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Introduction: For individuals with limb loss, bone-anchored implants create a
direct structural and functional connection to a terminal prosthesis. Here, we
characterized the mechanical loads distal to the abutment during several
functional performance tests in Service members with transfemoral (TF) limb
loss, to expand on prior work evaluating more steady-state ambulation on
level ground or slopes/stairs.
Methods: Two males with unilateral TF limb loss and two males with bilateral TF
limb loss participated after two-stage osseointegration (24 and 12 months,
respectively). Tri-directional forces and moments were wirelessly recorded
through a sensor, fit distal to the abutment, during six functional tests: Timed
Up and Go (TUG), Four Square Step Test (FSST), Six Minute Walk Test (6MWT),
Edgren Side-Step Test (SST), T-Test (TTEST), and Illinois Agility Test (IAT).
Additionally, participants performed a straight-line gait evaluation on a 15 m
level walkway at a self-selected speed (0.93–1.24 m/s). Peak values for each
component of force and moment were extracted from all six functional tests;
percent differences compared each peak with respect to the corresponding
mean peak in straight-line walking.
Results: Peak mechanical loads were largest during non-steady state
components of the functional tests (e.g., side-stepping during SST or TTEST,
standing up from the ground during IAT). Relative to walking, peak forces
during functional tests were larger by up to 143% (anterior-posterior), 181%
(medial-lateral), and 110% (axial); peak moments were larger by up to 108%
(flexion-extension), 50% (ab/adduction), and 211% (internal/external rotation).
Conclusions: A more comprehensive understanding of the mechanical loads
applied to bone-anchored implants during a variety of activities is critical to
maximize implant survivability and long-term outcomes, particularly for
Service members who are generally young at time of injury and return to
active lifestyles.
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1 Introduction

Despite substantial technological advancements in prosthetic

components, suboptimal human-device interaction can diminish

functional performance and overall clinical outcomes for persons

with limb loss. Specifically, residual limb tissues are not

evolutionarily designed for weight bearing and thus the mechanical

environment within a conventional prosthetic socket often results in

poor skin health (1, 2). Poor residual skin health can limit prosthesis

use, thereby reducing mobility and independence. Osseointegration,

by direct skeletal attachment, mitigates many common drawbacks of

conventional prosthetic sockets (e.g., inadequate fit/suspension, heat,

moisture)—while also enhancing sensory feedback, movement

quality, and prosthesis embodiment—for many resulting in greater

prosthesis use, mobility, and quality of life (3).

Servicemembers with limb loss are generally young at time of injury

and often return to active lifestyles. To mitigate risk for periprosthetic

fracture and component damage/failure (4), it is critical to understand

the mechanical loads applied to the bone-anchored implant during a

variety of activities. Compared to traditional biomechanical

evaluations, wireless sensors incorporated into the endoskeletal

prosthesis capture more direct measurement of mechanical loading at

the implant-femoral interface, and can facilitate such evaluations in

non-laboratory settings. Such an approach has been used to

characterize forces and moments at the bone-anchored implant

among individuals lower limb loss during steady-state walking (in a

straight line and circles), as well as ramp/stair ascent and descent

(5–7). The purpose of this study was to further characterize

mechanical loading of the bone-anchored implant among Service

members with unilateral and bilateral transfemoral (TF) limb loss,

specifically during several functional performance tests that would be

difficult to measure with traditional biomechanical methods (i.e.,

instrumented walkways) and are otherwise lacking in the current

literature [e.g., (8)]. It was expected that mechanical loads measured

during functional tasks would be larger than steady-state ambulation

(i.e., walking in a straight line). Ultimately, such an effort will

contribute to a more complete understanding of implant survivability

in highly active populations with TF limb loss.
2 Methods

2.1 Participants

Four males with traumatic TF limb loss (Table 1), two

unilateral (“UTF1” and “UTF2”) and two bilateral (“BTF1” and
TABLE 1 Demographics for each participant with unilateral (UTF) and bilateral (

Age (yr) Body mass (kg) Statu
Unilateral UTF1 50 86.5 1

UTF2 42 106.0 1

Bilateral BTF1 30 73.3 1

BTF2 38 106.5 1

All participants wore microprocessor knees (X3®; Ottobock) and dynamic response an

BTF1, Variflex XC®, Ossur; BTF2, Soleus Tactical®, College Park Industries).
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“BTF2”), participated after osseointegration (OPRA implant

system; Integrum, Sweden). All participants wore microprocessor

knee(s) with a dynamic response foot-ankle device(s), and were

able to independently ambulate without the use of assistive

devices (e.g., cane, crutches, walker). All participants consented

to procedures approved by the local Institutional Review Board.
2.2 Procedures

Approximately one hour prior to data collection, a certified

prosthetist fit a wireless 6DOF load sensor (iPecsTM; RTC

Electronics Inc., Dexter, MI, USA) just distal to the failsafe

mechanism (Axor IITM; Integrum, Sweden). Note, both

participants with bilateral TF limb loss could only accommodate a

sensor on the right side due to limited clearance between the left

prosthetic knee and failsafe (i.e., could not preserve limb length

and alignment). Prior to data collection, the load sensor was

zeroed with the prosthesis unloaded.

Tri-directional forces and moments were wirelessly recorded

(850 Hz) during six functional performance tests: (1) Timed Up

and Go (TUG), (2) Four Square Step Test (FSST), (3) Six Minute

Walk Test (6MWT), (4) Edgren Side-Step Test (SST), (5) T-Test

(TTEST), and (6) Illinois Agility Test (IAT). Additionally, the

same forces and moments were recorded while participants

completed an overground gait assessment along a 15 m walkway,

at a self-selected speed. Self-selected walking speeds were 1.18 m/s

(UTF1), 1.24 m/s (UTF2), 1.09 m/s (BTF1), and 0.93 m/s (BTF2).
2.3 Analyses

Raw forces and moments were output using the provided

calibration matrix and analyzed with custom scripts in MATLAB

(MathWorks, Natick, MA, USA). Raw forces and moments were

normalized to body weight (BW and BW-m). The sensor was

oriented such that forces and moments were resolved in

anatomical coordinates of the residual limb: anterior-posterior,

medial-lateral, and axial; corresponding moments in flexion-

extension, ad/abduction, and internal/external rotation. Peak values

within each direction/component of force and moment were

identified and extracted from each functional test; for the gait

evaluation, means of these peaks were computed across all steps

(∼15 steps per participant). To provide a relative measure of the

mechanical loads imposed during the functional tests, percent
BTF) transfemoral limb loss, at time of evaluation after osseointegration (OI).

re (cm) Time since amp (mo) Time since OI (mo)
74.5 114 24

76.0 204 24

80.5 98 12

85.0 112 12

kle-foot prostheses (UTF1, Kinterra®, Proteor; UTF2, Pro-Flex® LP Torsion, Ossur;
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differences were computed for all peak forces and moments with

respect to the corresponding mean peaks from the gait evaluation.
3 Results

Peak medial-lateral forces were largest in the SST, anterior-

posterior forces in the IAT and T-Test, and axial forces in the

SST (Table 2). Flexion-extension moments were largest in the

6MWT, ab/adduction moments in the SST, and internal/external

rotation moments in the IAT (Table 3).

Compared to straight-line walking, peak forces during

functional tests were larger by up to 143% (anterior-posterior),

181% (medial-lateral), and 110% (axial; Figure 1); peak moments

were larger by up to 108% (flexion-extension), 50% (ab/adduction),

and 211% (internal/external rotation; Figure 1).

Persons with UTF vs. BTF generally performed better on most

functional tests (Table 4).
4 Discussion

This study characterized peak mechanical loads during several

functional performance tests, after osseointegration, in Service

members with unilateral and bilateral TF limb loss. These peak

loads tended to be largest during transient components of the

functional performance tests, with peak forces and moments

respectively up to 181% and 211% larger than during straight-
TABLE 2 Peak forces by functional performance test for each participant w
normalized to body weight (BW).

Medial-lateral Anter

UTF1 UTF2 BTF1 BTF2 UTF1 UTF2
TUG 0.183 0.100 0.118 0.142 0.272 0.240

4SST 0.168 0.098 0.110 0.145 0.191 0.213

6MWT 0.182 0.116 0.211 0.165 0.291 0.215

SST 0.151 0.166 0.302 0.153 0.164 0.196

TTEST 0.196 0.148 0.232 0.153 0.308 0.276

IAT 0.193 0.121 0.148 0.188 0.419 0.233

SSW 0.163 0.090 0.108 0.134 0.239 0.193

TUG, timed up and go; FSST, four square step test; 6MWT, six minute walk test; SST, e

Asterisks (*) indicate two occurrences where the peak force was posterior vs. anterior

TABLE 3 Peak moments by functional performance test for each participant w
normalized to body weight (BWm).

Flexion/extension Ab/

UTF1 UTF2 BTF1 BTF2 UTF1 UTF2
TUG 0.050 0.057 0.093 0.056 0.046 0.066

4SST 0.057 0.053 0.090 0.050 0.058 0.070

6MWT 0.058 0.053 0.111 0.059 0.058 0.072

SST 0.039 0.055 0.082 0.043 0.064 0.098

TTEST 0.064 0.071 0.104 0.059 0.057 0.082

IAT 0.053 0.066 0.097 0.064 0.053 0.080

SSW 0.031 0.040 0.054 0.036 0.051 0.056

TUG, timed up and go; FSST, four square step test; 6MWT, six minute walk test; SST, e
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line walking. In the sagittal plane, peak anterior-posterior forces

tended to occur during initiation (e.g., standing up from the

ground; IAT) or when weaving between cones (IAT); similarly,

peak flexion-extension moments occurred during initiation or

change of directions within the IAT and TTEST. In the frontal

plane, peak medial-lateral forces tended to occur during side

stepping (SST); peak ab/adduction moments also occurred during

side stepping or directional changes at the far ends of the SST

course. In the transverse plane, peak axial forces tended to occur

during sidestepping or directional changes in the TTEST or SST;

peak internal/external rotation moments occurred when turning

(TUG) or weaving (IAT).

Comparing straight-line walking, peak forces and moments

measured in the current study are generally comparable to prior

work in persons with both transtibial and transfemoral limb loss

(5–7). While smaller loads during more repetitive activities like

walking (level, slopes, stairs) can accumulate over time, and thus

play a role in the fatigue life of system components [e.g., perhaps

necessitating prophylactic exchange/replacement; (9)], larger peak

values during more transient activities remain important for

minimizing unexpected breakaway or risk for unsafe load

transmission. Here, despite several occurrences of non-body weight

normalized peak flexion-extension moments (67–80 Nm) and

internal/external rotation moments (13–25 Nm) exceeding the

respective fail-safe release threshold in flexion/bending (70 ± 5 Nm)

and axial twist (15 ± 2 Nm), none of these resulted in an actual

release during testing. As suggested previously (7), relatively large

between-subject variability supports the notion of a personalized
ith unilateral (UTF) and bilateral (BTF) transfemoral limb loss. Forces are

ior-posterior Axial

BTF1 BTF2 UTF1 UTF2 BTF1 BTF2
0.267 0.252 1.059 1.460 1.741 1.165

0.200 0.170* 1.085 1.388 1.835 1.510

0.350 0.236 1.118 1.383 2.102 1.285

0.171 0.129* 1.603 2.165 2.264 1.482

0.279 0.220 1.326 1.971 1.978 1.563

0.546 0.255 1.280 1.688 1.888 1.250

0.225 0.160 0.867 1.094 1.077 1.042

dgren side-step test; TTEST, T-test; IAT, illinois agility test; SSW, self-selected walk.

for all other tests.

ith unilateral (UTF) and bilateral (BTF) transfemoral limb loss. Moments are

adduction Internal/external rotation

BTF1 BTF2 UTF1 UTF2 BTF1 BTF2
0.057 0.040 0.014 0.021 0.027 0.016

0.069 0.041 0.011 0.014 0.016 0.014

0.088 0.052 0.012 0.016 0.029 0.012

0.086 0.049 0.008 0.011 0.017 0.008

0.074 0.048 0.012 0.019 0.016 0.010

0.073 0.042 0.015 0.024 0.034 0.019

0.059 0.038 0.007 0.013 0.011 0.007

dgren side-step test; TTEST, T-test; IAT, illinois agility test; SSW, self-selected walk.
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FIGURE 1

Percent differences (% Diff) in peak forces and moments, by functional performance test relative to corresponding peaks from the gait evaluation, for
each participant with unilateral (UTF) and bilateral (BTF) transfemoral limb loss. TUG, timed up and go; FSST, four square step test; 6MWT, six minute
walk test; SST, edgren side-step test; TTEST, T-test; IAT, illinois agility test.

TABLE 4 Outcomes by functional performance test for each participant with unilateral (UTF) and bilateral (BTF) transfemoral limb loss.

TUG (s) 4SST (s) 6MWT (m) SST (pts) TTEST (s) IAT (s)
Unilateral UTF1 8.8 9.6 446.0 8 53.0 67.4

UTF2 7.2 8.3 445.1 10 35.8 46.3

Bilateral BTF1 9.2 12.7 496.3 9 43.7 58.0

BTF2 14.8 17.0 347.5 7 60.2 74.7

TUG, timed up and go; FSST, four square step test; 6MWT, six minute walk test; SST, edgren side-step test; TTEST, T-test; IAT, illinois agility test.

Gladish et al. 10.3389/fresc.2024.1336115
approach to the design, prescription, and evaluation of components to

adequately protect the implant and/or bone. Insufficient spacing

between abutment/failsafe and prosthetic knee to accommodate the

load sensor (height = 46 mm)—without affecting limb length/

alignment—ultimately excluded a large majority of individuals with

TF limb loss who have received osseointegration at our institution.

Future work should aim to continue load characterization across a

variety of activities in larger and more diverse samples (e.g.,

transtibial or transfemoral with other implant systems).
Frontiers in Rehabilitation Sciences 04
Of note, the four participants in the current sample were generally

high-functioning per the scoring criteria of each functional

performance test. For example, TUG scores here ranged from 7.2–8.8 s

for UTF and 9.2–14.8 s for BTF [K3 = 12.8 ± 0.5 s and K4 = 9.5 ± 0.8 s;

(10)]. 4SST scores here ranged from 8.3–9.6 s for UTF [10.4 ± 5.3 s;

(11)] and 12.7–17.0 s for BTF [22.0 ± 10.2 s; (12)]. 6MWT here ranged

from 348 to 496 m [K3 = 299 ± 102 m and K4 = 419 ± 86 m; (13)].

In summary, the current study which characterized mechanical

loading of the bone-anchored implant during functional
frontiersin.org
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performance tests extends traditional biomechanical assessments

(i.e., measuring ground reaction forces with force platforms,

often during steady-state ambulation), and is a first step toward

establishing benchmarks of peak loading during such activities.

Wireless sensor approaches could enable broader surveillance of

mechanical loads in the home and community, further

improving ecological validity. In a larger sample, future work

should also consider evaluating relationships of these mechanical

loads with limb characteristics [e.g., bone quality, residual limb

length; (14)], time since amputation and/or osseointegration, and

prosthetic components (6, 15). Broader understanding of the

mechanical loads applied to the abutment following

osseointegration is critical to maximize implant survivability and

long-term outcomes, particularly for Service members who are

generally young at time of injury and return to active lifestyles.
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