that of Landsat 8 OLI and discuss the improved snow
detection capability relative to Landsat 5 TM and Landsat
7 ETM+.

Impact of Landsat TM/ETM+ Saturation
Rittger et al. (2013) used 25 Himalayan images for validation of
MODSCAG with three images from September, fifteen from
October, and seven from November. The September through
October dates occurred after the equinox when the Sun is lower in
the sky and saturation is less likely because of lower incoming
shortwave radiation. Figure 3 shows the percent of snow-covered
pixels saturated in three band combinations for the 25 images.
28% of the pixels were saturated in all visible bands (1, 2, & 3), and
were assumed to be fully snow covered as previously described
above in Landsat TM and ETM+. Individually, band 1 saturates
most frequently followed by band 3 and then band 2. Overall, 2%
of the snow-covered pixels are saturated in band 1 only (not 2 &
3), and 4% of the pixels are saturated in bands 1 & 3 (not 2). This
new study uses Landsat 8 OLI which does not saturate, and
includes May (n � 9), June (n � 5), September (n � 5), and
October (n � 11) of 2013.

Evaluation Metrics
The first column in Figure 4 shows the false color Landsat 8 OLI
image at 30 m resolution for five dates in the Pamir-Alaymountain
system, which runs through Tajikistan, Kyrgyzstan, and
Uzbekistan. The Landsat WRS-2 path/row is 153/033, i.e. the
Western most region in this study (Figure 2). This region is
relatively cloud-free compared to regions to the East and
provides the most cloud free images in this study. The second
column in Figure 4 shows the fractional snow cover maps for the
five image dates. These 30m snow maps show that most pixels are
nearly fully snow covered (white) while there are fewer partially
covered snow pixels (blue).When coarsened to 500 m shown in the
third column in Figure 4, the fractional snow cover increases as
fully snow-covered pixels are aggregated with snow-free pixels,
especially near the snowline. The fourth and fifth column in
Figure 4, show the fractional snow cover maps at native
resolution from MODIS and VIIRS, respectively. Visually,
images appear similar from all three sensors indicating agreement.

The binary statistics used for comparison of the Landsat 8 OLI
snow maps with the snow maps from MODIS and VIIRS are
defined in Eqs. 2, 3, 5. Table 1 shows the summary of binary
statistics which include the mean, minimum, maximum, and
standard deviation for the 30 image comparisons as well as

FIGURE 5 |Binary metrics for MODIS (red) and VIIRS (blue) images in the Melt Season (column 1) and Accumulation Season (column 2). (A)Melt Season, precision.
(B) Accumulation Season, precision. (C) Melt Season, recall. (D) Accumulation Season, recall. (E) Melt Season, F-score. (F) Accumulation Season, F-score.
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statistics from the previous study. The scene based binary
statistics for each of the 30 dates for both MODIS and VIIRS
are included in Supplementary Table S1.

The maximum snow cover in the Hindu-Kush Himalayan
region occurs in February to March (Figure 3, Armstrong et al.,
2019), while minimum snow and ice cover usually occurs in
October (Painter et al., 2012a). Therefore, our study covers a
period during melt (April–June) and during the minimum and
beginning of accumulation (September–November). Figure 5
shows the binary statistics within these time periods and are
labeled as Melt Season and Accumulation Season.

Precision, which indicates the number of true positives relative to
all positives was 0.871 and 0.855 forMODIS andVIIRS, respectively.
For MODIS, precision was lower than previously reported; but
previous work included midwinter periods where there is much
more snow and high values for precision are easier to achieve.
Figures 5A,B show the precision during the Melt Season and
Accumulation Season, respectively. During Melt Season, a high
precision is maintained, while during Accumulation Season there
is more scatter with values as low as ∼0.6. Right before accumulation,
at the minimum snow cover, precision is a bit higher.

Recall (i.e., the probability of detection) for MODIS and VIIRS
was 0.900 and 0.889, respectively. This is considerably higher

than previous estimates for MODIS, and is plotted for the Melt
Season and Accumulation Season in Figures 5C,D, respectively.
Recall during melt is very high for both MODIS and VIIRS except
for one outlier on May 31st with a recall of 0.728, which is
possibly due to unwanted cloud interference given the otherwise
high accuracy across other dates. Similar to precision, recall is
lower during early accumulation.

The F-score, which balances precision and recall, was 0.890
and 0.867 for MODIS and VIIRS, respectively. This value was
nearly the same in the previous study for MODIS. As shown in
Figures 5E,F, the F-score is higher in the Melt Season than the
Accumulation Season as also seen in previous work. Compared to
previous work, precision is lower but recall is higher, resulting in a
similar overall F-score as assessed by binary statistics.

Table 2 shows the summary (mean, minimum, maximum, and
standard deviation) of fractional statistics described in previously in
Evaluation Metrics. These fractional statistics on each date for both
MODIS and VIIRS are included in Supplementary Table S1. The
fractional metrics for theMelt Season period are shown in Figure 6A
and for theAccumulation Season period in Figure 6B. Themean and
median difference during the Melt Season period are nearly all less
than 0.01when averaged for all 30 images (Table 2) for bothMODIS
and VIIRS fSCA. Figures 6A,B show the mean, whereas Figures

FIGURE 6 | Fractional metrics for MODIS (red) and VIIRS (blue) images in the Melt Season (column 1) and Accumulation Season (column 2). (A)Melt Season, mean
difference. (B) Accumulation Season, mean difference. (C) Melt Season, median difference. (D) Accumulation Season, median difference. (E) Melt Season, RMSE.
(F) Accumulation Season, RMSE.
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6C,D show the median over time. Median errors are smaller than
mean errors, indicating a few larger errors as opposed to a more
normally distributed set of errors. This also indicates that the
accumulation season has more large errors than the melt season,
which is also seen in the RMSE errors plotted in Figure 6F and
compared to Figure 6E. The RMSE, like all the other statistics, was
lower during the melt season and higher during the minimum and
the start of accumulation.

DISCUSSION

We compare the distribution of fractional snow cover values from
MODIS and VIIRS to each other and examine differences across
elevation, slope, and aspect gradients. We present a comparison
of two common metrics–total snow-covered area and regional

snowline elevations–directly between MODIS and VIIRS to
demonstrate continuity between the instruments.

Distribution of Fractional Snow Cover
A direct comparison of snow-covered area from the MODIS and
VIIRS fSCA products (Figure 4, columns 4 and 5, respectively) on
the evaluation dates (Supplementary Table S1) returns a MAE
(Eq. 7) of 10.5% with an mean difference of +3.2%. When we
expand the evaluation to the full set of coincident scenes for the
period 2012–2015 for the two tiles shown in Figure 2 and limit to
clear sky dates (<2% cloud), we find the MAE in snow cover area
remains relatively consistent at 10.8%, and VIIRS tends to
underestimate snow cover area by an average of −4.3%,
indicating that VIIRS generally reports slightly less snow cover
area than MODIS. The switch from positive VIIRS bias to
negative VIIRS bias when the evaluation is expanded from 30
dates to three complete years is a reflection of the change in
distribution of the months and seasons represented in the two
samples. We consider the underestimation from VIIRS relative to
MODIS of −4.3% to be more representative of overall
performance. Note that these values are a measure of
agreement between MODIS and VIIRS snow cover products
rather than an evaluation with Landsat 8 OLI maps (Table 1;
Figures 5, 6), hence these values differ from those presented
earlier.

A comparison of the frequency distribution of fSCA values
between the two sensors in Figure 7 shows distributions and the
overall median fSCA values to be very similar, 70% forMODSCAG
and 71% for VIIRSCAG. These statistics and frequency
distributions are consistent when evaluated for each tile
individually, with median fSCA values of 67% and 70% for
MODIS and 68% and 69% for VIIRS for the h23v05 and
h24v05 tiles, respectively. Further analysis of the frequency
distribution of fSCA values reveals that, overall, MODIS
products find ∼7% purer snow-covered pixels than VIIRS with
MODSCAG having more pixels covered (88%–100%), visible as
taller red bars in Figure 7. The VIIRS products return more snow
covered pixels (50%–88%), visible as taller blue bars in Figure 7.

The expected frequency distribution shift is likely a reflection
of the differences in spatial resolution of the gridded reflectance
data used as inputs to the snow retrieval algorithm; there are likely
more mixed pixels at 1 km VIIRS resolution than at the 500 m
MODIS resolution.

TABLE 2 | Summary of fractional statistics comparing MODIS and VIIRS fSCA to Landsat fSCA.

MODIS VIIRS

Landsat
5 and 7a

Landsat 8 Landsat 8

Mean Mean Min Max Std Mean Min Max Std

Fractional Mean difference 0.076 −0.005 −0.043 0.061 0.023 −0.013 −0.049 0.038 0.024
Median

difference
0.072 −0.002 −0.002 0.037 0.009 −0.005 −0.045 0.020 0.012

RMSE 0.120 0.133 0.047 0.227 0.050 0.125 0.055 0.213 0.044

aRittger et al., 2013.

FIGURE 7 | fSCA for MODIS (500 m) and VIIRS (1 km) for the full period of
record (2012–2015) across both h23v05 and h24v05 tiles combined. The
mean fSCA values are for each sensor (70% for MODSCAG and 71% for
VIIRSCAG shown in red and blue respectively) are shown with a vertical
line. Only clear sky days were included (scene cloud <0.8%).
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The two MODIS tiles (Figure 2) are exceptionally clear on
September 18, 2013 (<0.8% clouds). Figures 8A,B show the
MODIS and VIIRS fSCA, respectively, along with spatial fSCA
differences between the two snow cover products in Figure 8C.
The comparison between Figures 8A,B shows good agreement,
with a higher abundance of high fSCA values in the MODIS data
leading to negative differences in Figure 8C, which are spatially
correlated with the 88%–100% fSCA pixels in the MODIS data
(see Figure 7). Figure 8D shows the vegetation type (Arino
et al., 2010) while Figures 8E,F show the elevation and slope.

These data are used for the topographic analysis shown in
Figures 9, 10.

Performance Similarity Across Topography
The fSCA retrievals for both sensors show similar performance
across elevation, slope, and aspect gradients in tile h23v05
(Figures 9A–C), where we also compared Landsat 8 OLI in
Results. The performance between the sensors is nearly the same
for tile h24v05 (not shown), although the distribution of snow
cover fraction with elevation is modulated by a more variable

FIGURE 8 |Comparison of (A)MODIS and (B) VIIRS-derived fSCA for two MODIS tiles used in this study (Figure 2), difference in fSCA (C). For the analysis shown in
Figures 9 and 10: Globcover land cover class (D), elevation (E), and terrain slope (F). The inset shows a zoom region over a 111 × 78 km region as marked by the red
viewport in panel (A). The satellite view zenith for MODIS was twice that of VIIRS in these data.

FIGURE 9 | Similarities betweenMODIS and VIIRS fSCA retrievals across (A) elevation, (B) slope, and (C) aspect gradients for the full timeseries 2012 to 2015 for tile
h23v05. The hypsometric curve generated from the DEM for the entire tile is shown as an inset.
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hypsometric curve along with monsoonal climates that occur in
the eastern portion of the Himalaya.

Figure 10 shows fSCA compared across two MODIS tiles for
September 18, 2013 segmented by vegetation types (Figure 8D).
We see larger fSCA values (up to 23%) retrieved from VIIRS in
vegetated areas. However, in this region, there are very few pixels
classified as “open forest” or “closed forest” relative to other land
surfaces resulting in the relatively similar comparison shown in
Figure 9. Therefore, the impact on total snow cover is relatively
small. An analysis of the ancillary data shows that over the
vegetated regions (open forest, closed forest, and shrub),
sensor view zenith for MODIS is 44.6° and 45.9°, whereas for
VIIRS they are 23.1° and 25.5°, respectively, for the two tiles. The

larger view zenith for MODIS relative to VIIRS explains the
higher estimate of snow cover from VIIRS. The analysis of
differences related to view zenith is outside the scope of this
paper and of interest for further research but is described in
Evaluation Metrics of Dozier et al. (2008) and also in Rittger et al.
(2020).

With respect to consistency between the MODIS and VIIRS
fractional snow cover products, we compare snow cover area and
regional snowline elevation across tile h23v05 at the common
resolution of 1 km for 2013 to 2015. We observe a strong
correlation between the snow cover area retrievals (R2 � 0.98)
and regional snowline elevation estimation (R2 � 0.88) as shown
in Figure 11. The strong agreement between MODIS and VIIRS

FIGURE 10 | Summary of differences in fSCA (VIIRS-MODIS) over full HMA region on September 18, 2013 summarized in each GlobCover land cover class, where
positive differences indicate VIIRS fSCA >MODIS fSCA. The high bias in vegetated areas (open forest and closed forest classes) are likely due to differences in view angle
with the MODIS view angle for this day twice that of VIIRS. Figure 9B inset (VIIRS fSCA) shows more fractional snow cover than Figure 9A inset (MODIS fSCA) in open
forest visible in Figure 9D supporting this conclusion.

FIGURE 11 | Comparison of MODIS and VIIRS-derived total snow cover area (A) and regional snowline elevation (B) for tile h23v05. The panels show data for
2012–2015 period on clear-sky days only i.e. < 2% cloud cover. All clear-sky days are plotted as black squares with the red crosses plotted over the observations from
April–September.
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snow cover retrievals supports the continuation and
augmentation of existing MODIS timeseries from 2000-present
with VIIRS retrievals, as the MODIS instruments reach end of life
and the observation record of VIIRS continues forward in time.

CONCLUSION

An evaluation of new moderate resolution fractional snow cover
maps from VIIRS retrievals (VIIRSCAG) in the Himalaya show
performance statistics comparable to the more widely evaluated and
available MODSCAG products. MODSCAG fractional snow cover
maps re-evaluated using snow maps from Landsat 8 OLI do not
show the negative bias found in a previous study. The reason for the
improvement in MODSCAG performance revealed in this analysis
is due to the improved Landsat 8 OLI validation data, more
specifically improved sensor technology that avoids saturation in
the visible bands and systematic overestimation bias in the validation
maps from the assumption of 100% snow cover when bands 1, 2, and
3 were saturated in Landsat TM and ETM+.

MODSCAG snow retrievals were expected to outperform
those from VIIRSCAG in the steep terrain of the Himalaya,
largely due to the finer spatial resolution of MODIS data.
However, despite the coarser native resolution of the gridded
products (1 km vs 500 m), VIIRSCAG evaluations produced
slightly lower overall RMSE than for MODSCAG, perhaps
because of improved representation of pixels toward the edge
of the scan. The correlation and similarity in snow elevation and
snow-covered area betweenMODIS and VIIRS observations over
a three-year period, along with similar performance when
compared to Landsat 8 OLI, show the ability of spectral
mixture analysis to perform consistently over a range of
spatial resolutions, making it a good candidate for multi-
satellite fusion efforts. In addition, the VIIRSCAG snow
products appear to be suitable for extending the long-term
SCAG timeseries (now at 20 years) well beyond the life of
MODIS. Extending this record is important to performing
snow cover change evaluation to monitor regional climate
change. Future MODSCAG processing will benefit from
MODIS Collection 6 surface reflectance products, which may
allow processing of Aqua data in addition to Terra.
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