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The analysis of functional upper extremity (UE) movement kinematics has
implications across domains such as rehabilitation and evaluating job-related
skills. Using movement kinematics to quantify movement quality and skill is a
promising area of research but is currently not being used widely due to issues
associated with cost and the need for further methodological validation. Recent
developments by computationally-oriented research communities have resulted
in potentially useful methods for evaluating UE function that may make
kinematic analyses easier to perform, generally more accessible, and provide
more objective information about movement quality, the importance of which
has been highlighted during the COVID-19 pandemic. This narrative review
provides an interdisciplinary perspective on the current state of computer-
assisted methods for analyzing UE kinematics with a specific focus on how to
make kinematic analyses more accessible to domain experts. We find that a
variety of methods exist to more easily measure and segment functional UE
movement, with a subset of those methods being validated for specific
applications. Future directions include developing more robust methods for
measurement and segmentation, validating these methods in conjunction with
proposed kinematic outcome measures, and studying how to integrate
kinematic analyses into domain expert workflows in a way that improves
outcomes.
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1. Introduction

Functional upper extremity (UE) movements, where the UE is defined as including all

regions distal from and including the shoulder (1), are used to purposely engage with

one’s environment (2) for needed or desired activities. The execution of these movements

requires the coordination of multiple processes (3), where a disruption in one part of the
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chain may challenge an individual’s ability to execute their desired

task. Outcome measures derived from UE functional assessments

(UEFAs) are used to support evidence-based research (e.g., meta-

analyses), evaluate the impact of a disease or disability, and

evaluate interventions (4).

The World Health Organization (WHO) International

Classification of Functioning, Disability, and Health (ICF) is an

internationally recognized framework for describing and

measuring human health and disability (5). Using the WHO ICF,

UEFAs can be classified as measuring body functions and

structure (i.e., physiological function and anatomy), activity (i.e.,

execution of task or action by individual), or participation (i.e.,

involvement in a life situation), with overlap across categories

being possible (4). This schema provides a standard

nomenclature by which one selects outcomes measures that can

link various domains (e.g., impairment, function, societal

integration) to better predict relationships needed to produce

desired clinical outcomes. Additionally, the ICF provides a

conceptual framework for assessing function likely to be valued

by the individual with a specific diagnosis or impairment.

Through its direct approach for evaluating both anatomically

based outcomes and their utility to a person in their

environment, one can systematically assess how an intervention

impacts people.

Outcome measures can be further categorized as subjective or

objective. The former consists of self-reports and the latter consists

of data collected by instruments or a third party using “… validated

equipment and standardized measurement protocols.” (4). Both are

essential for evaluating the effects of treatments. The ICF was

motivated, among other factors, by the need to go beyond

indicating whether a disease or disorder is present in an

individual, which alone is a poor indicator of health planning

and management requirements (6). In fact, the ICF was

developed to augment patient evaluation and treatment from the

perspective of health and not disease and disability. In other

words, this approach permits a systematic documentation of

an individual’s deficits and abilities. The ICF promotes a view

of health that hopefully will influence policy and practice that

is additive to traditional mortality and morbidity outcome

measures (6).

Numerous UEFAs have been validated to provide additional

information besides the presence of a disease or disorder (4, 7).

However, currently validated UEFAs that measure an individual’s

ability to execute a task have limitations. Although both

performance-based measures and self-reports are critical,

subjective self-report measures can be biased (7, 8). Furthermore,

existing measures do not adequately measure movement quality

(9), efficiency, or level of effort. These aspects of functional

movement are important for a variety of applications, such as

discerning between behavioral restitution and compensation

during stroke rehabilitation (9), skilled job-related movements

(10, 11), and evaluating UE prostheses (12–15).

UEFAs that use kinematics may provide more objective

information of functional movement compared to existing

validated clinical measures (8, 9, 16). The kinematics of human

motion refer to the position displacement and its derivatives
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(e.g., velocity, acceleration, jerk) of the human body or

manipulated objects. The analysis of kinematics includes the

calculation of joint angles (17–21) and measures of functional

ability during goal-oriented tasks (8, 9, 16). Kinematics have

traditionally been measured using specialized equipment, such as

optical motion capture systems (20–22), electrogoniometers (23),

inertial measurement units (17, 24, 25), and hand-held devices

(11, 26). However, many of these systems can be prohibitively

expensive to own and operate or are not easily portable,

restricting wide-spread usage in relevant environments.

Furthermore, post-processing these information (e.g., labelling

occluded markers, movement segmentation) for analysis can be a

manually-intensive and time-consuming process.

Advances in measurement sensors, computer vision, and

machine learning have enabled the measurement and analysis of

UE kinematics beyond the laboratory. Methods have been

developed for estimating human pose without markers (27–30)

and automatically recognizing activities and actions (31–37).

Nonetheless, there is limited development and usage of

computational tools for analyzing functional UE movement

kinematics that meet the requirements of domain experts (e.g.,

biomechanists and clinicians). For example, in 2019 the Stroke

Recovery and Rehabilitation Roundtable concluded that, “… only

high-speed and high-resolution digital optoelectronic systems

should be used to measure kinematics…”, specifically noting that

wireless wearables (e.g., IMUs), Kinect, and other optical systems

are currently inadequate for measuring movement quality (9).

Furthermore, validating these computational tools for use in

clinical and biomedical laboratories may require a level of rigor

not typical of computational fields (e.g., correlating outputs from

computational tools with health-related outcomes and evaluating

quantities important to movement scientists) (38, 39).

This paper investigates the following question: Given the need

to inform clinical practice and job-related training with more

objective data, what computer-assisted methods can reduce the

burden associated with the kinematic analysis of UE movement

(see Figure 1)? Due to the expansiveness of the kinematic

analysis workflow, our discussion is restricted to a few notable

examples of computer-assisted approaches used in kinematic

analyses as opposed to a systematic review. This paper represents

an interdisciplinary perspective on the current state of computer-

assisted methods as it relates to the process of conducting

kinematic analyses of functional movement. Advancements

needed for wider usage of kinematics for UEFAs discussed in

this paper include:

1. Developing measurement approaches, such as those based on

markerless pose estimation, that meet accuracy requirements

of domain experts, are easy to use, and measure relevant

quantities (see Section 3).

2. Computing useful measures from kinematic data often requires

segmentation of movement into a standardized hierarchy,

which is currently labor-intensive and not consistently

defined (see Section 4).

3. The need for validated kinematics-based outcome measures

(see Section 5).
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FIGURE 1

The process of analyzing functional human movement, modified from (23), which is the organizing framework for this review. Sections in this paper
corresponding to the different components of the framework are indicated. The movement segmentation component has a dashed outline to
indicate that it is not a necessary part of the kinematic analysis process, although it is frequently required. Definitions of components in Table 1.
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4. Integrating kinematics analysis into domain expert workflows

in a way that meaningfully improves domain-specific

outcomes (see Section 6)

To our knowledge, a review has not been performed on

computer-assisted methods for the entire UE functional

movement kinematic analysis process (see Figure 1). Previous

reviews have comprehensively assessed kinematic measures that

quantify UE performance during a variety of functional tasks (8,

16, 40), although these do not consider the end-to-end kinematic

analysis workflow. Related reviews cover multiple components of

the kinematic analysis workflow (33, 40, 41), but they either are

focused on a specific application (e.g., handwriting (42)) or omit

important components of the workflow (e.g., functional primitive

segmentation (40) and kinematic measurement (41)). There have

also been reviews of computer-assisted methods to support

rehabilitative training using serious games (43, 44), which is

related to our review but is not the focus.
TABLE 1 Computer-assisted functional upper extremity assessment
process modified from (23).

Process phase Definition
Measurement The capture of UE motion kinematics, which results in

data used for analysis. Often done with optical motion
capture systems, wearable inertial measurement units,
commodity cameras, or taken directly from the object
2. Review organization

2.1. Exclusion and inclusion criteria

Excluded are applications in sports (45) and hand gesture

recognition (46, 47). Hand gesture recognition is excluded

because it is a form of non-verbal communication, as opposed to

being used for assessing functional UE movement.

Job-related assessments of skillful UE functional motion using

kinematics are included. These assessments are similarly motivated

by the need for more objective measures of performance (10, 11)

and follows closely with the health-oriented kinematic analysis

workflow. The methods developed for job-related assessment

applications can also be applied to health applications involving

the UE.

being manipulated (e.g., a tablet stylus pen).

Movement
Segmentation

The process of segmenting movements into distinct
movement phases, such as functional movements and
primitives (see Table 3).

Description Can be of many forms, but typically defined as
visualizations of the data (e.g. velocity magnitude time
series of wrist marker) or simple outcome measures.

Analysis Defined as a mathematical operation performed on the
data to present them in a different form or to combine
several sources of data to produce a variable that is not
directly measurable (e.g., inverse kinematic solution).

Assessment and
Interpretation

The assessment of descriptions and analyses, which
informs decisions about interventions.
2.2. Organizational overview

Winter (23) describes the scientific approach to biomechanics,

which this paper uses to represent the kinematic analysis workflow

associated with UEFAs (23). We make an addition to the kinematic

analysis process to include movement segmentation, which has

previously been identified as necessary for a variety of kinematic

analyses (40, 48). The resulting process (see Figure 1) consists of

movement measurement (Section 3), segmentation (Section 4),
Frontiers in Rehabilitation Sciences 03
description and analysis (Section 5), and assessment and

interpretation (Section 6). Definitions for each component are in

Table 1.
3. Measurement

3.1. Background

Kinematics is concerned with quantifying the details of

movement itself (e.g., position displacement, velocity,

acceleration, and jerk) and not the forces that cause the

movement, where the goal is to use kinematics to provide

actionable information for the domain expert. Kinematic data are

collected by either direct measurement or optical systems (23).
3.1.1. Direct measurement systems
Direct measurement systems involve placing equipment on

the individual being evaluated, which includes using

electrogoniometers and special gloves for hands outfitted with

transducers for measuring joint angles, and inertial sensors

(23). These direct joint angle measurements (17, 18) can be

used in a variety of ways (e.g., visualized or measures computed

from joint angle time series) to evaluate functional movement

(19). Electrogoniometers can be relatively inexpensive and

provide kinematic data immediately. However, it can be
frontiersin.org
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challenging to properly place the goniometer on an individual

and wearing the device can influence their natural movement

due to encumbrance. Additionally, more complex goniometers

may be required for joints that do not move as hinge joints

(e.g., wrist and shoulder). Inertial sensors are worn on the

body, where inertial data from the sensors individually (e.g.,

motion of the wrist only) (49) or from multiple sensors (e.g.,

fused together to provide human pose estimates and joint

angles) can be used for kinematic analyses (25, 50). There are

also systems that measure the movement of a device being

operated by the individual, such as end effectors (e.g., tablet

pens (42), haptic devices (26), ultrasound probes (11),

laparsoscopic manipulators (51, 52)) and exoskeletons (53)).

The equipment cost and ease of use varies greatly across these

systems, but generally they provide high sampling rates and

accurate kinematics.

3.1.2. Optical systems
Optical systems can be categorized as being markerless video

capture, marker-based capture with passive reflective markers, or

optoelectric systems with markers that actively emit light (23).

Optical systems are used to provide motion of individual

landmarks (e.g., on the wrist) or to model human pose, where

the latter can be used to measure joint angles (19). Markerless

capture cameras, which include 2D RGB and 3D RGB-D

cameras, are relatively inexpensive, but have traditionally

required anatomical landmarks to be manually identified by a
FIGURE 2

(left) Individual outfitted with active markers for an optoelectronic motion capt
Test (54). (right) Individual moving objects over the middle partition while bein
left image, multiple markers are placed on the right arm to reduce tracking frag
requirements could encumber or impact the individual’s normal movement
consent was given for photo usage.
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human operator, an approach that makes this process infeasible

for large studies or widespread usage. However, markerless and

passive marker systems either do not or minimally encumber the

individual being evaluated, whereas active markers can be

encumbering due to the wiring between the markers (see

Figure 2). Multi-camera systems for passive and active markers

can also be prohibitively expensive to own and operate, although

these systems are highly accurate and are considered to be the

“gold standard” in movement science (9, 55). Although not an

optical system, some systems use active markers that emit sound

or radio signals, which are picked up by receivers used to locate

the active marker (13).
3.2. Human pose estimation

Measurement tools are needed that minimize the impact of

encumbrance on natural movement, provide near real-time

kinematic data with minimal noise and inaccuracies, and are

relatively inexpensive to own and operate. A 2019 systematic

review of low-cost optical motion capture for clinical

rehabilitation indicated the need for better measurement methods

and validation studies, although most papers reviewed were not

specific to UE functional motion (56).

There has recently been substantial progress on 2D and 3D

human pose estimation using low-cost sensors, where the goal is

to infer a representation of the body from images, video, or
ure system (NDI Optotrak®) while completing the Targeted Box and Blocks
g tracked with the markerless pose estimation tool OpenPose (28). In the
mentation due to occlusions. These markers, cables, and associated outfit
, motivating the use of a markerless motion capture system. Participant
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inertial sensor data. Kinematics can then be derived from the

output representation. Table 2 represents a taxonomy of these

methods, inspired by previous taxonomies (30, 57). Included in

Table 2 are recent reviews and research papers for each

methodological approach, along with a non-exhaustive list of

works evaluating the utility of these methods for measuring UE

kinematics. A comprehensive review of human pose estimation

algorithms is beyond the scope of this paper, where instead we

include a brief description of recent measurement approaches

categorized by one of three input data types—RGB, RGB-D, and

inertial data—and synthesize recent results from studies

evaluating their utility for use cases involving UE functional

motion. Radio frequency devices (e.g., WiFi) that do not require

transmitters placed on the body have also been used for pose

estimation (30). However, these methods currently have low

spatial resolution, and we are not aware of their usage for UEFAs.

Additionally, we consider four representations used in human

pose estimation—planar, kinematic, keypoint, and volumetric—

along with their respective input data types (30) (see Table 2 for

associations between representations and input data):

† Planar: This representation models the shape and appearance

of the human body, which is usually represented as rectangles

approximating the contours of the body.

† Kinematic: Models the joint positions and limb orientations of

the human body in a 3D graph representation.

† Keypoint: Similar to the 3D kinematic representation, except

that it is a 2D projection of the 3D body (see Figure 2), i.e.,

the inferred representation is only in 2D. Note that some

works in the computer vision literature (30) conflate the 3D

kinematic representation with the 2D keypoint representation,

which can be confusing.

† Volumetric: A 3D mesh representation.
3.2.1. 2D RGB input
Human pose estimation algorithms can take input two-

dimensional (2D; x and y) red-green-blue (RGB) images, which

is what most consumer cameras capture, and output either a 2D

or 3D representation of the body (30). Per Table 2, the output

2D representations are either planar or keypoints, and output 3D

representations are kinematic or volumetric. Large data sets

consisting of labeled anatomical landmarks or human pose are
TABLE 2 Taxonomy of human pose estimation approaches inspired by (30, 5

Output dimension Output representation Measurement devic
2D HPE Planar Monocular camera

Keypoint Monocular camera

3D HPE Kinematic Monocular camera

Multi-view cameras

Depth camera (e.g., Kine

Inertial sensors

Volumetric Monocular camera

Multi-view cameras

Depth cameras

HPE, human pose estimation; RGB, red-green-blue; RGB-D, red-green-blue-depth; 2
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used to train machine learning models that infer anatomical

landmarks in new, unseen images.

3.2.1.1. 2D keypoint representation
The output 2D keypoint representation has had considerable

research interest recently, which is partially motivated by the

ubiquity of RGB cameras (30, 57). Although there are many

algorithms, one notable 2D human pose estimation algorithm is

OpenPose (28), which has been evaluated for utility in measuring

UE kinematics (17, 58, 59), among other approaches. These

applications involved evaluating the 2D errors of the pose

predictions for reaching movements in infants (58) or extracting

depth values from a red-green-blue-depth (RGB-D) image using

the 2D predictions to create 3D landmarks of UE movements

(17, 59). Using 2D keypoint predictions followed by converting

to 3D coordinates using depth from an RGB-D camera appears

to be the most common use of 2D pose estimation by movement

scientists because human functional motion is often tri-planar,

except for assessments where uni-planar movement is specifically

of interest (e.g., shoulder abduction in frontal plane (59)).

The best-performing 2D pose estimation algorithms have been

demonstrated to be useful for a variety of training and

rehabilitation applications (17, 58, 59, 79, 80) involving gross

movements. However, improvements are still needed to make 2D

pose estimation comparable to gold standard motion capture

systems, such as incorporating physiological constraints (17, 80)

and temporal smoothing (17). Additionally, many of the pre-

trained 2D pose estimation methods rely on training data sets

consisting primarily of able-bodied individuals (17) with crowd-

sourced, hand-labeled keypoints that potentially contain errors

(38). Perhaps the greatest limitation of 2D pose estimation for

analyzing human kinematics is that it is not 3D, which makes

measurement of complex 3D motions (i.e., tri-planar), textures,

and shapes infeasible, particularly when using a single RGB

camera.

3.2.1.2. 3D kinematic representation
An output 3D kinematic representation can be inferred from 2D

RGB images either directly or as a follow-on step to an

intermediary 2D pose estimation output (i.e., “lifting” from 2D-

to-3D), where 2D-to-3D lifting approaches typically outperform

direct estimation methods given the current state-of-the-art 2D

pose estimation methods (30). Alternatively, 2D pose estimation
7).

e Input data Methodological references UE application
2D RGB (30, 57) Not aware of usage

2D RGB (28, 30, 57) (17, 58, 59)

2D RGB (30); (60) for hand pose (59)

2D RGB (30, 61, 62) (63, 64)

ct) 3D RGB-D (30); (60) for hand pose (59, 65–71, 83, 84)

Inertial data (25, 50, 72) (17, 24, 73, 74)

2D RGB (29, 30, 75, 76); (60) for hand pose (17)

2D RGB (30) Not aware of usage

3D RGB-D (30, 77) (78)

D, two-dimensional; 3D, three-dimensional.
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using RGB from multiple camera views of the individual can

provide an estimate of a 3D kinematic representation (61–64),

where a multi-camera setup requires synchronizing the

recordings and computing 3D keypoints from the triangulation

of the synchronized 2D keypoints (62). Additionally, multi-

camera setups minimize the possibility of body parts being

occluded during more complex motions, where occlusions can

cause instability in pose estimation performance (62, 78). These

multi-camera methods have been evaluated against marker-based

optical motion capture for the UE (61–64). Although they were

not focused solely on UE movement, the assessment

methodologies and results are relevant.

OpenPose (28), a popular 2D pose estimation method from

RGB, was evaluated with a multi-camera setup during walking,

jumping, and throwing a ball, where the tracking results were

compared to a marker-based optical motion capture system (63).

For the shoulder, elbow, and wrist joints tracked, (63) found the

respective mean absolute error (MAE)—where we calculated the

mean and standard deviation of the reported MAE values across

activities and axes from Table 1 of (63)—means to be 23.2, 28.9,

and 24 mm, and standard deviations to be 9.29, 16.2, and

13.5 mm. In a separate study, three 2D pose estimation

algorithms in a multi-camera setup outputting 3D pose estimates

during walking, running, and jumping were compared to

marker-based optical motion capture (64). The minimum and

maximum of the 95% limit of agreement values reported for the

shoulder joint center during walking were 14 and 43 mm,

respectively, with generally higher errors for running and

jumping. Ivorra et al. (59) evaluated the application of multiple

pose estimation approaches to tracking UE exercises with a single

camera view and found the method that used only 2D RGB data

(referred to as RGB-3DHP)—percent difference averaged across

tasks of 18.2% compared to marker-based capture—to be less

accurate than the other methods—10.7% and 7.6%—that used

RGB-D data as input. Therefore, a 3D kinematic representation

output from 2D images may be currently restricted to measuring

gross UE motions for applications where high accuracy is not

required, such as rehabilitation games, as recommended by (59).

Regarding the value of estimating 3D pose from multiple RGB

cameras, (62) found that for a 2D pose estimation method called

HRNet, the average marker error across all markers—where

markers were for the whole body—and activities was 32mm with

the two-camera setup, and improved to 29 mm with a five

camera setup. However, accuracy was consistent across the varied

pose detectors and number of cameras when using OpenCap

(proposed by (62)), which makes some modifications to the pose

estimation process. These results suggest that while multiple

cameras will help resolve issues with occlusion, exactly how

many cameras are needed will depend on the pose estimation

method being used and the types of motions being measured.

3.2.1.3. 3D volumetric representation
Inferred 3D volumetric representations (29, 75, 76) from 2D RGB

input appear to be not as thoroughly studied for measuring UE

kinematics compared to the 2D keypoint and 3D kinematic

representations, although these methods appear to capture details
Frontiers in Rehabilitation Sciences 06
of hands relatively well. One UE application example is UE

kinematics being measured with wearable IMUs using an

inferred 3D mesh representation and 2D keypoint representation

—stereo was used to get the depth values for the 2D

representation—for IMU calibration (17). After calibration, the

IMUs could be used to track joint trajectories alone or optionally

with the 3D pose estimates from video.

3.2.2. 3D RGB-D input
Pose estimation methods that take input 3D red-green-blue-

depth (RGB-D; x, y, and z) data will output either 3D kinematic

or volumetric representations of the body (see Table 2).

Microsoft Kinect—versions include V1, V2, and Azure—is an

RGB-D camera commonly used in studies evaluating pose

estimation for kinematic measurements because the cameras are

relatively cheap, portable, easy-to-use, and have a built-in pose

estimation capability that returns inferred joint positions using

depth data. Details about the Kinect V2 pose estimation

algorithm are published (81), whereas the details for the Azure

Kinect are not disclosed. Different versions of the Kinect are

used in all reviewed papers using RGB-D to measure UE

kinematics (59, 65, 67, 69, 70, 78) except for (17) which

computes the depth map from calibrated stereo cameras.

Compared to pose estimation methods that use 2D RGB images

only, methods that use RGB-D images appear to provide more

accurate estimates (59) when only a single camera is used, which

accurate estimates are necessary for measuring fine movements.

However, this may not be the case in multi-camera setups and is

a subject for further study.

3.2.2.1. 3D kinematic representation
For the output 3D kinematic representation, none of the UE

application studies we review in this category (59, 65–71, 82–84)

involved other pose estimation algorithms that use depth to infer

body pose, although algorithms exist (30). The consensus from

these studies, which involved a variety of UE movements, is that

the Kinect’s pose estimation method is suitable for measuring

gross movements but is not suitable for fine movements. For

example, the Kinect failed to adequately track shoulder

movement (69), which is an important compensatory movement

to measure in clinical settings (e.g., during stroke rehabilitation

(78) and UE prosthesis use (12–14)). Better methods could be

used if real-time processing is not a requirement (59), whereas

the Kinect was developed specifically for gaming and therefore

requires real-time pose estimates.

3.2.2.2. 3D volumetric representation
3D volumetric representations can also be inferred or fitted from

RGB-D images (30, 77, 78). Jatesiktat et al. (78) proposed

improving the Kinect V2 3D kinematic pose estimates for the

upper body by fitting a human mesh representation (85) to the

depth image, along with using two wrist-worn IMUs to mitigate

issues with forearm occlusion. This approach allowed for better

tracking of the shoulder, wrist, and elbow compared to using the

Kinect pose tracker alone by 25.9% across all the evaluation data

and 43.7% across the cases with occlusion. While (69) indicated
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the Kinect pose tracker alone could not provide measurements of

fine shoulder movement, the results from (78) suggest that a 3D

volumetric representation can be used to improve 3D kinematic

representations. According to Figure 4 in (78), the proposed

method with the IMU improved the average error from

approximately 45 to 33 mm, although whether this is sufficient

for fine shoulder motion is an open question.

3.2.3. Inertial data input
Wearable IMUs have been studied extensively by the

movement science community (17, 24, 25, 49, 50, 72–74, 78, 86).

Although kinematics from the IMUs in isolation can be used

(e.g., motion of the wrist-worn IMU), multiple IMUs attached to

the body are used for pose estimation due to sensors being low

cost and not suffering from issues associated with occlusion.

IMUs have been assessed to be suitable for estimating UE

kinematics in the laboratory and clinical settings (24, 50, 74), but

there are challenges associated with widespread usage outside of

these controlled settings.

These challenges include sensor calibration, drift over time

associated with gyroscopes, and magnetometers being sensitive to

certain metals in the environment (25, 50, 72). However, a

variety of methods exist for calibration, reducing drift, and

handling magnetic disturbances (25), where the extent of these

issues (e.g., magnitude of the drift) will depend on what methods

are used. For example, (73) excluded magnetometers from their

proposed upper body pose estimation method using IMUs,

avoiding magnetometer disturbance concerns, although a

comparison of the magnetometer-free method with methods

using magnetometers while attempting to minimize magnetic

disturbances (25) was not performed. Newer methods that fuse

optical motion capture with IMUs for calibration could make it

easier to get relevant kinematic measurements of UE movement

(17). Inertial data, potentially along with other data types that

could come from wearables (e.g., electromyography), can also be

fused with optical pose estimation approaches to provide

potentially better kinematic measurements (17, 30).
3.3. Measurements of manipulated systems

While using optical motion capture and IMUs to measure

complex functional UE movement kinematics are popular, there

are other ways to measure functional UE movement that tend to

be application-specific. For example, haptic virtual environments

record precise kinematic information via encoders (87) and

provide a customizable workspace to assess functional UE

movement, which has uses in rehabilitation (26) and surgical

skill assessment (88). Kinematic measurements have also been

recorded from real laparoscopic box trainers, which has been

used to evaluate surgical skill (51, 52, 89–93). UE kinematic

measurements have been recorded by the objects people

manipulate, as is the case with ultrasound probes that have been

used to assess the skill of obstetric sonographers (11).

Handwriting on digitizing tablets are used for assessing

neurodegenerative diseases (42, 94) and dysgraphia (95) using
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kinematic information of the pen tip and pen pressure on the

writing surface.
3.4. Evaluating measurement methods

Domain experts need to understand how well measurement

systems work and whether they can be adopted for their

applications. The computationally-oriented literature tends to

focus on evaluating the accuracy and run-time of new

measurement methods, such as assessing keypoint localization

error for 2D pose estimation using the keypoint representation

(30). For adoption in healthcare applications involving UEFAs,

test-retest reliability (50, 68, 70, 96) and validity (24, 50, 59, 66,

68) need to be assessed. Furthermore, accuracy assessments (25,

63, 64, 67, 73, 74, 78) that do not rely solely on healthy

participants (17, 38) are needed. Although the reviewed pose

estimation methods are finding utility in health applications

related to measuring UE movement, more widespread adoption

of these tools require further assessments of measurement

accuracy, validity, and reliability (9) on quantities that are

important to movement scientists (38), e.g., joint angle (17–21,

50, 62).
4. Movement segmentation

4.1. Background and motivation

4.1.1. Background
Useful kinematic descriptions and analyses require comparing

the same types of functional motions across individuals, such as the

reaching portion of a trajectory an individual follows to grasp an

item (97). However, movement segmentation is challenging

because the UE is complex (e.g., the UE has seven degrees of

freedom and can be moved with the torso) and people move

differently, even on the same task (48). Due to the variability in

UE movement on a given functional task, segmenting the

movement into meaningful parts for analysis is a manually

intensive process and can be the most time-consuming part of

the kinematic analysis process. Therefore, targeting research

efforts to alleviate the burden of segmenting kinematic data

would have considerable impact on the kinematic analysis

process across many applications.

A segmentation procedure has two outputs: (1) the start and

stop timestamps of the motion sequence and (2) what type of

motion the sequence is (98–100). This requirement means that a

sequence can potentially have multiple classes of motions, which

is considered a more challenging problem than predicting the

motion class of an already trimmed segment consisting of only

one class. The simplest and most time-consuming way to do this

is to manually segment the data based on descriptions of the

movement (see “Describe” in Figure 1) and video recordings

(48). The development and usage of automated movement

segmentation algorithms will help reduce the cost and burden

associated with conducting kinematic assessments, especially as
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kinematic assessments become more prevalent and the amount of

data needing processing exceeds the capacity of current workflows

used in the research setting.

4.1.2. Organizing hierarchy
The computational literature inconsistently labels levels of

functional motion, which can be confusing when trying to identify

which segmentation methods are suitable for a particular

application. For example, the definition of an action in (34) differs

from (101), where (101) analyzes more complex activities. A

recent partonomy-based activity recognition method proposed a

general structure for categorizing human movements, which

included the activity, sub-activity, and atomic action categories

(102). These categories are comparable to the hierarchical levels

adopted by (2) in their UE functional motion hierarchy, which

includes activities, functional movements, and functional

primitives. This review is targeted towards helping computational

researchers better understand the kinematic analysis process for

UEFAs and domain experts understand the tools that are available

to them. Therefore, this review follows the terminology from the

health literature and adopts the hierarchy from (2) to organize the

reviewed segmentation approaches, with other researchers also

recommending this hierarchy for segmentation (103).

The UE functional motion hierarchy (see Table 3) used in this

paper has the following three levels: activities, such as eating

dinner; functional movements, such as drinking water or tasting a

spoonful of soup; and functional primitives, which are short and

discrete movements, such as reaching, transport, grasping,

stabilizing, idling, and repositioning (2). This hierarchy captures

the idea that functional motions can be decomposed into

different levels of motion with decreasing duration and

complexity, with the more granular motions serving as building

blocks for more complex motions.

4.1.3. Necessity of different segmentation levels
Suppose a rehabilitation specialist is interested in evaluating

the kinematics associated with how individuals make a salad
TABLE 3 Upper extremity functional motion hierarchy (2).

Hierarchy layer Goals
(i.e.,
tasks)

Duration Examples

Activities (broad, see
Section 4.3)

Many Minutes to
hours

† Cooking dinner
† Bathing
† Putting clothing on

Functional movementsa

(see Section 4.4)
Few Seconds † Tasting sauce

† Putting arm
through sleeve

† Zipping up jacket
† Tying shoelace

Functional primitives
(granular, see Section
4.5)

One Sub-seconds to
seconds

† Reach
† Reposition
† Grasp
† Transport
† Stabilize
† Idle

aHas also been referred to as actions (2).
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within a standardized setup (see Figure 3). The activity is

known—making a salad—but there are multiple tasks an

individual must do, such as grabbing a bottle of vinegar for the

dressing and cutting a tomato. Ideally, these different tasks

would be segmented so that kinematic measures can be used

for comparison for the same task, either across groups or over

time. One option is for the clinician to do this manually, but

that is time consuming. Another option is to use algorithms

that automatically identify these different tasks. These

algorithms address the problem of functional movement

segmentation.

Suppose the tasks have now been segmented and the clinician

would like to analyze the functional primitive kinematics of how

individuals reach for and grasp the bottle of vinegar (e.g., some

kinematic analyses require primitive segmentation (97, 105,

106)). This reaching motion consists of multiple functional

primitives (see Table 3) and would need to be segmented. Again,

one option would be to manually segment the primitives (48).

However, there are algorithms that focus specifically on

automating functional primitive segmentation (e.g., (26, 106)).

Given the distinction between the algorithms for segmenting

functional movements and primitives, one section is dedicated to

each in this review. Furthermore, functional movement

segmentation algorithms are usually disjoint from functional

primitive segmentation algorithms.

4.1.3.1. An exception
Although movement segmentation is widely done in the health and

computational literature, e.g., some measures of movement

smoothness require it (105), there are some examples of

computational approaches that skip movement segmentation

altogether (51, 52, 107). Kinematic measures of surgical skill

from the entirety of each surgical training task have been used

(51, 52), i.e., motions during tasks were not segmented. Similarly,

(107) proposed a surgical skill evaluation approach that explicitly

does not require segmentation.
4.2. Data sets

Table 4 includes publicly available data sets with labeled

activity and functional UE movements, although most of these

data sets also include non-UE motion. These data sets have

sequences with potentially multiple segment classes, requiring

temporal segmentation. We are not aware of publicly available

data sets with labeled motions found in clinically validated

UEFAs, which are necessary for reducing the burden

associated with the UE kinematic analysis workflow. Lin (108)

identified rehabilitation-focused data sets for the UE and lower

extremity. However, the only rehabilitation-focused UE

functional motion data set (109) could not be found online.

Zhang et al. (99) and Hu et al. (100) include state-of-the-art

action detection performance measures for a variety of data

sets, and most of the referenced data sets in Table 4 include

benchmark performance results using supervised and

unsupervised approaches.
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FIGURE 3

Single frame from the 50 Salads data set (104) (license under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License:
https://creativecommons.org/licenses/by-nc-sa/4.0/), which required individuals to make salads. Data includes RGB-D video, accelerometer data
from utensils, and functional movement labels.
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4.3. Activity segmentation

Activities are the highest level in the functional motion hierarchy

(see Table 3). Activity recognition (35, 36, 102) is useful for

assessments where individuals are being evaluated in their natural

environments throughout the day, where it may be useful to

automatically identify activities an individual is doing. At-home

health monitoring is especially important to clinicians because

improvement in clinical measures does not necessarily mean UE

performance improvement in free-living and unstructured

environments (49), where improvements in the latter is the goal.

Human activity recognition has received attention from the

computational research community; however, many of the

methods need labeled data, which are not rehabilitation specific

(see Table 4). Additionally, activity recognition as part of UEFAs

is a relatively undeveloped area. Inaccurate commodity

measurement systems (e.g., wearable sensors), non-validated

outcome measures, and human factors challenges are current

barriers to use of data capture and analysis (86). Furthermore,

current measures used for at-home UEFAs are not activity-

specific and instead summarize different aspects of UE usage
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throughout the day (49, 103). Activity recognition methods are

useful for at-home UEFAs (84, 103), but their utility is not as

well defined compared to the automated segmentation of

functional movements and primitives (see Table 3). This paper

does not thoroughly review human activity recognition methods

due these aforementioned issues. Additionally, the activities

performed during UEFAs, which are most commonly done in

clinics, research labs, or as part of job-related assessments and

training, are pre-defined to include only the activities of interest.
4.4. Functional movement segmentation

Functional movement segmentation approaches, also known as

human action detection in the computational literature (98–100),

typically use supervised or unsupervised learning. Progress in

functional movement segmentation algorithms for UE functional

motions has benefited from the availability of labeled data sets.

Algorithmic development has therefore been largely focused on

these well-annotated data sets because it is easier to compare and

evaluate algorithms.
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TABLE 4 Publicly available activity and functional motion data sets with segment labels.

Data set Topic Task(s) Participants System Labels
JIGSAWS (91) Surgical

activity
Suturing, knot-tying, needle
passing

8 surgeons of varying skill Robotic kinematics; stereo video Surgical skill; functional
movements and primitives

50 Salads (104) ADLa Food (salad) preparation 27 able-bodied individuals Accelerometry from objects; RGB-D Functional movements

Breakfast Actions (110) ADL Varying cooking tasks 52 able-bodied individuals Markerless video capture Activities and functional
movements

EGTEA Gaze+ (111) ADL Varying cooking tasks 32 able-bodied individuals Markerless video capture with gaze
tracking

Functional movements

TUM Kitchen (112) ADL Object interaction 4 able-bodied individuals Markerless video capture; RFID on
objects

Functional movements

UW IOM (113) ADL Object interaction 20 able-bodied individuals Kinect RGB-D camera Functional movements

LARa (114) Logistics Picking and packaging 14 able-bodied individuals Maker and markerless video capture;
IMUs

Activities and functional
movements

CAARL (115) Logistics Picking and packaging 2 able-bodied individuals Marker and markerless video capture
on person and objects

Activities and functional
movements

AVA-Kinetics (116) Varied Varied object and person
interactions

Not reported (large data
set)

Markerless video capture (Youtube) Activities and functional
movements

Something-Something
V2 (117, 118)

Varied Object interaction Not reported (large data
set)

Markerless video capture (crowd
sourced)

Activities and functional
movements

HMDB51 (119) Varied Varied object and person
interactions

Not reported (large data
set)

Markerless video capture (Youtube,
movies)

Activities and functional
movements

UCF101 (120) Varied Object and human
interaction; body motions

Not reported (large data
set)

Markerless video capture (Youtube) Activities and functional
movements

MOMA (102) Varied Object and human
interaction

Not reported (large data
set)

Markerless video capture (Youtube) Activities and functional
movements

Action Genome (121) Varied Object interaction Not reported (large data
set)

Markerless video capture (Amazon
Mechanical Turk)

Activities and functional
movements

Ego4D (122) Varied Varied, including person and
object interaction

923 participants from
multiple countries

Egocentric RGB, IMUs, gaze, and
audio

Activities and functional
movements

BEHAVIOR-1K (123) ADL Object interaction None (simulation) Simulation Activities

aActivities of daily living (ADL).
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4.4.1. Supervised learning
Combined segmentation and classification has been approached

from a supervised learning perspective using only kinematic data

(124, 125), kinematic and video data together (124, 125), or video

data alone (124–126). These approaches have the goal of densely

labeling all time-steps in the sequential data with functional

movement class out of multiple classes. This differs from

computational methods that assume the start and end points of

the segments are given (127, 128), thereby reducing the problem

to simply classifying the given segments. However, this is not a

reasonable assumption for real-world UEFA use cases.

Additionally, kinematic information alone has primarily been used

in the health literature to segment movement (48), whereas

contextual features related to the objects being manipulated (e.g.,

distance from hand to nearest object) have been used for

segmenting surgical motions (125). These supervised learning

algorithms may also work for a variety of functional movements if

labeled data are available, as is done in (125).
4.4.2. Unsupervised learning
Unsupervised approaches to movement segmentation do

not require ground truth labels for training but tend to

assume that there are repeated patterns in the movements

(129, 130). These methods can also use a variety of data

sources, such as only the end effector kinematics (131) or

both kinematic and video features (129) for robotic surgery
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motion segmentation. More general unsupervised

segmentation approaches can also use the whole body pose

(i.e., multiple anatomical landmarks) (130).
4.5. Functional primitive segmentation

Lin et al. (48) provides an organizing framework for functional

primitive segmentation, which includes online and offline methods.

A variety of approaches are reviewed in (48) for general primitive

segmentation (i.e., includes full-body primitives and gesture

recognition) that apply to a variety of tasks (i.e., many UE

functional motions require reaching, grasping, etc.). This section

focuses specifically on methods for UE functional motion, either

of the UE or an end effector.

Feature vector thresholds and zero-crossings (48) work well for

simple actions and small data sets that allow researchers to visually

verify the movement segments. Engdahl and Gates (97) segmented

functional UE movement during pre-defined activities of daily

living (ADLs) into reaching and object manipulation phases using

a fixed-velocity magnitude threshold. Cowley et al. (12) and

Engdahl and Gates (15) evaluated UE prosthesis users compared

to able-bodied individuals on a set of standardized ADLs and

segmented the movement primitives using pre-defined velocity

magnitude thresholds. Li et al. (132) accounted for differences in

participant kinematics while transporting objects by selecting 50%

of movement time as when the hand reached a target position.
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Approaches that use thresholds and zero-crossing tend not to

perform well with complex functional movements (48),

particularly for reaching motions (133). Some measurement

systems allow for the collection of events (i.e., additional context

about what the individual is doing, such as making contact with

objects) in addition to kinematics, such as in haptic virtual

environments. These events can be used to indicate action

segments, e.g., person grasped object, person released object (26).

Jackson et al. (26) showed that primitive segmentation, such as

reaching and grasping, using a fixed-velocity magnitude threshold

can result in incorrect primitive segments, requiring more robust

computational approaches. To remedy this, (26) proposed a

movement primitive segmentation approach that uses distance

from the object and event recordings to segment reaching from

object manipulation. This method has since been used to segment

the reach and dwell primitives of pen point trajectories during the

Trail Making Test to assess cognitive function (106).

Additional approaches to segmenting UE movement primitives

include using 2D hand trajectories for identifying different hand-

drawn shapes by segmenting the trajectory into strokes based on

large changes in the angle between line segments and the

horizontal axis (134). Motivated by robotic imitation learning,

visual information, specifically kinematics derived from the Kinect

pose estimation software, has been used to segment functional UE

movements into reaching, manipulation, and release (135).
4.6. Evaluating segmentation performance

Given labeled data sets for both functional movements and

primitives, segmentation evaluation measures include accuracy,

precision, recall, overlap between ground truth and predicted

segment classes, and the ordering of predicted segments (48, 98,

125). Unsupervised and supervised functional primitive

segmentation algorithms can use the same data sets for

evaluation (e.g., as has been done with JIGSAWS (91)). However,

due to challenges associated with creating ground truth labels for

functional primitives, verification of temporal segmentation

results is limited (48). One of the major challenges with

acquiring data sets of motion primitives is that it is still unclear

what separates the different primitive phases using kinematics

alone, especially given variations in pathologies, impairments,

and movement strategies. Similarly, functional movement labels

are not reliably identified across raters (98). Additionally, many

of the available data sets focus on healthy, able-bodied

populations, which may not properly indicate whether a

segmentation approach will generalize to populations of interest

to domain experts (48).
5. Description and analysis

The description and analysis phase (see definitions in Table 1) of

the kinematic analysis process (see Figure 1) converts the measured

and segmented kinematic data into a format usable by a domain

expert to inform their decisions about treatment or interventions.
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The measurement accuracy and segmentation requirements for

specific descriptions and analyses informs what measurement and

segmentation methods are suitable for use. Besides these

requirements, descriptions and analyses are not necessarily tied to

specific measurement and segmentation approaches.

Common kinematic descriptions of UE functional motion

include plots of kinematics for a single point (12, 13, 26, 97,

127), e.g., position trajectory and velocity magnitude of the wrist.

More advanced visualizations include plotting joint angle time

series during functional movements (17–21), highlighting

compensatory UE motions (136), and visualizations of UE

function and activity in free-living environments (103). A

comprehensive review of functional UE motion descriptions and

analyses is beyond the scope of this paper, with multiple reviews

and studies of kinematic analyses already published for UE

movements after stroke (16), UE functional impairment measures

(8), handwriting (42, 95), and quantifying laparascopic surgical

skill (51, 52, 107). Instead, we note a few directions where

computer-assisted methods could support the description and

analysis phase.
5.1. Automating existing measures vs.
creating new ones

Given that many existing clinical measures are already

validated and well-known by rehabilitation professionals (41),

automating these measures may offer additional benefit because

clinicians are already familiar with them and would benefit from

potential resource or time savings. For example, (137) used

machine learning to infer clinically validated scores of UE motor

impairment and movement quality in stroke and traumatic brain

injury survivors using wearable sensor data. Barth et al. (138)

evaluated a method for predicting the UE functional capacity, as

defined by the Action Research Arm Test score, of individuals

with first-ever stroke using early clinical measures and

participant age.

Development, evaluation, and automation of currently non-

validated measures, such as some that use kinematic data, should

also continue in parallel to automating the output of validated

measures. For instance, clinically relevant gait parameters (e.g.,

walking speed, cadence) and validated gait measures (e.g., the

Gait Deviation Index and the Gross Motor Function

Classification System score) have been inferred from 2D keypoint

human pose estimates using a single RGB camera (79); a

methodology which could apply to UE functional motion. An

UE-specific example is the development of a kinematic-based

quantitative measure of UE movement quality post-stroke from

motions performed during two widely used qualitative

assessments, where the quantitative measure was found to be

strongly correlated with the qualitative assessment results (83).

Similarly, a measure of movement quality from UE kinematics of

individuals with chronic stroke symptoms captured during a

rehabilitation game was evaluated against established UEFAs (84).

Note that kinematic descriptions and analyses tend to be

explainable and expert-derived, e.g., in contrast with
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representation learning. This is largely due to intervention

decisions being the responsibility of a human that must be able

to interpret the data. However, this does not preclude the use of

methods such as deep learning to help with analysis, as is the

case with (79).
5.2. Time series data mining

Time series data mining techniques have been successfully used

for segmenting motions and analyzing skill in the robotic surgery

setting (127, 131, 139–141). Some of these methods have also been

used for the analysis phase, such as converting trajectories to

string representations (e.g., symbolic aggregate approximations

(SAX) (127)) and comparing time series using a method called

dynamic time warping (DTW) (131, 139, 140). DTW is useful

because it allows the measurement of similarity between two time

series with varying speeds. The motivation for these works is that

surgical motion classes (e.g., grab needle, pull needle, rotate suture

once (141)) and surgical skill levels follow distinctive patterns.

While movement segmentation are often a focus of these works,

the use of DTW represents a direction where kinematic measures

are computed based on comparisons, as opposed to computing a

measure from an individual’s kinematics only. For example, (139)

computed a score based on how the trajectories of the robotic

instrument tips compared to “optimal” trajectories during a

simulated surgical task. While it is unclear what an optimal

trajectory would be in a clinical setting, the time series data

mining techniques these surgical motion segmentation and skill

evaluation methods use could be relevant for identifying patterns

in functional UE motion on standardized tasks.
5.3. Dimensionality reduction

As more measures are developed and validated, it is possible

that for a particular functional motion there could be many

measures used to describe it (49). Another research direction is

to use computational methods for visualizing high dimensional

data, such as using t-SNE (142), UMAP (143), or principal

component analysis (49, 83). Using dimensionality reduction

techniques to project high dimensional data to two or three

dimensions for plotting could be useful for seeing how the

evaluated individual compares to others.
5.4. Validation and standardization

The lack of validated and standardized kinematic-based

outcome measures are a substantial barrier to more widespread

usage of kinematics by domain experts (16). Although domain-

specific researchers are likely better positioned to address this

problem, computer-assisted tools that make descriptions and

analyses easier to acquire will enable a wider group of domain-

specific researchers to develop and evaluate kinematic-based

outcome measures.
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6. Assessment and interpretation

Following the definition in Table 1, this phase involves the

assessment and interpretation of kinematic-based outcome

measures to inform decisions about training or clinical

interventions. At this stage in the workflow depicted in Figure 1,

the data have been measured, segmented according to the needs

of a particular analysis, and descriptions or analyses have been

computed. Staying within this review’s scope of developing

computer-assisted tools to better support the kinematics analysis

process, two areas are considered: (1) automating the assessment

and interpretation of kinematic measures, and (2) making

descriptions and analyses from the previous workflow stage

available to domain experts for interpretation.
6.1. Automating assessment and
interpretation

Although adoption of kinematic analyses is currently limited,

researchers have recently used machine learning and artificial

intelligence to automate aspects of the interpretation and

assessment process (41, 42, 52, 94, 95, 107, 144–146). Whereas

machine learning in the previous section is used to output

outcome measures that a domain expert would interpret as part

of their decision-making process, the methods considered here

automatically output an assessment (e.g., the presence of a

disease) based on input kinematic-based outcome measures (see

Section 5). Pereira et al. (144) provides a systematic review of

machine learning approaches and data sets for inferring the

diagnosis of Parkinson’s Disease using kinematic measurements,

among other data sources. Classification models trained on

kinematic features have been used to predict the skill level of

laparoscopic surgeons (52, 107). Handwriting on consumer

tablets has been used for automated diagnosis of dysgraphia (95)

and neurological disease (42, 94, 145, 146).
6.2. Interfacing with kinematic measures

How domain experts physically interface with kinematic-based

outcome measures, either from UEFAs or during free living, has

also been studied from the perspective of human-centered design

(147, 148). These outcome measures are just one of a variety of

inputs domain experts use in their assessments, necessitating

consideration of how to integrate these various inputs into a

system easily used by domain experts. For example, a 2020

survey on requirements for a post-stroke UE rehabilitation

mobile application showed that rehabilitation clinicians in the

United States and Ethiopia valued the ability to record video of

UE function, automatically update performance measures,

graphically display patient performance in a number of factors,

and see current quality of life and pain levels, among other

desired features (147). Similarly, in (148), rehabilitation clinicians

qualitatively evaluated a prototype dashboard that visualized UE
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movement information in stroke patients. The dashboard was then

revised based on their feedback and presented in (148). User

studies like these will be essential to successfully integrating

kinematics analyses into domain expert workflows.
7. Outlook

7.1. Measurement

A variety of tools are available for measuring kinematics, from

low-cost optical and wearable sensors to high-cost optical motion

capture systems. Although not offering the same accuracy as

optical motion capture, low-cost sensors and pose estimation

algorithms provide an opportunity for wider usage of kinematics

for specific applications, primarily for measuring gross movements

(71, 83, 84). Integration of these more flexible systems will depend

on developing more accurate human pose estimation methods that

generalize to populations of interest to domain experts (17),

measure relevant quantities for the particular domain, e.g., 3D

pose and joint angles (38), and are shown to be reliable,

responsive, and valid (9, 86). Wider adoption of low-cost

measurement sensors depends on whether the data from these

systems combined with specific kinematic UEFAs are

demonstrated to be valid and reliable, as is done in (83, 84).

Alternatively, kinematic UEFAs that indicate an acceptable

measurement error range could help identify what movement

measurement approaches to use in practice. Ease-of-use is another

barrier to using markerless pose estimation methods more widely.

Some works have developed software packages that are more

accessible (e.g., two or more smartphones can be used, user-

friendly application) outside of the laboratory, while also

incorporating methodological modifications to improve kinematic

quantities (e.g., body models) (62). Ease-of-use may also be why

the movement science community has frequently used the Kinect

for markerless motion capture (see section 3.2.2.1), where the

Kinect has a built in pose estimation capability accessible via a

relatively simple application programming interface (API).
7.2. Movement segmentation

A variety of methods exist for movement segmentation, which

could help automate the processing of data before analysis and

interpretation by a domain expert. Movement segmentation, along

with measurement, represent the most costly and burdensome parts

of the kinematic analysis workflow for UEFAs that computer-

assisted methods could help address. Current segmentation

workflows used by researchers will not scale to the volume of data

expected as kinematic measurements and analyses become more

prevalent outside the laboratory. Automated segmentation

approaches, along with improved measurement approaches, will

enable more widespread kinematic data capture and processing,

especially in unconstrained natural environments, e.g., at home.

More accessible kinematic data capture and segmentation would

give a wider range of domain experts access to kinematics analyses
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to support the further validation and standardization (16) of

kinematics-based outcome measures and the administration of

measures that have been validated.

In addition to the outstanding problems of algorithm

generalizability and the general lack of algorithm verification due

to difficulties with acquiring labeled data (48), motion hierarchies

(see Table 3) tend to be inconsistently defined. Although there

appears to be agreement across the computational and health

literature that there are at least three levels of motion (2, 102),

different names for these levels could be confusing to domain

experts and limit their application. Consensus on a functional

motion hierarchy amongst computational researchers and

domain experts will be necessary for segmentation algorithm

development. Standardization of a functional motion hierarchy

will help researchers curate more relevant data sets, where those

data sets will be essential to further development of segmentation

algorithms for evaluation and learning-based algorithms. The

lack of relevant, rehabilitation-focused data sets that follow a

standardized motion hierarchy needs considerable attention by

the research community, where the requirements for those data

sets will require expertise from both computational researchers

and domain experts.
7.3. Description and analysis

The validation of kinematic measures is essential to more

widespread usage. However, a valid kinematic measure computed

using a specific measurement and segmentation approach may

not be valid using another type of measurement and

segmentation approach, making it difficult to generalize

kinematic measures that have not been validated with a

particular set of measurement and segmentation methods (9).

Furthermore, we believe that computing the kinematic

descriptions and analyses themselves is not a burdensome aspect

of the kinematic analysis process if the kinematic data are

accurate (section 3) and properly segmented (section 4).

Developing methods to more easily measure and output

existing validated clinical measures appears to be a valuable

direction to pursue because of familiarity and existing use by

clinicians (41). In addition to existing measures, developing

methods to better measure kinematics, compute kinematic

outcome measures, and validate them should be pursued in

parallel. An approach to developing and evaluating new

quantitative measures from kinematics is to compare the

kinematics-based measure to currently used assessments that

have been demonstrated to be valid and reliable (83, 84). In

healthcare, improving the quality of outcome measures and

making the assessments easier to administer are important for

patient outcomes and documentation. Outcomes research is used

to understand the effectiveness of health services and

interventions, or outcomes, necessitating outcome measures that

are both valid and reliable (149). Furthermore, the need for

repeated assessments to inform interventions throughout the

rehabilitation cycle (150) necessitates easily acquired and

sensitive movement quality measures (9).
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7.4. Assessment and interpretation

There is currently no consensus on how domain experts should

use kinematic measures (9). Additionally, it is currently not known

how computer-aided assessments or diagnosis (42) would best

integrate into the kinematic analysis workflow used by a domain

expert beyond use as a screening tool because of potential biases in

the data (e.g., cultural and impairment variations), small reference

data sets, and limited data on whether automated systems actually

improve health outcomes (39, 41). Although there has been success

in automating aspects of robot-assisted surgical skill assessment and

handwriting analysis, it is unlikely that domain experts, especially

clinicians, will be replaced with fully autonomous systems

responsible for deciding on interventions (42). Instead, a potentially

more tractable approach is for computer-assisted methods to be

designed to assist domain-experts in making decisions by providing

more objective information (138).

Integrating artificial intelligence and autonomous systems (41)

into domain expert processes is challenging and raises questions

about reliability, trust, generalizability, and how domain experts and

individuals can interface with the autonomous system. McDermott

et al. (151) provides a framework for interviewing domain experts

and establishing requirements that can enable an effective human-

autonomy partnership. System-level user requirement studies can

also inform the integration process (147, 148). Additionally,

cognitive systems engineering research could be an area that

provides valuable quantitative evaluations on how computational

tools integrate into domain expert workflows, such as the recently

proposed joint activity testing framework (152). The need for more

user-friendly kinematics measurement, segmentation, and analysis

methods, as well as investigating how to integrate kinematic

analyses into domain expert workflows (i.e., human factors),

underscores the multidisciplinary approach required to meaningfully

improve the quality and administration of UEFAs.
8. Conclusion

Computer-assisted methods could serve an important role in

improving outcomes by making kinematic measurement and

analysis for UEFAs more accessible and cost-effective, especially

for usage in clinics and one’s natural environment. Markerless

optical motion capture and automated segmentation algorithms

are recent developments that may alleviate some of the most

burdensome aspects of the kinematic analysis workflow.

However, additional improvements are still needed, along with

studies of validity, reliability, explainability, and generalizability

for domain-specific UE applications. Better computer-assisted

tools for kinematics analysis may also support the further

development and evaluation of kinematics-based outcomes

measures by giving domain-experts greater access to kinematics

data and analysis tools. Furthermore, how best to incorporate

kinematic analyses in domain expert workflows in a way that

improves health or job-related outcomes remains an open
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problem. As evidenced by the wide-ranging reach of this review,

interdisciplinary collaboration will be critical to developing

computational tools that meaningfully support the kinematic

analysis process for evaluating functional UE movement.
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