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Implications of EMG channel
count: enhancing pattern
recognition online
prosthetic testing
Ann M. Simon1,2*, Keira Newkirk1, Laura A. Miller1,2, Kristi L. Turner1,
Kevin Brenner1, Michael Stephens1 and Levi J. Hargrove1,2,3

1Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, United States, 2Department of Physical
Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States, 3Department of
Biomedical Engineering, Northwestern University, Evanston, IL, United States
Introduction: Myoelectric pattern recognition systems have shown promising
control of upper limb powered prostheses and are now commercially
available. These pattern recognition systems typically record from up to 8
muscle sites, whereas other control systems use two-site control. While
previous offline studies have shown 8 or fewer sites to be optimal, real-time
control was not evaluated.
Methods: Six individuals with no limb absence and four individuals with a
transradial amputation controlled a virtual upper limb prosthesis using pattern
recognition control with 8 and 16 channels of EMG. Additionally, two of the
individuals with a transradial amputation performed the Assessment for
Capacity of Myoelectric Control (ACMC) with a multi-articulating hand and
wrist prosthesis with the same channel count conditions.
Results: Users had significant improvements in control when using 16 compared
to 8 EMG channels including decreased classification error (p = 0.006), decreased
completion time (p = 0.019), and increased path efficiency (p = 0.013) when
controlling a virtual prosthesis. ACMC scores increased by more than three
times the minimal detectable change from the 8 to the 16-channel condition.
Discussion: The results of this study indicate that increasing EMG channel count
beyond the clinical standard of 8 channels can benefit myoelectric pattern
recognition users.

KEYWORDS

below-elbow amputation, artificial hand, channel reduction, muscle signals, myoelectric

control, outcome measures, surface electromyography

1 Introduction

Myoelectric pattern recognition control is a commercially available option for upper

limb prosthesis control. Following transradial amputation, the most common major

upper limb amputation (1), users can make physiologically appropriate muscle

contractions of their phantom hand or wrist. Measurement via surface

electromyography (EMG) of their residual forearm muscles and identification of these

patterns of activity can be used to intuitively control similar prosthesis movements. For

transradial users, the use of myoelectric pattern recognition, particularly after a period

of home usage, has shown improvements over two-site agonist-antagonist control in

some studies (2, 3), while other laboratory-based studies controlling fewer movements

demonstrate similar outcomes between the two systems (4). Due to the amount of
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dexterity lost in the missing hand, there is still much room to

improve users’ control and functional capabilities with any of

these prosthetic systems.

Multiple review articles cover decades of pattern recognition

research aimed at increasing the accuracy of powered upper limb

devices including investigating various features and classification

techniques, arm position, electrode shift during don-doff cycles

(i.e., the process of putting on and taking off a prosthetic device),

and proportional control (5–7). The EMG measurement system

is an important part of the upper limb prosthetic system, and

often channel optimization or channel reduction investigations

are a subsection of pattern recognition studies. In a study

quantifying control of hand and wrist using 12 uniformly placed

surface EMG channels, authors indicate that offline analyses

show that six optimally chosen channels only reduced accuracies

from 93.1% to 91.5% for 6 movements (8). When investigating

the impact of arm position and integrating EMG with

accelerometer data, researchers noted that for five individuals

with a transradial amputation, offline classification error only

minimally increased when the number of channels was reduced

from eight to two (9). When classifying finger movements for

transradial users, a subset of 6 EMG channels classified 12

different individual finger movements with 90% accuracy, which

was very similar to the accuracy when using all 11 channels (10).

Using the dataset from (10), independent component analysis

and clustering methods were used to find a reduced set of four

EMG sensors that did not reduce overall accuracy (11). Similar

results classifying finger movements were observed using a

genetic algorithm to reduce features and channels: data from one

individual with a transradial amputation and five with no limb

absence indicated that 8–11 of the 16 EMG channels recorded in

the study could be eliminated without sacrificing classification

accuracy (12). Our own prior work using offline analyses

suggested that finding an optimal subset of 3 channels from a set

of 16 channels does not provide statistically significant reduction

in classification accuracy (13).

While these surface EMG channel reduction results are

encouraging and could reduce complexity of the pattern

recognition EMG socket, these results are from offline analyses.

Offline analysis may not always have a strong correlation with

online pattern recognition performance metrics (14, 15).

Although high offline accuracy may be necessary, it alone may

not confirm good functional real-time control of a pattern

recognition prosthesis (15). Alternatively, real-time control of a

virtual prosthesis may be used to enhance offline analyses. For

example, virtual prosthesis control has been found to be

predictive of functional performance with a physical prosthesis:

control of a virtual prosthesis on the Target Achievement

Control (TAC) Test (16) was correlated with control of a

physical prosthesis during several clinical outcome measures

including the ACMC, the Southampton Hand Assessment

Procedure, and the Box and Blocks test (17). Additionally,

channel reduction studies use pre-gelled silver/silver chloride

electrodes as an EMG interface, whereas clinical interfaces

usually involve dry stainless steel domes embedded in a socket.

This difference may also affect results. Therefore, investigation of
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performance with a clinical interface and in real-time is

necessary to expand insight on whether or not reducing the

number of EMG channels truly affects control.

The three upper limb pattern recognition systems that

earned Food and Drug Administration (FDA) class II

clearance (18–20) currently record up to 8 EMG channels. At

the time they first became available, this was an increase from

two-site agonist/antagonist control. Maintaining good skin

contact with all 8 bipolar EMG channels (up to 17 domes

embedded in a socket) was initially a concern. The success of

these commercial systems indicates that good well-fitting

sockets with 8 channels can be achieved. Clinical practice of

electrode placement involves muscle palpation and selecting

sites that have underlying muscle that maintain good contact

during use (21). Clinical selection of these 8 channel locations

is likely different than the optimal reduced channel sets found

in the literature. If space is limited due to residual limb

length, electrode contact points can even be shared between

EMG channels. If space is not limited, the impact of more

contact points and more EMG channels embedded in a

prosthetic socket is untested.

The effect of EMG channel count on real-time prosthesis

control with users in the limb loss population has not been

directly investigated. This study serves to fill that knowledge gap

for below-elbow prosthesis control. Individuals with no limb

absence and individuals with unilateral transradial amputation

controlled a virtual prosthesis in real-time using pattern

recognition configured with 8 and 16 channels of EMG.

Individuals with transradial amputation additionally used a

physical prosthesis to complete the ACMC under the same

channel conditions. We hypothesized that increased EMG

channel count would result in improved control of both the

virtual and physical prostheses. If supported, users may gain

functional benefits of increasing the number of EMG channels in

clinically available pattern recognition systems.
2 Methods

2.1 Participants

Individuals with no limb absence and individuals with a

transradial amputation between the ages of 18 and 95 were

recruited at the Shirley Ryan AbilityLab in Chicago, IL, for this

study. Inclusion criteria for the individuals with an amputation

also included history of a unilateral upper limb amputation

below the elbow, the ability to use a prosthesis under myoelectric

control, and residual limb length large enough to accommodate

33 electrode contacts. Exclusion criteria included cognitive

impairment, evaluated subjectively during the consenting process

that would interfere with their understanding of study

requirements or any significant comorbidity that would preclude

completion of the study. The study was approved by the

Northwestern Institutional Review Board (STU00216244 and

STU00015912), and all participants provided written informed

consent to participate.
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2.2 EMG configuration and study prosthesis

For all participants, 33 electrodes were placed on the surface of

the forearm in order to measure from 16 bipolar EMG channels

with one reference (i.e., ground) electrode. For individuals with

no limb absence, silver/silver chloride electrodes were placed with

an approximate 3 cm inter-electrode distance in two

circumferential bands: 8 pairs in a band at the proximal portion

of the residual forearm around the apex of the muscle bulge and

another 8 pairs in a band distal to the first (Table 1). All 16

EMG channels were recorded for all trials. For the 8-channel

condition, all 8 channels of EMG in the proximal band were

used to train to the pattern recognition system. EMG signals

were amplified and digitized using a Texas Instruments ADS1299

chip sampled at 1,000 Hz.

For individuals with a transradial amputation, custom sockets

were fabricated (Figure 1) for use during both the virtual and

physical prosthesis testing. Existing, well-fitting sockets were

duplicated and a new socket was fabricated with a flexible inner

liner. A clinician palpated the residual limb according to clinical

practice to determine the locations of the bulk of the forearm

muscles. Two circumferential bands of electrodes with an

approximate 3–5 cm inter-electrode distance, based on residual

limb length, shape and scar tissue, were selected over the forearm

muscles: a proximal band consisting of twelve electrode pairs and
TABLE 1 Protocol overview.

Participants EMG setup

No limb absence • Silver/silver chloride pre-gelled electrodes
• 3 cm inter-electrode distance
• Two circumferential bands of electrodes: 8 pairs in pro

Transradial amputation • Custom socket fabrication
• Stainless steel dome electrodes
• 3–5 cm inter-electrode distance
• Two circumferential bands of electrodes: 12 pairs in p

FIGURE 1

Physical prosthesis fabrication including (left) flexible inner liner with 33 elec
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a distal band of four electrode pairs. All 16 EMG channels were

recorded. For the 8-channel condition, six electrode pairs from

the proximal band and two pairs from the distal band were used

to train the pattern recognition system. Electrode locations were

transferred to the flexible inner liner, and stainless steel dome

electrodes were installed (Figure 1, left). The study prosthesis

consisted of the flexible inner liner and rigid vivak frame with

3D printed connections to a custom two-degree-of-freedom wrist

and the Psyonic Ability Hand (22) (Figure 1, right). This

prosthesis was used for both virtual and physical prosthesis testing.
2.3 Channel count evaluation

2.3.1 Virtual prosthesis testing
Participants with a transradial amputation wore the study

prosthesis, but hand and wrist motors were turned off. The raw

EMG measured from the flexible liner was sent to a desktop

computer and displayed on a monitor to verify electrode contact

and to control a virtual prosthesis displayed in front of the

individual. The virtual (i.e., graphical) environment used in this

study was non-immersive.

All participants trained a pattern recognition system to

recognize hand and wrist movements using verbal and screen-

guided prompts, making natural muscle contractions that
Virtual
TAC Test

Physical ACMC
and survey

ximal band and 8 pairs in distal band

N = 6

roximal band and 4 pairs in distal band

N = 4 N = 2

trode domes and (right) Psyonic Ability Hand and custom powered wrist.
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mimicked a sequence of pictures on the monitor (23). All users

were instructed to keep their forearm unsupported during

calibration and training. Individuals with no limb absence

trained hand open and close, wrist pronation and supination,

wrist flexion and extension, and rest. Individuals with a

transradial amputation trained hand open, hand close in chuck

and key grip, wrist pronation and supination, and rest. During

this seated calibration participants held each contraction for 3 s

and repeated each motion four times. For individuals with a

transradial amputation, training data collection was also

prompted by a clinician, and one grip was trained first before

adding the second grip. Additionally, for these individuals all

virtual prosthesis use (calibration and testing) occurred with the

physical prosthesis donned, forearm unsupported to create a

weighted environment within the prosthetic socket, and hand/

wrist motors turned off.

The pattern recognition classification system used was well

established (24, 25) and similar to what is clinically available.

EMG data from 8 or 16 channels were segmented into 200 ms

analysis windows with a 25 ms update rate, four time domain

and six auto-regressive features were extracted, and a linear

discriminant analysis classifier (5, 26, 27) used to decode hand

and wrist movements. Movement speed was proportional to

EMG amplitude (28), and a decision-based velocity ramp was

used to limit speed if movement decisions were not consistent (29).

After calibration, participants had sequential control of the

trained movements and controlled a virtual prosthesis in a real-

time non-immersive virtual environment. EMG quality was

monitored to promptly identify and resolve obvious sources of

noise (all participants) or socket-fit issues (transradial

participants). When multiple grips were calibrated, users had to

fully open the virtual hand to switch grips. After they

demonstrated control of the virtual prosthesis, they practiced

repetitions of the Target Achievement Control (TAC) Test.

During the TAC Test, participants are instructed to move the
FIGURE 2

Target Achievement Control (TAC) Test. Participants moved a virtual prosth
reached within acceptable tolerances. Participants with transradial amput
instructed to keep their forearm unsupported during testing.
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virtual prosthesis such that it matches a target posture (Figure 2)

within an acceptable tolerance on each trained degree of freedom

(±5 degrees for participants with no limb absence and

±10 degrees for participants with transradial amputation). All

participants had at least one practice session prior to testing.

Data collection began with two screen-guided calibrations,

which were used to train the virtual prosthesis. Similar to

practice, each calibration had two repetitions of 3 s

contractions for each movement and a rest period of 2 s

between movements. After participants re-acclimated to

controlling the virtual prosthesis, they performed six repetitions

of each one-degree-of-freedom movement target in the TAC

Test. Each condition (8 and 16 channels) was randomized as

were the repetitions within each condition trial. Breaks were

provided as necessary between TAC Test trials with a longer

break between channel conditions. A single researcher set the

channel condition during testing. The participant and other

individuals in the room (prosthetist, occupational therapist,

and additional researchers) were blinded to channel condition

throughout the testing. At the end of the session, four more

repetitions of each motion were collected via screen-guided

calibration for offline analysis.

After each condition, participants in the transradial group

completed a questionnaire aimed at assessing the user’s perceived

control, which asked them to rank on a scale from 1 (very easy)

to 5 (very hard) how difficult it was to move the prosthesis in

each of the five movements (wrist supination, wrist pronation,

hand open, chuck grip, and key grip). A total score of 5

indicated that all movements were easy to achieve and, a total

score of 25 indicated all movements were very hard.

TAC Test performance metrics were averaged across all

movements. Metrics included: failure rate (the percentage of

trials participants failed to achieve the target posture within

20 s), completion time (for successful trials, the time to achieve

the target posture), and path efficiency (the shortest path to the
esis into target posture. The virtual hand turned green when target was
ation wore the study prostheses during virtual testing. All users were
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target posture divided by the total distance traveled during the

trial). Additionally, the two reserved calibrations collected at the

end of the experiment were used to calculate offline classification

error. Since some users had delayed onset or early termination of

their muscle contractions, classification error was calculated as a

false activation rate: muscle contraction movements that were

incorrectly classified as rest were not included as errors.
2.3.2 Physical prosthesis testing
In an additional testing session on a separate day, individuals

with a transradial amputation used the study prosthesis with the

8- and 16-channel conditions. The Psyonic Ability Hand had the

capability to close in multiple grips, but only key and chuck grip

were calibrated for this preliminary testing. Additional custom

post-processing was necessary to ease how the hand physically

changes grips because the Psyonic Hand does not need to be

fully open to change grip patterns. Pilot testing indicated that if

grip decisions were not consistent, the hand would change to a

different grip even if an object was being held. Previous

approaches to resolve this issue include requiring the user to

fully open the hand and/or perform a hand open signal for a set

time duration before allowing the system to change grips (30). In

this study, users were required to perform a strong hand open

signal for a set duration prior to the hand changing grips.

Clinician and user feedback was used to set the strength and

duration thresholds of the hand open contraction for each user.

Like the virtual session, participants donned the study

prosthesis and calibrated the same set of movements. After the

device was calibrated, the hand and wrist motors were turned on

to allow the participant to practice using the prosthesis. Practice

involved working with an occupational therapist to control each

motion of the prosthesis, stacking blocks, folding a towel, and

other tasks in both a seated and standing position.

A single researcher set the channel condition in a randomized

order so all other individuals, including the user, were blind to the

channel condition. After the channel condition was set,

participants practiced with the prosthesis for an additional

5 min. Re-calibration was allowed based on the clinical

discretion of the blinded occupational therapist/prosthetist.

Participants performed a single trial of the ACMC with each

channel condition. The ACMC is an observational assessment

measuring the user’s quality of prosthetic hand movements

during a two-handed functional task (31, 32). The ACMC

outcome was videotaped while users packed luggage, gathering

items from various size containers and locations, packing and

folding them into a suitcase. After each channel condition,

participants completed the same questionnaire aimed at

assessing their perceived control. If the participant recalibrated

during the previous condition, the system was reverted to the

original calibration data prior to starting the 5-min practice

with the other channel condition (again with the opportunity to

recalibrate), thus establishing a standard baseline of control for

each condition. At the end of the session, four more repetitions

of each motion were recorded via screen-guided calibration for

offline analysis. A certified occupational therapist who was also
Frontiers in Rehabilitation Sciences 05
blinded to the channel condition scored the assessment using

the video.
2.3.3 Statistical analysis
Analysis of variance statistical analyses were conducted

utilizing Minitab Statistical Processing Software (Version 21) to

assess the impact of EMG channel count on various measures

associated with the TAC Test, including classification error rate,

failure rate, completion time, and path efficiency. To

accommodate the hierarchical structure of our data, where

multiple measurements were taken from each participants, linear

mixed effects models were employed. Participant was

incorporated as a random effect to account for inter-subject

variability, while population (categorized into no limb absence or

transradial amputation) and channel count (8 or 16) were

included as fixed effects to evaluate their influence on the

dependent variables.

For each dependent variable, a separate linear mixed effects

model was specified. The model fitting process involved the

estimation of fixed effects to understand the relationship between

the dependent variables and our predictors, while random effects

were used to model the variability attributable to differences

across participants. The significance of fixed effects was

determined using likelihood ratio tests, comparing the full model

containing the predictors with a reduced model excluding the

effect in question. This approach allowed for the assessment of

whether EMG channel count, as well as the population category,

significantly affected the outcomes of interest.
3 Results

3.1 Participants

Ten individuals (six with no limb absence and four with a

unilateral transradial amputation) participated in this study

(Table 1). The no limb absence group consisted of 3 males and 3

females, were all right-handed, and all used their right arm to

control the virtual prosthesis. The transradial group was all male,

and all reported limb loss secondary to trauma. Additional

demographics for participants with transradial amputation are

listed in Table 2.
3.2 Virtual prosthesis results

All participants successfully completed the virtual environment

testing. Offline classification error significantly decreased for the

16-channel system compared to the 8-channel system (p = 0.006).

There were no differences between population (p = 0.785). For

users with the no limb absence, false activation error rates for six

movements were 7.0% [6.1, S.D.] for 8 channels and 3.0% [2.6]

for 16 channels. For users with transradial amputation, false

activation error rates for five movements were 8.8% [7.5] for 8

channels and 2.9% [4.1] for 16 channels. Confusion matrices for

these conditions are displayed in Figure 3.
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TABLE 2 Demographics of individuals with a transradial amputation.

ID Age Years since
amputation

Prosthesis
side

Previous
handedness

Residual
limb length

TMR PR experience Recent home prosthesis use

S1 36 9 Left Right Long (300 mm) Y Y Non-user

S2 60 44 Right Right Medium (210 mm) N Y Myoelectric (2-site), 8+ h/day, 7 days/week

S3 29 3 Left Right Medium (245 mm) N Y Myoelectric (2-site), 4-8 h/day, 5-7 days/week

S4 34 6 Left Right Medium (225 mm) Y Y Myoelectric (PR) or BP, <4 h/day, 1–7 days/week

TMR, targeted muscle reinnervation (24); PR, pattern recognition; 2-site, two-site agonist-antagonist control; BP, body-powered prosthesis.

FIGURE 3

Confusion matrices show improvements in movement prediction for the 16-channel system compared to the 8-channel system for both participants
with no limb absence (top) and transradial amputation (bottom).

Simon et al. 10.3389/fresc.2024.1345364
TAC Test metrics for both groups showed an overall

improvement in control for the 16-channel count condition

compared to the 8-channel count (Figure 4). When using 16

channels compared to 8 channels, average failure rates decreased

from 6.2% [8.8] to 0.3% [0.8] for the group with no limb

absence and from 8.3% [12.3] to 2.5% [3.2] for the group with

transradial amputation. However, these changes were not

statistically significant between channel count (p = 0.082) or

population (p = 0.525). Completion times decreased from 7.3 s

[2.9] to 4.4 s [1.8] and 4.6 s [1.7] to 3.7 s [0.9]. These changes

were statistically significant for channel count (p = 0.019) but not
Frontiers in Rehabilitation Sciences 06
population (p = 0.962). Path efficiency increased from 74.8%

[10.9] to 85.1% [9.3] and 75.9% [11.3] to 84.5% [5.3] for the

groups with no limb absence and transradial amputation,

respectively. These changes were statistically significant for

channel count (p = 0.013) but not for population (p = .962).
3.3 Physical prosthesis results

Two individuals with a transradial amputation (S1 and S4)

successfully completed the physical prosthesis testing. The other
frontiersin.org
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FIGURE 4

Virtual prosthesis TAC Test results for participants with no limb absence and with transradial amputation for both the 8-channel (blue) and 16-channel
(orange) systems. Significant improvements, denoted by *, in completion time (p = 0.019) and path efficiency (p = 0.013) were measured for the 16-
channel system compared to the 8-channel system. Failure rate was not statistically significant between channel count (p = 0.082).

Simon et al. 10.3389/fresc.2024.1345364
two participants’ (S2 and S3) residual limb became quite fatigued

when practicing using the study prosthesis, likely due to its

length and weight. Since they were at elevated risk for fatigue

and proximal joint discomfort, they did not attempt the ACMC.

Participants S1 and S4 demonstrated increased capabilities with

the 16-channel system compared to the 8-channel system

(Figure 5). S1 score increased from 48.7 to 56.3 and S4 increased

from 44.6 to 52.8. Offline false activation rate error slightly

decreased for the 16-channel system, 10.0% [2.4], compared to

the 8-channel system, 12.8% [4.2].
3.4 Transradial user questionnaire results

Since individuals with an amputation were the target

population, they were the only group surveyed on their

perception of control between the two different channel

conditions. They were wearing and subjected to the weight of the
FIGURE 5

Individual with a transradial amputation packing luggage items (left) as a part
16-channel system compared to the 8-channel system (right).

Frontiers in Rehabilitation Sciences 07
study prosthesis for both the virtual and physical prosthesis

testing but only interacting with the device for the physical

testing. Figure 6 shows that, on average for the virtual testing,

users perceived easier control with the 16-channel system

compared to the 8-channel. A similar trend was seen for the

physical prosthesis but with a much larger gap in ease of use

between the two different channel conditions.
4 Discussion

To the authors’ knowledge, this is the first study that evaluates

EMG channel count during real-time pattern recognition control

with end users. Results support our hypothesis that real-time

control with a pattern recognition system configured with 16 EMG

channels provides better control than one configured with 8 EMG

channels. Both groups of participants (individuals with no limb

absence and with unilateral transradial amputation) were able to
of the ACMC. ACMC scores demonstrate increased capabilities with the
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FIGURE 6

Ease of use questionnaire given to individuals with transradial
amputation for both the virtual (N= 4) and physical (N= 2)
prosthesis testing. A total score of 5 indicated that all motions
were “very easy” and a total score of 25 indicated that all motions
were “very hard”.

Simon et al. 10.3389/fresc.2024.1345364
complete TAC Test trials in significantly less time with significantly

increased path efficiency with the 16-channel system. Participants

with a transradial amputation also demonstrated increased

capabilities while using a physical prosthesis to perform an

outcome measure with the 16-channel system. Furthermore, survey

results from transradial users indicate that they can perceive this

control improvement in both the virtual and physical environment.

Physical prosthesis testing showed improvements in the ACMC

score when using the system with more EMG channels: both

participants’ scores increased (S1 by 7.6 points and S4 by 8.2

points). This increase in ACMC score is more than three times

the minimal detectable change of 2.5 for the ACMC scored by a

single rater. This outcome measure demonstrates that these

improvements in control are clinically relevant as one user’s scores

indicated a move from a category of “somewhat capable” to

“generally capable”. Survey results also indicate an expected shift

in decreased ease of use from the virtual to the physical

environment. Physical prosthesis control is more difficult because

weight, limb position, and fatigue likely have a larger impact.

Notably, EMG channel count had a much larger impact on ease

of use with a physical device compared to a virtual prosthesis. S2

and S3’s inability to complete physical prosthesis testing likely is a

result of the selection of physical device. Despite participants S2

and S3 having residual limb lengths similar to S4, during use the

device weight and length led to substantial muscle fatigue for

them, making it impractical for use under either channel

condition. An alternative study device or device configuration (e.g.,

single degree-of-freedom hand with two degree-of-freedom wrist)

might have led to reduced device weight or length or different

weight distribution, potentially enabling these participants to

complete the channel condition study with a physical prosthesis.

False activation rates in this study were within the ranges of

offline errors previously published for transradial users (i.e.,

classification accuracy converted to error rate). Error rate for

the 8-channel condition was 8.8% for five movements (i.e., two

wrist movements, hand open, and two grips): Li et al. found

six optimally placed EMG channels resulted in an 8.5% error
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rate for six movements (four wrist movements, hand open,

and hand close) (8), and Geng et al. (9) found 7.3% error for

6 intra-limb movements (four wrist movements, hand open

and hand close). Error rates measured in this study, 2.9%

with 16 EMG channels, are lower than these previously

published results.

This work investigated channel count as it relates to an input

into pattern recognition systems. However, there are other

alternative methods of EMG prosthetic control. For example,

multi-channel EMG signals can be decomposed to identify

individual motor unit activity (33). This type of approach uses

source separation techniques and often requires higher channel

counts than typical pattern recognition systems. When successfully

implemented, this approach has been used with individuals with

no limb absence and two with limb difference (one transradial

congenital absence and one with transradial amputation) to

decode six wrist motions, showing hat on average 16 ±7 motor

units were identified per motion with greater than 85% accuracy

(34) and can occur in real-time (35). For individuals with no limb

absence, dimensionality-reduction using a nonlinear autoencoder

has shown promise for control of a high-dimensional virtual hand

with only four EMG signals (36). It is possible that incorporating

more channels into such a system may further improve

performance, perhaps at the expense of a more extensive training

data set for configuration of the autoencoder.

Virtual performance metric trends for the TAC Test were

similar between groups even though the systems between groups

were not the same. While the electrodes used for each population

were different (i.e., pre-gelled silver/silver chloride for the group

with no limb absence and dry stainless steel domes for the group

with a transradial amputation) they both represent common

electrode types used in upper limb pattern recognition research.

Results are promising in that the trend towards improved control

with 16 EMG channels was independent of these electrode

differences. Stainless steel dome electrodes (i.e., the clinical

interface for EMG controlled transradial prostheses) have higher

impedance, poorer skin/electrode impedance matching and more

electrode liftoff compared to the pre-gelled silver/silver chloride

self-adhesive electrodes. Channel arrangement was slightly

different: the 8-channel condition for individuals with no limb

absence included only the proximal ring of electrodes whereas

the 8-channel condition for individuals with transradial

amputation included six channels in the proximal ring and two

in the distal ring. Both of these EMG configurations are

reasonable choices that potentially could be clinically

implemented and both lead to similar improvements for the 16-

vs. 8-channel conditions for completion time and path efficiency.

They are, however, different than channel reduction studies that

often reduce the number of channels to an optimal set of four to

eight found via a search algorithm. In this way, the 8-channel

condition may be slightly underestimating control performance

of an optimal 8-channel system. But, this may be more clinically

relevant since, currently, there is no quantitative mechanism to

select optimal channels for individual users in the clinic. Another

difference involves the trained and tested movements: the no

limb absence group controlled a virtual two degree-of-freedom
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wrist and a one degree-of-freedom hand, whereas the transradial

amputation group controlled a virtual one degree-of-freedom

wrist and hand with two grips. The TAC Test was programmed

to be slightly more difficult for the no limb absence group (i.e.,

smaller window of acceptable tolerances of all degrees-of-

freedom). These variations were included to test differences more

broadly in channel count.

A clinically-relevant choice during testing was to use the same

EMG interface during virtual prosthesis testing that individuals

with a transradial amputation would use during physical

prosthesis testing. These participants wore and supported the

weight of the study prosthesis during virtual testing. While a

custom socket is not always available for real-time virtual testing,

when available, it does provide a more real-world environment

for measuring EMG. Additionally, it was important to confirm

that 33 dome electrodes could be installed into an upper limb

socket. It was noteworthy that inclusion in this study required

having a residual limb length large enough to accommodate 33

domes; therefore there is a subset of users in which there is not

enough room. These results, however, would indicate from a

merely channel count perspective, to include more than 8 and up

to 16 channels if possible.

Clinically, these results may be challenging to implement as it

doubles the complexity of the EMG-socket interface. Maintaining

good electrode contact during home use is difficult (30); EMG

channels are susceptible to signal noise. While the reliability of

surface EMG recordings over time may be challenging, research

into automatic noise detection and fault-tolerant systems is

showing promise to allow users to maintain reliable control even

if and when EMG signal noise occurs (37, 38). This is true

regardless of the control strategy employed.

This study had some limitations including the low number of

participants with transradial amputation and limitation on

running statistics. The protocol involved making a socket with

embedded electrodes for each participant and having the

participant wear the prosthesis for both the virtual and physical

testing. For two participants, the prosthesis weight and length was

too much for them to support during physical prosthesis use. It is

possible that if either the custom wrist or the Psyonic Ability hand

was swapped out for a shorter or lighter version, they may have

been able to complete the ACMC. Another limitation to this study

of channel count was that we only included participants who had

enough room in their socket for 33 EMG domes. Although

untested in this study, it would be valuable to know if utilizing

electrode contact sharing to achieve 16 EMG channels for users

with shorter residual limbs results in similar control improvements

above the now standard 8 EMG channels.
5 Conclusion

Contrary to the standard 8 EMG channels currently used for

commercial upper limb pattern recognition systems, our results

indicate that increasing the number of EMG channels can lead to

improvements in both offline and online control. Our work does

not imply that existing control systems work poorly, merely that
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more capable systems could be created in the future. Importantly,

these results are consistent for individuals with transradial

amputation during both virtual and physical prosthesis testing.

Improvements were not only perceptible to the end users but also

measurable by means of the TAC Test and ACMC.
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