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INTRODUCTION

The last two decades have seen tremendous technological advances in the field of remote
sensing, especially in sensor developments, such as considerable improvements in onboard
processing, miniaturization of hardware and more efficient modes of communication and data
connectivity. This significant technological progress has led to not only a proliferation of
satellite Earth observation data, from both public missions and commercial missions operated
by the private sector industry, but also a massive increase in big data acquired by airborne
sensors, in particular onboard remotely piloted systems (unmanned aerial vehicles–UAVs or
drones).

At the same time, compute processing power and computing infrastructure, especially online
cloud computing, have greatly advanced, making high-performance computing now available at
affordable and supported services to almost anyone connected to the internet. This development,
coupled with the open data policies of many governments, organizations, and EO programs, has
resulted in a quick and steady rise of research studies and downstream business applications that use
remote sensing data at the core of their applications.

For remote sensing applications, particularly for satellite remote sensing, microwave sensors
are of particular interest and growing rapidly in popularity for many applications. The reason for
this is because, physically speaking, the microwave signals can easily penetrate clouds, are
independent of daylight and remain largely unaffected by rain. However, many challenges related
to different environments and applications remain, and just a few major ones are outlined
hereafter.

SENSOR TECHNOLOGY

Many applications still present a number of important technological and methodological challenges,
such as soil moisture retrieval from (passive) radiometry or active synthetic aperture radar (SAR) or
the generation of topographic datasets that are accurate enough for given application requirements.
For example, Global Navigation Satellite Systems-Reflectometry (GNSS-R) is an emerging remote
sensing technique that makes use of navigation signals to map global soil moisture fields and
vegetation characteristics (Camps et al., 2016) and has even shown promise for tropical wetland
mapping (Rodriguez-Alvarez et al., 2019) or potential for operational flood mapping (Chew et al.,
2018). Despite these first demonstrations of success, the methods are far from ready to be used for
developing robust downstream applications.

In addition, radar sensing technology developed for very specific applications, such as the Ka-
band sensor onboard the upcoming SurfaceWater andOcean Topography (SWOT)mission that will
measure river width, slope, water level, and discharge measurements (Frasson et al., 2019) as well as
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fine-scale detail in the global ocean surface topography (Morrow
et al., 2019), still need to be more fully investigated in terms of
their accuracy and limitations for the target applications.

APPLICATION ENVIRONMENTS

The most widely used radar frequencies on SAR sensors onboard
civil satellites (C- and X-band) cannot fully penetrate vegetation
cover, which for many applications, such as wetland conservation
and ecological studies as well as flood mapping and monitoring
water changes, would be highly desirable. In the case of SAR,
vegetation typically causes diffusive and volume scattering and at
short wavelengths (C- or X-band), most signals do not penetrate
dense vegetation cover (Schumann and Moller, 2015). At longer
radar wavelengths (e.g., L- or P-band), however, several successful
approaches have been developed and been demonstrated [see for
example, Hess et al. (1990) for an extensive review], although
satellites carrying L-band sensors are fewer and images are
currently not freely available. Even at shorter, more commonly
used wavelengths, such as C- or X-band, approaches have been
published (Pierdicca et al., 2017; Plank et al., 2017; El Hajj et al.,
2019; Grimaldi et al., 2020) but their application has only seen
limited success. Multi-satellite data, including passive microwave,
have also been used successfully to map global wetland inundation
dynamics (Prigent et al., 2012) and recent innovative approaches
have looked at GNSS-R technology to improve the mapping of
flooded forests (Rodriguez-Alvarez et al., 2019).

Another challenging environment for SAR is in urban areas.
For example, most people and valuable assets at risk from
flooding are located in urban areas, so it is obviously desirable
to map flooding in those areas. However, urban areas in flood
present important challenges: inadequate spatial resolution; high
building density obstructing street view; many different building
types and a large variety of other man-made features which cause
a lot of signal distortion; obstruction by cloud cover; and mixing
of many different land cover types that are flooded and non-
flooded. In fact due to these challenges, at present, accurate
remote sensing of urban flooding seems restricted either to
aerial photography (Yu and Lane, 2006), dGPS-generated
wrack marks (McMillan and Brasington, 2007; Neal et al.,
2009) or the use of high resolution LiDAR intensity data
(Hoefle et al., 2009). Some successes have been shown using
space-borne fine resolution SAR particularly sensors like
TerraSAR-X or COSMO-SkyMed (Mason et al., 2010; Chini
et al., 2012; Giustarini et al., 2013). However, more
fundamental research is required into understanding the
complex interactions between building structure and SAR
signal processing as well as noise reduction and shadow/
layover effects. Parts of those complex issues can be solved by
employing a theoretical scattering model (Franceschetti et al.,
2003) as demonstrated byMason et al. (2014) or by making use of
complementary SAR signal information contained in signal
polarization modes or signal coherence (Chini et al., 2016;
Chaabani et al., 2018), which has been shown recently to hold
most promise for reliable operational urban flood mapping
(Chini et al., 2019).

PROCESSING ALGORITHMS

Within the application environments challenges described above,
there are some pitfalls that can significantly limit the success for
solutions or indeed make robust and reliable solutions difficult to
develop. For instance, the rapidly and constantly changing nature of
urban landscapes and vegetation dynamics over different spatial and
temporal scales poses a difficult problem to addressing the challenge
of mapping inundation below vegetation canopy and in urban areas.
Although characterizing and simulating or predicting the various
signal interactions in these complex and dynamic environments is
possible and the theoretical basis of doing so is known and robust
[see for example, Pulvirenti et al. (2011)], practical application of the
mathematical models that need to be part of the solution requires
expert SAR signal knowledge. Therefore, at least for the moment,
promising operational solutions that have been proposed, for
example, for flood mapping from SAR under different types of
vegetation or urban areas are limited to only a few papers as outlined
in the previous section. This is particularly true for urban flood
mapping that received only recently the attention it deserves using
complex SAR signal coherence processing (Chini et al., 2019; Li et al.,
2019a; Li et al., 2019b).

More recently, machine learning algorithms have gained
hugely in popularity and have seen much progress, despite
their application to satellite images dating back at least
25 years, even for SAR imagery (Chen et al., 1996; Kubat
et al., 1998). Recent applications of machine learning models
to SAR imagery include methods to map oil spills (Chen et al.,
2017) and sea ice (Lee et al., 2016), detect ships (Schwegmann
et al., 2016), and monitor floods in urban areas (Li et al., 2019a),
just to name a few. However, one of the main challenges that
needs to be urgently addressed with respect to machine learning
and SAR in particular, is that of open-access image archives being
relatively short in record length but image volumes are
prohibitively large, thus making open data sharing across
online cloud compute platforms running machine learning
algorithms rather difficult and, consequently, progress may be
slower than expected. Moreover, microwave data are complex
and images are not easily interpretable, compared to optical
imagery which the human eye is much more accustomed to.
Nevertheless, there have been some notable efforts in the past
year to prepare SAR datasets specifically for machine learning
applications and make them as well as labels easily available
(Wang et al., 2019; Bonafilia et al., 2020).

OUTLOOK

Microwave remote sensing, whether passive or active sensors
onboard satellite or airborne platforms, has kept its promise to
be an inviting alternative to optical and thermal remote sensing
for many applications, especially to measure and monitor
Earth surface and even sub-surface processes when those
are obscured by clouds or vegetation. With the proliferation
of current and planned satellite missions, including
commercial satellites, carrying microwave sensors and
providing high-repeat big data, there is a growing need to
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overcome existing technological challenges, improve methods
and facilitate data sharing and compute processing, so that
data can be turned into actionable information more
seamlessly and become available to end-users at an adequate
operational readiness level. It is clear that, to achieve this,
many challenges still need to be addressed, of which many are
related to the development of robust, sharable and
interoperable operational algorithms that are independent of

satellite and image type and can be applied in a variety of
environments (Schumann and Moller, 2015).
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