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1 BACKGROUND

The term rockfall describes the rapid displacement of a large, usually meter–sized block of rock
down–slope, triggered by, for example, endogenic or exogenic events like impacts, quakes or rainfall
(Hungr et al., 2014; Xiao et al., 2013). In a remote sensing context, the term rockfall is also being used
to describe the characteristic geomorphic deposit of a rockfall event that can be identified from an
air- or space–borne perspective, i.e., the combination of a displaced boulder and the track it carved
into the slope substrate while bouncing, rolling, and sliding over the surface (also called “boulder with
track” or “rolling boulder”) (Hovland and Mitchell, 1973; Filice, 1967; Moore, 1970) (see Figure 1).
In planetary science, the spatial distribution and frequency of rockfalls provide insights into the
global erosional state and activity of a planetary body (Bickel et al., 2020a; Tesson et al., 2020) while
their tracks act as tools that allow for the remote estimation of the surface strength properties of yet
unexplored regions in preparation of future ground exploration missions (Eggleston et al., 1968),
such as the lunar pyroclastic (Bickel et al., 2019), polar sunlit (Bickel and Kring, 2020) and
permanently shadowed regions of the Moon (Sargeant et al., 2020). Due to their small physical
size (meters), the identification and mapping of rockfalls in planetary satellite imagery is challenging
and very time–consuming, however. For this reason, Bickel et al. (2018) and Bickel et al. (2020b)
trained convolutional neural networks to automate rockfall mapping in lunar and martian satellite
imagery. Parts of the unpublished datasets used for earlier work have now been complemented with
newly labeled data to create a well-balanced dataset of 2,822 lunar and martian rockfall labels (which
we call “RMaM–2020”—Rockfall Mars Moon 2020, 416 MB in total, available here: https://edmond.
mpdl.mpg.de/imeji/collection/DowTY91csU3jv9S2) that can be used for deep learning and other
data science applications. Here, balanced means that the labels have been derived from imagery with
a wide and continuous range of properties like spatial resolution, solar illumination, and others. So
far, this dataset has been used to analyze the benefits of multi–domain learning on rockfall detector
performance (Mars & Moon vs. Moon–only or Mars–only), but there are numerous other
(non–planetary science) applications such as for featurization, feature or target recognition
(aircraft/spacecraft autonomy), and data augmentation experiments.

2 METHODOLOGY

All labels represent the localization of a rockfall instance in a satellite image, i.e., mark the position of
the characteristic combination of boulder and track in an image (see e.g., Bickel et al., 2018).
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2.1 Data Source
All labels have been either derived with subnadir, calibrated, non
map–projected High Resolution Imaging Science Experiment
red–channel.jp2 (HiRISE on board the Mars Reconnaissance
Orbiter, MRO, McEwen et al., (2007)) or subnadir, calibrated,
non map–projected pyramid–tiff.tif (PTIF) Narrow Angle
Camera (NAC on board the Lunar Reconnaissance Orbiter,
LRO, Robinson et al., (2010)) imagery. HiRISE provides
images with spatial resolutions between ∼ 0.25 and 0.75 m/
pixel (McEwen et al., 2007) while NAC provides images with
spatial resolutions between ∼ 0.5 and ∼ 2 m/pixel (Robinson
et al., 2010) from their nominal orbits. Image products have been
downloaded from either the Arizona State University’s LROC
(http://wms.lroc.asu.edu/lroc/search) or the University of
Arizona’s HiRISE (https://www.uahirise.org/) image portals.

2.2 Data Preprocessing and Labeling
The HiRISE images have subsequently been reduced to 8 bit
(PTIF NAC images are distributed as 8 bit images already). Using
QGIS (https://www.qgis.org/en/site/) a series of approximately
300 × 300 to 1000 × 1000 pixel–sized image tiles have been
cropped from the full 109 lunar and 44 martian parent images;
these tiles either contain rockfalls (positive tiles) or do not
(negative tiles). For Mars, there are 484 positive tiles and 330
negative tiles, for the Moon there are 377 positive tiles and 317
negative tiles for training and testing. All positive tiles have then
been processed in Matlab R2017a, where one experienced (with
domain knowledge) human operator manually labeled all
rockfalls with rectangular bounding boxes (bboxes)—a

particularly time–expensive and tedious process. Some examples
of these user–derived labels are showcased in Figure 1. A label
always contains a boulder and its associated track to guarantee
instance uniqueness, i.e., to avoid confusion with static boulders or
track sections without boulders (see Figure 1).

The authors would like to note that, due to the complexity as
well as the limited quality and spatial resolution of the available
imagery, very small rockfalls could potentially be overlooked or
confused with other geomorphic features such as static boulders
with a sand tail that got deposited by aeolian processes (on Mars),
especially in complex geomorphic contexts like talus cones. While
this dataset represents a best effort approach, the potential
occurrence of false positives (labels which describe
non–rockfall features), false negatives (rockfall features in
image tiles which have not been labeled) and duplicates in the
dataset cannot be excluded completely. Particular care has been
taken to remove all FPs and FNs from the designated testing label
sets, to maximize the accuracy of model validation.

3 DATASET

This dataset has been tailor–made for a Python, Keras, and
TensorFlow implementation of RetinaNet (Keras RetinaNet by
Fizyr: https://github.com/fizyr/keras-retinanet, based on Lin et al.
(2018)) and consists of positive and negative image tiles (.jp2 and
.tif) as well as labels and classes (.csv). There are a total of 1,000
positive rockfall training labels per planetary domain and an
additional 300 negative training tiles without any rockfalls that

FIGURE 1 | Examples of martian HiRISE (top) and lunar NAC (bottom) rockfall labels (bright boulder and elongated track); each example has been cropped from
its respective positive tile using its label bounding box coordinates, as indicated in the figure. Tile (0–0) is at the top left (pythonian style). Unlabelled parts of each tile can
act as negatives, as indicated in the shown tiles.
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can be used to further stimulate detector training. The martian
testing set contains 91 positive labels and 31 negative tiles, while
the lunar testing set contains 83 positive labels and 17 negative

tiles, respectively. In total, there are 2,174 positive labels and 648
negative tiles for training and testing. All training and testing
labels and tiles can be mixed without any limitations, if required.

FIGURE 2 | Distribution of spatial resolutions of the imagery used for training and testing from Mars (MRO HiRISE, red) and the Moon (LRO NAC, gray) and
visualizations of the relations between label dimensions (label aspect ratio), illumination condition (solar incidence and phase), and spatial resolution. The label aspect ratio
varies as labels need to adapt to the geomorphic appearance and spatial orientation of rockfalls.

TABLE 1 | All HiRISE image IDs used for RMaM–2020.

HiRISE image ID

ESP_014260_1675 ESP_016726_1720 ESP_017372_1710 ESP_018255_1680 ESP_024286_1910
ESP_025640_1730 ESP_025798_1675 ESP_026101_1750 ESP_026997_1660 ESP_029319_1730
ESP_030703_1675 ESP_033279_1905 ESP_034980_1910 ESP_035186_1670 ESP_036624_1720
ESP_037204_1710 ESP_037797_1665 ESP_038681_1745 ESP_039063_1660 PSP_001377_1685
PSP_005057_1695 PSP_007944_1735 PSP_008946_1715 PSP_009913_1910 PSP_010501_1645
ESP_011926_1720 ESP_012585_1755 ESP_018770_1730 ESP_019165_1765 ESP_019829_1900
ESP_016146_1730 ESP_016211_1655 ESP_016647_1725 ESP_017280_1725 ESP_020259_1670
ESP_021520_1550 ESP_037700_1710 ESP_062655_1670 ESP_027775_1675 ESP_038250_1880
ESP_025156_1965 ESP_043293_1740 ESP_024576_1900 PSP_009222_1660
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Each label .csv file consists of 6 column entries (each row
represents one label), 1) the path to the image the label
belongs to, 2–5) the upper left column and row, and the lower
right column and row image coordinates of the label bounding
box (the pythonian image 0–0 is the top left of the image), and 6)
the label class (here: rockfall). After deployment of the dataset, the
label paths need to be adapted to point to the correct image tile
directory. Each classes. csv file contains 2 column entries, 1) the
class (here rockfall) and 2) the class ID (here 0). The class ID can
be adapted in case the data are used to train a multi–class
detector. The. csv–file structure of RMaM–2020 meets the
input criteria for RetinaNet, but can be easily adapted to fit to
any other object detection framework. Similarly, all labels can be
augmented using geometric operations, as long as the same
operations are applied to the labels and the images. The
dataset consists of 2 main folders which hold 8 sub–folders
and a series of .jp2 (HiRISE), .tif (NAC), .csv files, and one
ReadMe file.

4 ANALYSIS

The RMaM–2020 labels cover a large range of spatial resolutions
and solar illumination conditions. For Mars, RMaM–2020
contains images with spatial resolutions between 0.25 and
0.5 m/pixel as well as solar incidence and phase angles
between 35 and 65 degrees. The solar phase angle describes
the angle between the light that comes from the Sun and the
light that is reflected into the camera (Sun–Planet–Satellite); the
solar incidence angle describes the angle between the incoming
light and the surface of a planet, where 0 degrees denote vertical
and 90 degrees horizontal illumination conditions. For the Moon,
RMaM–2020 contains images with a wider range of spatial

resolutions (due to the nature of LRO’s orbit and NAC’s
technical setup) between 0.5 and 2.2 m/pixel as well as a wider
range of solar incidence and phase angles between 15 and 87
degrees. For both planetary domains, the pairings of differing
spatial resolutions and solar incidence angle are relatively
well–distributed, i.e., there are low- and high-resolution images
for low- and high–incidence angle conditions. The ratio of label x
and y dimensions (the bbox aspect ratio) is consistent for both
planetary domains, reflecting the fact that both datasets have been
labeled by the same human operator. The shape of each bounding
box has been adapted to 1) the orientation of the respective
boulder and track and 2) the local geologic background, to avoid
that other, non–rockfall objects fall within the label (see
Figure 1). The good alignment of absolute bbox dimensions
across the two planetary domains is surprising, given that the
lunar image data have slightly lower spatial resolutions than the
martian image data; this could potentially indicate that either 1)
martian rockfalls are slightly smaller on average or 2) that the
human operator subconsciously increased the size of the bboxes
when looking at lower resolution rockfall examples during
labeling. The discussed properties of RMaM–2020 are
visualized in Figure 2 and the IDs of all used HiRISE and
NAC images are listed in Tables 1, 2, respectively.

5 FUTURE WORK

Our goal is to complement RMaM–2020 with more rockfall labels
over the next years, not only from the Moon and Mars, but from
other planetary bodies such as Ceres (NASA’s Dawn Mission),
comet 67P (ESA’s Rosetta Mission), and from potential future
datasets such as from ESA’s BepiColombo Mission to Mercury.
This way RMaM–2020 (and its successors) would remain a

TABLE 2 | All NAC image IDs used for RMaM–2020.

NAC image ID

M139348293LC M126724656LC M111422030LC M122191322RC M172730399LC
M101313293LC M102493519LC M103717945RC M103831840RC M103983419LC
M104305550LC M104806008LC M105614904RC M105637059RC M105801850LC
M106209806RC M109026539LC M110784724RC M111293210LC M111735067RC
M111843992RC M112312113LC M113934119LC M114254548LC M117419913RC
M121539000LC M121987140RC M124416659LC M124797072RC M127009259RC
M129621462LC M133111610RC M135222913LC M137340408LC M137340408RC
M137665718RC M137727162LC M138107059LC M142625106LC M144849957RC
M147055119LC M148184487LC M149724048LC M152445210RC M157330070RC
M158463234LC M162969274LC M164777545RC M170865005RC M180329337LC
M180994913RC M183703084RC M183710231RC M186133886LC M187571006RC
M189115113LC M189929928LC M1095658447LC M1095815085RC M1098452076LC
M1098608807LC M1099102248LC M1102495759RC M1105396233RC M1107889593LC
M1107889593RC M1108925446LC M1109783643LC M1114050328LC M1115854283LC
M1116422710LC M1118617174LC M1119753979LC M1120947515RC M1122750954RC
M1122758066LC M1123376589LC M1126054875LC M1128650716LC M1128806612RC
M1129084350RC M1131700619LC M1135873231RC M1136377906RC M1136911243LC
M1138595822RC M1138653725LC M1138987659LC M1144394872RC M1148022168LC
M1148022168RC M1150378215RC M1151459843RC M1153816152LC M1153931039LC
M1162148129RC M1166857082LC M1169267345LC M1169324597LC M1173413880LC
M1179831840RC M1181223882LC M1182551704LC M1184156745RC M1184540887LC
M1187686867RC M1187961349LC M1190456337LC M1196943961LC
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valuable resource for deep learning–driven rockfall detection
across the Solar System in the future.
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