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Spatiotemporal parameters from
remote smartphone-based gait
analysis are associated with lower
extremity functional scale
categories
Gabriela Rozanski*, Andrew Delgado and David Putrino

Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai,
New York, NY, United States

Objective: Self-report tools are recommended in research and clinical practice to
capture individual perceptions regarding health status; however, only modest
correlations are found with performance-based results. The Lower Extremity
Functional Scale (LEFS) is one well-validated measure of impairment affecting
physical activities that has been compared with objective tests. More recently,
mobile gait assessment software can provide comprehensive motion tracking
output from ecologically valid environments, but how this data relates to
subjective scales is unknown. Therefore, the association between the LEFS and
walking variables remotely collected by a smartphone was explored.
Methods: Proprietary algorithms extracted spatiotemporal parameters detected by
a standard integrated inertial measurement unit from 132 subjects enrolled in
physical therapy for orthopedic or neurological rehabilitation. Users initiated
ambulation recordings and completed questionnaires through the OneStep
digital platform. Discrete categories were created based on LEFS score cut-offs
and Analysis of Variance was applied to estimate the difference in gait metrics
across functional groups (Low-Medium-High).
Results: The main finding of this cross-sectional retrospective study is that remotely-
collected biomechanical walking data are significantly associated with individuals’
self-evaluated function as defined by LEFS categorization (n= 132) and many
variables differ between groups. Velocity was found to have the strongest effect size.
Discussion: When patients are classified according to subjective mobility level, there
are significant differences in quantitative measures of ambulation analyzed with
smartphone-based technology. Capturing real-time information about movement
is important to obtain accurate impressions of how individuals perform in daily life
while understanding the relationship between enacted activity and relevant clinical
outcomes.

KEYWORDS

mHealth, gait analysis, subjective function, rehabilitation technology, remote patient

monitoring

1. Introduction

As a fundamental aspect of daily life with significant health implications, mobility is

routinely assessed in various clinical settings across diverse patient populations to inform

therapeutic management (1). Lower extremity injury, neurological disease or

musculoskeletal disorders can affect movement in so many different ways that accurate
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and thorough characterization of deficits is essential (2, 3). An

individual’s function, here defined as sensorimotor ability to

perform everyday tasks (e.g., self-care, housework, ambulating),

determines level of independence and long-term outcomes (4).

Both objective and subjective functional measures are valuable in

providing information about disability or recovery over time,

though may reflect distinct domains of physical impairment,

activity limitation or participation outlined by the World Health

Organization’s biopsychosocial (ICF) model/framework (5).

Ambulation is a major focus in therapy with wide-ranging

implications. Specific features of gait yield valuable insights about

underlying physiological processes, reveal divergence from

normative patterns such as unequal weight-bearing after stroke

and contribute to decision-making for orthopedic conditions (6).

In particular, speed has been termed the “sixth vital sign” that

predicts future consequences, including falls and hospitalization

(2). Asymmetry (i.e., inter-limb imbalance) is also a useful

indicator of pathology (7).

Until recently, quantitative biomechanical data could only be

obtained with expensive and advanced laboratory equipment,

which restricted accessibility for most clinicians. In addition,

often limited actionable insights are garnered from these metrics

to appreciably change the course of a rehabilitation plan. New

motion sensor technology now allows spontaneous monitoring of

patients in more ecologically valid environments like home or

the community (8–12). The inertial measurement unit (IMU) of

smartphones can collect kinematic and spatiotemporal

parameters for real-time analysis without the need for costly and

inconvenient wearable devices (13–17). This unsupervised,

“sensing in context” strategy also avoids potential “Hawthorne/

research participant effects” that can influence behavior in the

presence of an evaluator (18). While users are aware of recording

if software provides prompts to initiate, so-called “background”

modes when enabled could further reduce observer bias. Gait

assessment performed remotely through mobile applications may

be used by therapists to diagnose abnormalities, track disease

progression or examine the efficacy of an intervention (19–25).

As an emerging approach, continued work is necessary to more

widely implement and utilize the information best for therapeutic

purposes.

Still, the enacted activity metrics obtained with these novel

systems do not represent a subject’s full experience, for example

pain and other personal factors that impact well-being. Self-

report tools, intended to efficiently capture individual perceptions

regarding overall health or disease-specific status, are

recommended for research trials and routine clinical use (26, 27);

however, there is evidence for only modest cross-sectional and

longitudinal correlations with performance-based results (28, 29).

During rehabilitation (eg. after joint replacement surgery),

reliable indicators of progress are particularly important such

that the relationship between standard questionnaires and

physical ability outcomes in detecting change over time is

increasingly studied to inform care practices (30–33). The Lower

Extremity Functional Scale (LEFS) is one well-validated measure

of impairment affecting physical activities, applicable to a wide

spectrum of pathology, that demonstrates excellent reliability and
Frontiers in Rehabilitation Sciences 02
high concordance with related constructs (34, 35). Yet, the

relationship to common objective tests evaluating only a single

domain of interest through simple time or summary scores is

weak (36–38). Few studies incorporate the comprehensive output

from motion trackers (39) so more knowledge about how this

data relates to subjective scales is needed for appropriate

interpretation by health professionals using both results in

patient assessment.

The smartphone-based paradigm employed herein provides a

unique opportunity for subjects to drive research about free-living

mobility outside of controlled settings. Unsupervised movement

recording through a readily available consumer device with clear

on-screen instructions allows large datasets, otherwise limited by

gait lab access, to be accumulated. Before widespread use on a

general or at-risk population level, understanding the clinical

relevance of this methodology is crucial. Our aim was to determine

how remotely captured spatiotemporal parameters relate to

perceived lower limb task ability. Therefore, an exploratory analysis

was conducted to investigate the association between functional

category derived from the LEFS and gait variables, both obtained

through a mobile application (OneStep). Since ambulation relies on

integrity of the lower body and multiple items on the questionnaire

are pertinent to walking, we hypothesized that these measures

would have good convergent validity.
2. Materials and methods

The de-identified data included in this analysis, from patients

working with a physical therapist as part of OneStep’s clinical

program for at least two weeks during the period of May 2021 to

November 2021, were deemed exempt by the Institutional Review

Board (Icahn School of Medicine at Mount Sinai, New York,

U.S.A.; STUDY-21-01466). While not systematically documented,

the most common reason for rehabilitation in this cohort was joint

replacement surgery (hip or knee), with a smaller proportion

affected by stroke or other neurological condition.

OneStep is an FDA-registered app (available on Google Play

and the iOS App Store) that uses a smartphone’s integrated IMU

(sampling rate 100 Hz) to collect three-dimensional acceleration,

angular velocity and magnetic intensity variables. Proprietary

algorithms then extract timestamped spatiotemporal parameters

based on a user’s motion/activity and position of the device (left/

right front or back pockets). No calibration is necessary and

turns are automatically detected to omit before processing so

only straight path walking can be retained. After gait cycle

segmentation, the following variables were calculated: cadence,

velocity, hip range, base width, step and stride lengths, stance

and double support times. Asymmetries of stance, step length

and double support were defined as the difference between left

and right sides. Validity and reliability of this approach

compared to standard quantitative gait evaluation metrics has

recently been shown (40–42). Various iPhone and Android

devices were utilized in these studies and internal testing has

confirmed that different phone models do not impact algorithm

performance.
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Engagement with the OneStep app is expected to vary across

users based on personal factors and individualized exercise plans

but all subjects interacted with a similar version of the software.

There was no location control for independent home use. While

enrolled in physical therapy (duration subject to adherence and

treating clinician’s rationale), patients were prompted daily to

initiate ambulation recordings with the press of a “Start” button in

the application (followed by instructions to walk in a straight line

for 30–45 s) and notified via pop-up screen to complete the LEFS

digital questionnaire on a tri-weekly basis. As a self-assessment

tool comprising 20 items that are rated on a five-point difficulty

scale, LEFS scores range from zero to 80 and provide subjective

measurement about the ability to perform lower body activities

(34). Through a functional staging approach reflective of the

instrument’s structure, psychometric properties and distribution of

normative values, discrete categories were created (43–45). Based

on numerical value of the questionnaire’s response levels, cut-off

points at 20, 40, and 60 delineated LEFS groups consistent with a

total if the same option was assigned for all answers [quite a bit

(1), moderate (2), and a little bit of difficulty (3), respectively]. To

achieve size uniformity accounting for skewness of this dataset

(see Figure 1), the lower two categories (a little bit or no difficulty

with the activity) were grouped together, which resulted in three

function ranks facilitating efficient clinical interpretation according
FIGURE 1

Visualization of LEFS data. Score distribution by histogram (top) and
boxplot with maximum, minimum, interquartile range and median
values (bottom).
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to tallied sum: Low (0–20), Medium (21–40), High (41–80).

Previous work has similarly simplified the original LEFS rating

scale to ease use (43).

Gait and LEFS data were analyzed on the participant level if

both records could be obtained within a one week window to

ensure appropriate temporal alignment. This accounted for

variation in timing of app usage. When multiple ambulatory

sessions met this criterion, only the earliest instance was included

to minimize confounding factors from recovery over time and

walking bouts were truncated at 60 s to avoid potential effects of

fatigue. Due to the proprietary and sensitive health-related nature

of the data source, there was limited personal information

available to the study team (e.g., 48% of the sample were missing

gender identifiers since this was not a required field for

enrollment with OneStep services) so these characteristics were

not incorporated into the analysis. Unilateral outputs (ie. stance,

step length) were specified as high or low after comparison.

Given the mixed clinical sample and variability in dominance

patterns (i.e., the weaker or post-surgical limb may not always

present as such), this simple convention by relative magnitude of

values was chosen to avoid over-interpreting results.

Descriptive statistics were reported on all spatiotemporal

parameters. Distributions were examined for normality using

histograms and Q-Q plots. Continuous and categorical metrics

are presented as mean (standard deviation) and count

(frequency/percentage), respectively. Hypothesis tests were two-

tailed with p < .05 considered statistically significant. This being

an exploratory investigation, average standardized mean

difference (aSMD) was used as the measure of magnitude

between groups to provide an overall estimate (Cohen’s d for

each unique comparisons of “Low”, “Medium”, and “High” LEFS

categories); effect sizes were classified as Small (0.2–0.5), Medium

(0.5–0.8), and Large (≥0.8) (46). Due to multiplicity concerns, all

p-values were adjusted using the Benjamini-Hochberg false

discovery rate procedure since Bonferroni correction is too

conservative if many tests are performed (47). For estimating

how gait variables differ across LEFS mobility categories, the

One-Way Analysis of Variance (ANOVA) or Kruskal Wallis

One-Way ANOVA (KW-ANOVA) was used, according to

normality. The non-normally distributed outcomes analyzed by

KW-ANOVA were cadence variability, double support time

and each asymmetry measure (stance, double support, step

length). Only means (standard deviation) are presented for

consistency. Analyses were performed in R software v4.0.2

(R Foundation for Statistical Computing, Vienna, Austria)

(48, 49) with the following packages: “tableone” (50), “lubridate”

(51), “summarytools” (52), “Hmisc” (53), and “tidyverse” (54).
3. Results

There were 132 OneStep users included in this analysis. From

the available data for gender (n = 87, 65.9%), females represented

74.7%. Age was recorded in 43.2% cases (n = 57), comprising as

follows: 8.8% less than 30 years old, 17.5% 30 to 45, 5.3% 45 to

60 and 68.4% over 60 years old. A diagnosis was known for
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TABLE 1 Spatiotemporal variables and zero-order effects between categories of LEFS.

Gait parameter LEFS group p value aSMDa

Total (n = 132) Low (n = 44) Medium (n = 49) High (n = 39)
Cadence (steps/min) 99.48 (15.32) 90.06 (12.95) 99.97 (13.34) 109.48 (13.73) <.001 0.971

Cadence variability (steps/min) 2.27 (1.11) 2.43 (1.06) 2.12 (1.13) 2.27 (1.15) .411 0.186

Velocity (km/h) 3.27 (1.12) 2.55 (0.80) 3.28 (0.88) 4.06 (1.17) <.001 1.044

Stride length (cm) 106.97 (23.78) 93.17 (20.12) 107.78 (19.99) 121.51 (23.42) <.001 0.886

Double support (percent of gait cycle) 32.10 (5.80) 35.38 (5.55) 31.73 (5.24) 28.87 (4.81) <.001 0.832

Hip range (degrees) 28.91 (12.15) 25.06 (8.29) 27.85 (9.86) 34.58 (16.02) .001 0.520

Base width (cm) 18.92 (4.03) 20.05 (3.88) 18.60 (3.92) 18.03 (4.14) .057 0.339

Step length asymmetry (difference in percent of stride length) 3.37 (3.53) 4.30 (3.82) 2.50 (2.53) 3.40 (4.03) .048 0.350

Stance asymmetry (difference in percent of gait cycle) 2.92 (2.96) 3.65 (3.73) 2.66 (2.40) 2.41 (2.50) .120 0.271

Double support asymmetry (difference in percent of gait cycle) 1.40 (1.42) 1.56 (1.05) 1.36 (1.47) 1.26 (1.70) .608 0.146

Stance-highb (percent of gait cycle) 67.52 (3.76) 69.53 (3.82) 67.20 (3.40) 65.64 (3.03) <.001 0.751

Stance-lowb (percent of gait cycle) 64.59 (2.67) 65.87 (2.80) 64.53 (2.25) 63.22 (2.35) <.001 0.705

Step length-highb (cm) 55.19 (12.17) 48.58 (10.62) 55.11 (9.79) 62.76 (12.36) <.001 0.852

step length-lowb (cm) 51.78 (11.94) 44.59 (9.85) 52.67 (10.31) 58.76 (11.70) <.001 0.888

Values are mean (standard deviation).

aSMD, average standardized mean difference.
aEffect sizes were interpreted as Small = 0.2–0.5, Medium=0.5–0.8, and Large = 0.8 or higher.
bDesignated according to the relatively longer/larger or shorter/smaller side.

TABLE 2 Analysis of variance across LEFS groups.

Gait parameter Statistic df padj
Cadence (steps/min) 22.00 2 <.001a

Cadence variability (steps/min) 3.38 2 0.189

Velocity (km/h) 26.13 2 <.001a

Stride length (cm) 18.71 2 <.001a

Double support (percent of gait cycle) 27.66 2 <.001a

Hip range (degrees) 7.29 2 0.002a

base width (cm) 2.93 2 0.066

Step length asymmetry (difference in percent of stride
length)

9.05 2 0.015a

Stance asymmetry (difference in percent of gait cycle) 3.33 2 0.189

Double support asymmetry (difference in percent of gait
cycle)

6.86 2 0.041a

Stance-highb (percent of gait cycle) 13.47 2 <.001a

Stance-lowb (percent of gait cycle) 11.81 2 <.001a

Step length-highb (cm) 17.59 2 <.001a

Step length-lowb (cm) 18.77 2 <.001a

aAsterisks indicate significance with Bejamini-Hochberg correction.
bDesignated according to the relatively longer/larger or shorter/smaller side.
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63.6% (n = 84) of the sample. The highest share were post-surgical,

presenting with total hip replacement (n = 33, 39.3%), total knee

replacement (n = 18, 21.4%) or both (n = 3, 3.6%). Another

29.8% (n = 25) had an orthopedic condition (i.e., musculoskeletal

pain/injury) affecting the lower body and 6.0% (n = 5) could be

classified as neurological. Overall, the mean LEFS score was 48.2

(17.9) with an even distribution across functional categories of

Low (0–40, n = 44, 33.3%), Medium (41–60, n = 49, 37.1%) and

High (61–80, n = 39, 29.6%) (Figure 1). As shown in Table 1,

the largest observed effect size was from velocity (aSMD = 1.044),

followed by cadence (aSMD = 0.971), step length-low (aSMD =

0.888) and stride length (aSMD = 0.886). Most of the

spatiotemporal variables had medium to large effect sizes; 5 of

the 14 examined (35.7%) were small: cadence variability, base

width, step length asymmetry, stance asymmetry, and double

support asymmetry. The ANOVA analyses found significant

differences between LEFS groups after Bejamini-Hochberg

correction for all outcomes except cadence variability, base width,

and stance asymmetry (Table 2). Means were significantly larger

for cadence, velocity, stride length, hip range and step lengths in

the High LEFS category while the Low group had higher stance

times, double support and asymmetry measures (step length,

double support).
4. Discussion

The results of this cross-sectional retrospective analysis suggest

that remotely-collected gait metrics are significantly associated with

subjects’ category of function based on LEFS scores. While the

relationship between objective outcomes and self-assessment

measures of lower extremity performance has previously been

investigated, to our knowledge no other studies have incorporated

spatiotemporal parameters from mobile devices obtained outside
Frontiers in Rehabilitation Sciences 04
the clinic or laboratory setting for this purpose. Mobility level

classification (Low, Medium, High) according to the LEFS is also a

novel approach, but the cut-off values chosen should be validated

through prospective trial design. As a proof-of-concept, clinically-

relevant data in various forms (i.e., kinematics, questionnaire) can

be captured via (OneStep) smartphone application on a relatively

large scale. These findings may have practical informative value for

the (tele)rehabilitation context, owing to the substantial sample size

and broad inclusion criteria. Engagement with e-health

technologies by older adults is encouraging for increased uptake

and acceptance to access purported benefits (55). Yet, the lack of

specific clinical characteristics to examine as influencing factors

greatly limits a multivariate approach and precise interpretation

about the effects observed. This study could be less applicable to

neurological conditions, which were underrepresented in the user
frontiersin.org
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cohort. Further work is needed to determine whether this convergent

validity holds in specific situations (e.g., recovery stage, level of

severity). Age and surgical history were shown to impact LEFS

scores in a healthy reference population (45), though only modestly

compared with the magnitudes of difference between groups seen

here. By calculated aSMD, velocity was the strongest predictor for

functional categorization, like an earlier report similarly

demonstrated using another subjective tool (28) and in line with

the significant body of literature on this robust metric (3). A

possible explanation is that patients seem to interpret difficulty as

time to complete a task along with pain and exertion (36), which

plausibly affect the speed of an activity too. Weaker associations

were found for the asymmetry variables, suggesting certain aspects

of movement quality are not considered very important in self-

evaluation, despite therapy programs commonly addressing

unilateral impairment (e.g., hip/knee arthroplasty or post-stroke

hemiplegia). Because interlimb imbalances have potential negative

consequences (56), accurate detection provides additional insights

for condition management; however, focusing on more easily

observable biomechanical features (i.e., cadence, stride length) may

confer a greater sense of functional ability. Symmetry metrics are

also relevant to higher level tasks that challenge stability (e.g., single

leg stance) so other perceptive domains such as balance confidence

could be interesting to investigate.

Understanding the basis of individual perceptions can be

particularly valuable when change is tracked over time. It is unclear

whether the LEFS and walking measurements would continue to

relate longitudinally since responsiveness may differ between

outcomes (30, 57, 58). Therefore, collecting data to address multiple

domains of physical performance remains appropriate for a

comprehensive impression about recovery, which aligns with

current research and clinical practice recommendations (26, 27). To

efficiently streamline workflows or protocols though, individual

measures should be compared since redundancies in analytic value

potentially exist. The formation of patient subgroups has plausible

utility as well, perhaps in order to adapt care accordingly and triage

when resources are limited, considering prior evidence that post-

operative improvements depend on self-reported function (59).

Higher LEFS scores may indicate less progress will be achieved

throughout rehabilitation due to possible ceiling effects and

physiological adaptation constraints. Expectation and other

cognitive components are also likely important factors. In this case,

clinicians could incorporate supplemental standardized tests or

quantitative gait analysis revealing residual impairments for a more

sensitive metric of treatment efficacy and to support decision-

making when targeted interventions are applied. Additional insights

might be gained from obtaining information about daily life activity

if an individuals’ own evaluation does not reflect actual behavior.

Ecologically valid task items and parameters are necessary to

determine whether there is a performance gap between hypothetical

capacity and enacted function in “real world” environments. Future

research to explore how objective and subjective assessment

methods each operate in specific contexts or under particular
Frontiers in Rehabilitation Sciences 05
conditions will be facilitated by remote monitoring technology like

the OneStep application for optimal usage of these separate but

associated tools within the evolving telehealth care system.
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