
TYPE Original Research
PUBLISHED 10 March 2023| DOI 10.3389/fresc.2023.1121034
EDITED BY

Corneliu Bolbocean,

University of Oxford, United Kingdom

REVIEWED BY

Salim Heddam,

University of Skikda, Algeria

Ismail Mohd Khairuddin,

Universiti Malaysia Pahang, Malaysia

*CORRESPONDENCE

Yuko Shibata

shibata.yuko975@gmail.com

†These authors have contributed equally to this

work and share first authorship

SPECIALTY SECTION

This article was submitted to Disability,

Rehabilitation, and Inclusion, a section of the

journal Frontiers in Rehabilitation Sciences

RECEIVED 11 December 2022

ACCEPTED 13 February 2023

PUBLISHED 10 March 2023

CITATION

Shibata Y, Victorino JN, Natsuyama T,

Okamoto N, Yoshimura R and Shibata T (2023)

Estimation of subjective quality of life in

schizophrenic patients using speech features.

Front. Rehabil. Sci. 4:1121034.

doi: 10.3389/fresc.2023.1121034

COPYRIGHT

© 2023 Shibata, Victorino, Natsuyama,
Okamoto, Yoshimura and Shibata. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.
Frontiers in Rehabilitation Sciences
Estimation of subjective quality of
life in schizophrenic patients using
speech features
Yuko Shibata1*†, John Noel Victorino1†, Tomoya Natsuyama2†,
Naomichi Okamoto2†, Reiji Yoshimura2† and Tomohiro Shibata1†

1Department of Life Science and System Engineering, Graduate School of Life Science and Systems
Engineering, Kyushu Institute of Technology, Kitakyushu, Japan, 2Department of Psychiatry, University of
Occupational and Environmental Health, Kitakyushu, Japan

Introduction: Patients with schizophrenia experience the most prolonged hospital
stay in Japan. Also, the high re-hospitalization rate affects their quality of life (QoL).
Despite being an effective predictor of treatment, QoL has not been widely utilized
due to time constraints and lack of interest. As such, this study aimed to estimate
the schizophrenic patients’ subjective quality of life using speech features.
Specifically, this study uses speech from patients with schizophrenia to estimate
the subscale scores, which measure the subjective QoL of the patients. The
objectives were to (1) estimate the subscale scores from different patients or
cross-sectional measurements, and 2) estimate the subscale scores from the
same patient in different periods or longitudinal measurements.
Methods: A conversational agent was built to record the responses of 18
schizophrenic patients on the Japanese Schizophrenia Quality of Life Scale
(JSQLS) with three subscales: “Psychosocial,” “Motivation and Energy,” and
“Symptoms and Side-effects.” These three subscales were used as objective
variables. On the other hand, the speech features during measurement
(Chromagram, Mel spectrogram, Mel-Frequency Cepstrum Coefficient) were
used as explanatory variables. For the first objective, a trained model estimated
the subscale scores for the 18 subjects using the Nested Cross-validation (CV)
method. For the second objective, six of the 18 subjects were measured twice.
Then, another trained model estimated the subscale scores for the second time
using the 18 subjects’ data as training data. Ten different machine learning
algorithms were used in this study, and the errors of the learned models were
compared.
Results and Discussion: The results showed that the mean RMSE of the cross-
sectional measurement was 13.433, with k-Nearest Neighbors as the best
model. Meanwhile, the mean RMSE of the longitudinal measurement was
13.301, using Random Forest as the best. RMSE of less than 10 suggests that the
estimated subscale scores using speech features were close to the actual JSQLS
subscale scores. Ten out of 18 subjects were estimated with an RMSE of less
than 10 for cross-sectional measurement. Meanwhile, five out of six had the
same observation for longitudinal measurement. Future studies using a larger
number of subjects and the development of more personalized models based
on longitudinal measurements are needed to apply the results to telemedicine
for continuous monitoring of QoL.
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1. Introduction

The number of psychiatric beds in Japan is much larger than in

other countries, and the length of hospital stay is as long as 285 days

(Italy: 13.9 days, U.K.: 42.3 days) (1). The Ministry of Health, Labour,

and Welfare (MHLW) has announced a vision for reforming mental

health and medical welfare in response to prolonged hospitalization.

The MHLW vision fundamentally shifts its policy from inpatient

care to community-based care. The vision clearly states the

improvement of inpatient treatment, the improvement of patients’

Quality of Life (QoL), and the development of support for early

discharge from the hospital (2). Furthermore, a survey of

readmission rates for 24,781 patients discharged in 2014 showed

that 23% were re-admitted three months after discharge, 30% six

months later, and 37% one year later (3). Prolonged hospitalization

and high readmission rates are issues for psychiatric care in Japan.

QoL is an effective predictor of symptom remission and

functional recovery among schizophrenic patients. As such, QoL is

an essential measure of outcome in treatment (4, 5). It is crucial

to understand and assess fluctuations in QoL scores and routine

tests such as blood sampling; then use this information in

interventions (6). However, QoL assessment is not routinely

performed in clinical practice due to time constraints and lack of

training and interest (7–9).

QoL can be divided into objective assessment and subjective

assessment. This study focuses on subjective QoL because patients

are the main actors in their lives during hospitalization and after

discharge. The subjective assessment is possible because

schizophrenic patients can feel and report social impairment (10).

In addition, this study examined the use of voice input to estimate

QoL status instead of the conventional self-administered and semi-

constructed interview methods. Multi-lingual speech recognition

and emotional speech recognition have been actively studied in

recent years (11–13). Many voice-based applications have also

been developed to remotely monitor the status and characteristics

of speakers, such as health status (14–16). These latest

developments motivate this study to consider speech recognition

as a fast and efficient means of human-machine interaction (17).

Therefore, this study examined the estimation of subscale scores that

measure the subjective QoL of schizophrenic patients using speech

features as a simple method to measure QoL. The objectives were to

(1) estimate the subscale scores from different patients or cross-

sectional measurements, and (2) estimate the subscale scores from the

same patient in different periods or longitudinal measurements. The

proposed method allows schizophrenic patients to measure their

subjective QoL by themselves in the future. Furthermore, the

proposed method provides opportunities to monitor QoL

continuously and regularly during hospitalization and after discharge.

Patients and medical care providers can share data and analysis.
Table 1 Subjects’ demographics

Characteristics Subjects
Sample size, n 18.000

Age, mean (Std. Dev.) 45.170 (16.576)

Male sex, n (%) 7.000 (38.890)

GAF, Range 32.000–70.000
2. Material and methods

We examined the feasibility of estimating the subjective QoL of

schizophrenic patients using speech features. The three subscale

scores of the Japanese Schizophrenia Quality of Life Scale
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(JSQLS) were collected using a conversational agent. The

conversational agent recorded the JSQLS responses and the audio

of the conversation. Then, models were developed and compared

to estimate the subscale scores. There were two kinds of models

developed in this study.

1) Model development to estimate subscale scores from among

different patients or cross-sectional measurements

2) Model development to estimate subscale scores from the same

patient in different periods or longitudinal measurements

2.1. Target population demographics

Eighteen schizophrenic patients who agreed to participate

in the study were included (Table 1). The mean age was

47.17 years, with seven males and 11 females. Global

Assessment of Functioning (GAF) is a scale used to assess an

overview of a subject’s functioning. Psychological, social, and

occupational functioning is rated as a single variable on an

integer scale of 1–100 points (18). The rater evaluates the

subject’s condition according to the scale’s rating criteria. For

example, a 91–100 score indicates “very good functioning and

no psychiatric symptoms.” Higher scores mean better

symptoms and functioning. In this study, the psychiatrist or

nurse in charge of the patient performed the evaluation

(Table 2).
2.2. SQLS as a measure of subjective QoL

JSQLS was used to measure subjective QoL. The JSQLS

provides a subjective assessment of the impact of the disease on

the subject’s life. The JSQLS consists of three scales: Psychosocial

(15 items), Motivation and Energy (7 items), and Symptoms and

Side-effects (8 items). During the scale development in previous

studies, the questions were selected based on in-depth patient

interviews. Then, the JSQLS questions were examined for

reliability and validity (18, 19).

2.2.1. JSQLS calculation method
This section describes how the three subscale scores are

calculated and evaluated based on the subject’s answers. There

are five options for each question, and the score for each

question ranges from 0 to 4 points.

“Always” (4 points)

“Often” (3 points)

“Sometimes” (2 points)

“Rarely” (1 point)

“Never” (0 points)
frontiersin.org

https://doi.org/10.3389/fresc.2023.1121034
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


Table 2 Demographics of subjects measured twice.

Characteristics Subjects
Sample size, n 6.000

Age, mean (Std. Dev.) 32.160 (6.150)

Male sex, n (%) 1.000 (16.670)

GAF, Range 50.000–70.000

Shibata et al. 10.3389/fresc.2023.1121034
Each subscale was calculated to take values between 0 and 100, with

higher scores indicating worse QoL while lower scores indicating

better QoL.

Score of each subscale

¼ Sum of the crude scores for each scale
4 � Number of questions for each scale

� 100
(1)

On the one hand, the numerator is the total score based on each

subject’s choices. The denominator is calculated as 4 × 15

questions for “Psychosocial,” 4 × 7 questions for “Motivation and

Energy,” and 4 × 8 questions for “Symptoms and Side-effects.”

Note that four questions under “Motivation and Energy” are

scored inversely, i.e., “Always” (0 points), “Often” (1 point),

“Sometimes” (2 points), “Rarely” (3 points), and “never” (4 points).
2.3. Development of a conversational agent
to measure subjective QoL

In this study, the conversational agent asked the patient 30

JSQLS questions and recorded the subject’s voice as he or she

answered each question (Figure 1).

The Web Speech API converts the participant’s speech into

text. Then, the conversation agent uses natural language

understanding to classify the answer choices (“Always,” “Often,”

“Sometimes,” “Rarely,” and “Never”). Next, Rasa Core (20)

manages the interaction, including the flow of conversation and

context processing. Rasa Core’s natural language generator selects

appropriate text responses based on the context and flow of the
FIGURE 1

Conversational agent system architecture.
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conversation. Finally, ResponsiveVoice.js generates the spoken

response from the text response.
2.4. Measurement method

Measurements were taken at the subject’s hospital, a continuous

employment support facility, and the subject’s home. A quiet

environment was ensured during the measurement for voice

interaction and recording. First, the subjects were asked to read

the 30 JSQLS questions before the measurement with the

conversation agent. This step was implemented to prepare the

subjects with the subsequent questions and clarify any questions.

Then, the conversation agent spoke and displayed a question for

the subject to listen and to see, respectively (Figure 2). Next, the

subject answered back to the conversation agent. The conversation

agent recorded the subject’s response and audio using a

microphone array. From this point, the conversation agent either

(A) repeats the question if the subject’s response is not understood

or (B) proceeds to the next question until all 30 questions are

finished (Figure 2).
2.5. Audio processing and speech feature
extraction

The following describes the acquired speech data. Subjects’

speech was recorded at a sampling frequency of 48 kHz; the total

unedited recording time, including conversational agent

announcements, for the 18 subjects’ speech data was 98.200 min,

with an average recording time of 5.456 min. The shortest

recording time was 3.600 min and the longest was 10.917 min.

The speech for the analysis was stripped of the conversational

agent’s announcements, silences, false responses, and noises.

When the subject’s speech was unclear, the conversation agent

would listen back to the subject’s speech, resulting in individual

differences in recording time. The total recording time after

removing the conversational agent’s voice and the noise was

18.200 min, with an average duration of 1.011 min.
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FIGURE 2

Preliminary experiment setup.
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Using the Librosa audio library, speech data from 18

subjects were input, and Mel-spectrogram (128 dimensions),

Mel-Frequency Cepstrum Coefficient (MFCC) (40

dimensions), and Chromagram (12 dimensions) speech

features were Chromagram (12 dimensions) were extracted

(Figure 3). A total of 3,240 speech features with 180

dimensions per subject and 18 subjects were used as the

objective variables. Mel spectrogram and MFCC mimicked, to

an extent, the natural sound frequency reception pattern of

humans (13) and are often used for voice separation and

classification (21). Chromagram can infer the vocal tract’s

resonance characteristics as the signal’s energy distribution

concerning saturation and time (22).
2.6. Model development

A model was developed using the extracted speech features to

estimate the three JSQLS subscale scores. The features used to

develop the model are the following.
FIGURE 3

Data processing.
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Let x be the explanatory variable and y. be the objective

variable. Specifically,

x1�12: Chromagram

x1�128: Mel-spectrogram

x1�40: MFCC

y1: “Psychosocial” subscale

y2: “Motivation and Energy” subscale

y3: “Symptoms and Side-effects” subscale

Python libraries like Pandas and Sklearn were used for data

processing and model development. In this study, ten machine

learning algorithms were utilized, and the errors of the trained

models were compared. Ridge Regression, Lasso Regression,

Elastic-Net Regression, k-Nearest Neighbors (k-NN), Decision

Tree (DT), Support Vector Regression (SVR), Linear SVR

(L.SVR), Random Forest (RF), Gradient Boosting (GB), and

AdaBoost algorithms, were considered for developina model in

estimating the subjective QoL of the subjects. Each algorithm is

described below.

2.6.1. Ridge regression
Ridge Regression is a parameter estimation method used to

address that addresses the collinearity problem frequently arising

in multiple linear regression (23). Ridge Regression’s coefficients

minimize the sum of squared penalized residuals (24). L2

regularization is used in Ridge Regression.

min
v

jjXv� yjj22 þ ajjvjj22

2.6.2. Lasso regression
Lasso Regression minimizes the residual sum of squares

subject to the sum of the absolute value of the coefficients

being less than a constant. Because of the nature of this

constraint, it tends to produce some coefficients that are

exactly 0 and hence gives interpretable models (25). L1

regularization is used in Lasso Regression. The objective

function to minimize is (26):

min
w

1
2nsamples

jjXw� yjj22 þ ajjwjj1 (2)
2.6.3. Elastic-Net regression
The Elastic-Net is particularly useful when the number of

predictors (p) is much bigger than the number of observations

(n). In contrast, the Lasso Regression does not have a satisfactory

variable selection method to handle the p > n case. Therefore,

Elastic-Net was proposed as an improved version of Lasso

Regression to analyze high-dimensional data. The L1 part of the

Elastic-Net performs automatic variable selection, while the L2

part stabilizes the solution paths. Hence, this method improves

the prediction (27). The objective function to be minimized is (28):

min
w

1
2nsamples

jjXw� yjj22 þ arjjwjj1 þ
a(1� r)

2
jjwjj22 (3)
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2.6.4. k-Nearest neighbors (k-NN)
k-NN algorithm for regression is a supervised learning

approach. It predicts the target based on the similarity with other

available cases. The similarity is calculated using the distance

measure, with Euclidian distance being the most common

approach. Predictions are made by finding the k most similar

instances, i.e., the neighbors, of the testing point, from the entire

dataset (29).
2.6.5. Decision tree (DT)
The Decision Trees algorithm is a non-parametric supervised

learning method used for classification and regression.

In Decision Trees, a hierarchical tree structure consisting of

Yes-No questions is learned. The disadvantage of decision

trees is that they are prone to over-fitting and tend to be less

versatile (30).
2.6.6. Support vector regression (SVR)
Instead of minimizing the observed training error, Support

Vector Regression (SVR) attempts to minimize the generalization

error bound to achieve generalized performance. SVR’s concept

is based on the computation of a linear regression function in a

high-dimensional feature space where the input data are mapped

via a nonlinear function (31).
2.6.7. Linear SVR (L.SVR)
Support Vector Regression (SVR) and Support Vector

Classification (SVC) are time-consuming when using kernels. It

has been demonstrated that Linear SVC and L. SVR generate

models equivalent to kernel-SVR efficiently (32).
FIGURE 4

Model development.
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2.6.8. Random forest (RF)
Random Forest is one of the methods to deal with the problem

of over-fitting to the training data in the DT algorithm. RFs consist

of tree-structured classifiers {h (x, k), k = 1, …} where the {k} are

identically independent distributed random vectors. Each tree

cats a vote for the most popular class at input x (33).

2.6.9. Gradient boosting (GB)
The Gradient Boosting algorithm constructs additive regression

models by sequentially fitting a simple parameterized function

(base learner) to current “pseudo”-residuals by least squares at

each iteration. The execution speed and approximation accuracy

of GB can be greatly improved by incorporating randomization

into the procedure (34).

2.6.10. Adaboost
Boosting is an approach to machine learning based on

combining many relatively weak and i inaccurate rules to create a

highly accurate prediction rule (35). The core principle of the

AdaBoost regressor is to learn a sequence of weak regressors

with high bias error but with low variance error. Repeatedly

reweighted training instances are done based on the prediction

error of each boosting iteration (36).

2.6.11. Nested cross-validation approach
The Nested Cross-validation (CV) approach was used to

compare machine learning algorithms on smaller subsets of the

dataset (37) (Figure 4). Conventional CV uses the same data to

compare different algorithms and evaluate the model’s

performance. The conventional CV approach leads to data leakage

and over-fitting. On the other hand, the nested CV splits the data
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into training (①), validation (②), and test sets (③) multiple times.

First, the outer loop divides the entire dataset into train and test sets.

The outer loop is in charge of evaluating the model performance

using the test set (③). Then, the inner loop divides the train set

further into smaller training (①) and validation sets (②). In the

inner loop, the best model was selected among the ten algorithms

by comparing the average RMSE and MAE values. The Leave-

One-Out method was used for partitioning the dataset. The

default hyperparameters for each algorithm were kept during the

entire model development. These default hyperparameters were

provided in the Scikit learn library (see Appendix).

For each of the ten algorithms, the error between ground truth

and validation data was calculated using RMSE (Root Mean

Squared Error) and MAE (Mean Absolute Error). RMSE is

characterized by a strict evaluation of the error between the

ground truth and the estimate using the squared form. The lower

the RMSE is, the better the estimates of the model. On the other

hand, MAE is the mean of the absolute difference between the

ground truth and the estimated values. The lower the MAE is,

the better the estimates of the model.

RMSE is computed as follows.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn�1

i¼0
(yi � byi)2

r
(4)

On the other hand, MAE is calculated as follows.

MAE ¼ 1
n

Xn

i¼1
jyi � byij (5)

where n is the total number of data, yi is the actual value, ŷi denotes

the predicted value. Since this study estimates the subjective QoL

thru three subscale scores, the average RMSE and MAE over these

three subscale scores were also calculated. The average RMSE and

MAE over three subscales were used during the model comparison.
2.7. Speech feature importance by SHAP
value

In recent years, the interpretability of models has become more

important than their accuracy. SHApley Additive exPlanations

(SHAP) is a unified framework for interpreting predictions, allowing

us to understand each feature’s importance for the prediction (38).

Therefore, in this study, the SHAP value helps identify which

of the three speech features contributes to the model.
Table 3 RMSE and MAE scores for each scale on cross-sectional
measurements.

Scale Mean Std.
Dev.

Variance Median Range

Psychosocial 45.000 17.057 274.778 46.000 15.000–80.000

Motivation and
Energy

49.389 16.288 250.571 50.000 21.000–82.000

Symptoms and
Side-effects

27.944 18.031 307.053 23.500 0.000–78.000
2.8. Model development and evaluation to
estimate scale scores from longitudinal
measurements

QoL scores are inferred to change over time depending on the

subject’s condition. Therefore, we selected six subjects out of 18

subjects and conducted the second measurement after an average
Frontiers in Rehabilitation Sciences 06
of 54.333 days (S.D. = 24.426). The data from the first 18 subjects

were used as training data. For each of the ten models (using the

same machine learning algorithm as in 2.6), the mean RMSE

values for the three scales were compared using the validation

data. The best model was used. Next, we evaluated the model

using the scale scores of the six participants as unseen test data.
3. Results

This section describes the best models and evaluations of the

ten algorithms selected for the cross-sectional and longitudinal

measurements. Finally, we discuss the speech features that

contributed to the model development.
3.1. Model comparison on validation set for
cross-sectional measurement

First, the mean subscale scores among the 18 subjects (Table 3)

were 45.000 for the “Psychosocial” subscale, 49.389 for the

“Motivation and Energy” subscale, and 27.944 for the “Symptoms

and Side-effects” subscale. These subscale scores were obtained

from the subjects’ JSQLS responses. The last subscale had the

lowest score among the three subscales, which suggests that the

subjects of this study had a good QoL concerning their symptoms

and subsequent side effects. However, the minimum and

maximum scores for the “Symptoms and Side Effects” scale were

0 and 78, respectively, indicating significant individual differences.

Then, the ten algorithms were compared using the validation

set produced in the inner loop. The mean RMSE and MAE

values were calculated and ranked. With this method, the trained

k-NN algorithm produced the lowest mean RMSE and MAE of

13.433 (SD = 10.206, n = 18). The average RMSE and MAE values

for the validation data of the other models were in the following

order (the mean values of RMSE and MAE are equal, and

therefore one value is shown): SVR: 13.697, RF: 13.697, GB:

14.263, AdaBoost: 14.663, DT: 15.973, L.SVR: 21.466, Ridge:

21.496, ElasticNet: 25.976, Lasso: 28.975 (Table 4).
3.2. Model comparison on test set for cross-
sectional measurement

The selected best model (k-NN) was evaluated using the test

set produced in the outer loop. The training resulted in a mean
frontiersin.org

https://doi.org/10.3389/fresc.2023.1121034
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


Shibata et al. 10.3389/fresc.2023.1121034
RMSE of 14.361 (SD = 0.674, n = 18) and a mean MAE of

10.9510 (SD = 0.6347, n = 18). The trained k-NN model produced

a mean RMSE and MAE of 13.304 (SD = 10.392, n = 18) on the

test set. The mean test RMSE was better than during training,

and this observation can also be seen in 12 out of the 18 folds

(Table 5).

The RMSE and MAE for each subscale were 14.644 for

“Psychosocial”, 13.633 for “Motivation and Energy”, and 11.633

for “Symptoms and Side-effects” (Table 6). The RMSE and MAE

for “Symptoms and Side-effects” had the lowest values, but the

minimum and maximum values were 1.200 and 51.800,

respectively, which were larger than the other scales.

In each fold, RMSE and MAE were above 10 in 8 folds. Among

them, fold 6 had the highest RMSE and MAE (38.200) and the

highest scale scores (Psychosocial: 80, Motivation and Energy: 82,

Symptoms and Side-effects: 78). Similarly, fold 9 had RMSE and

MAE of 32.867 and lowest scale scores (Psychosocial: 15,

Motivation and Energy: 21, Symptoms and side- effects: 0)

(Table 7). There were 10 folds that could be estimated with RMSE

and MAE less than 10. Among them, fold 1 had the lowest value

of 3.267 (Table 8). The RMSE and MAE for each fold were

then divided into two groups, above and less than 10, to

determine whether there was a significant difference between the

ground truth and the estimates for each group; for the group with

RMSE and MAE above 10 (Figure 5A), “Psychosocial” p = 0.724,

“Motivation and Energy” p = 0.724, and “Symptoms and Side-

effects” p = 0.535. In the group with RMSE and MAE less than

ten (Figure 5B), “Psychosocial” p = 0.724, “Motivation and Energy”

p = 0.477, “Symptoms and Side-effects” p = 0.929. There were

no statistically significant differences between the ground truth and

the estimates.
Table 4 The average RMSE and MAE values for the validation data.

Models Average RMSE and MAE
scores

S.D.

K-NN 13.443 10.206

SVR 13.697 9.580

RF 13.697 9.346

GB 14.263 7.715

AdaBoost 14.663 9.391

DT 15.973 8.156

L. SVR 21.466 12.217

Ridge 21.496 12.242

Elastic-Net 25.976 14.460

Lasso 28.975 18.129

Table 5 Evaluation of training and test data with k-NN.

Fold 1 2 3 4 5
Training 14.755 14.148 14.671 14.218 14.836

Test 3.267 21.133 5.933 11.800 8.467

Fold 11 12 13 14 15
Training 14.628 14.906 14.857 14.641 14.660

Test 14.867 3.400 6.200 12.467 9.067

*Values are shown for RMSE and MAE.
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3.3. Model comparison on validation set for
longitudinal (model to estimate scores for
six longitudinal measurements)

First, the mean subscale scores among the six subjects were 46.500

for the “Psychosocial” subscale, 47.667 for the “Motivation and

Energy” subscale, and 25.000 for the “Symptoms and Side-effects”

subscale. Similar to the results of the first measurement, the scores

on the “Symptoms and Side-effects” subscale were the lowest.

Themodels were developed using data from 18 subjects in order to

estimate the scale scores for the 6 subjects. Ten algorithms were then

compared using the validation set created in the inner loop. Mean

RMSE and MAE values were computed and ranked. Thus, the

trained RF algorithm produced the lowest mean RMSE and MAE of

13.301 (SD = 8.870, n = 18). The mean RMSE and MAE for the

validation data of the other models were in the following order

(mean RMSE and MAE are equal and represent a single value): k-

NN: 13.304, SVR: 13.537, GB: 13.832, AdaBoost: 15.090, DT: 15.648,

L. SVR: 20. 630, Ridge: 20.637, Elastic-Net: 26.105, Lasso: 30.787.
3.4. Model comparison on test set for
longitudinal measurement

The RMSE and MAE for each subscale were 9.607 for the

“Psychosocial” subscale, 4.767 for the “Motivation and Energy”

subscale, and 9.508 for the “Symptoms and Side-effects” subscale

(Table 9). The minimum and maximum values of RMSE and

MAE for the “Psychosocial” subscale were 2.030 and 17.000,

respectively, which were larger than the other scales.

The results of thefirst and secondmeasurements for the six subjects

showed that the scores for each scale varied between−18 and +14 from
the first measurement (Table 10). The RMSE andMAE values for each

fold, five out of 6 folds, were less than 10. Fold 3 had the lowest RMSE

and MAE at 4.557 and fold 2 had the highest at 13.540. The three

subscales of Fold 2 remained high in the two measurements.
6 7 8 9 10
12.697 13.886 14.196 12.648 14.648

38.200 28.333 17.000 32.867 7.133

16 17 18 Mean Std. Dev.
14.623 14.776 14.711 14.361 0.674

7.600 6.600 5.133 13.304 10.392

Table 6 RMSE and MAE scores for each subscale.

Scale Mean Std.
Dev.

Variance Median Range

Psychosocial 14.644 10.568 111.691 11.100 0.200−36.600
Motivation and
Energy

13.633 10.323 106.570 12.300 1.200−34.200

Symptoms and
Side-effects

11.633 13.380 179.041 5.600 1.200−51.800
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3.5. Speech feature importance to the
estimation of scale scores

Speech features contributing to scoring estimation for each

scale were identified by SHAP values. MFCC1 was selected as the

most important speech feature for model development, followed

by Mel-spectogram10.
4. Discussion

Scale score estimation results from cross-sectional and

longitudinal measurements and the speech features that contributed

to the model development will be discussed based on each result.

Finally, we discussed the challenges and future work for this study.
4.1. Estimation of scale scores by
cross-sectional measurement

Comparing the mean RMSE of the three scale scores among

the ten algorithms, the k-NN was the best, with 13.433. The
Table 8 Ground truth and estimated values for each subject with RMSE less

Fold Ground truth

Psychosocial Motivation and
Energy

Symptoms and
Side-effects

P

1 47.000 50.000 22.000

3 50.000 43.000 19.000

5 40.000 46.000 34.000

10 30.000 50.000 13.000

12 47.000 57.000 34.000

13 52.000 50.000 31.000

15 30.000 36.000 22.000

16 45.000 36.000 9.000

17 35.000 50.000 28.000

18 33.000 39.000 9.000

Median of all
foldsa

46.000 50.000 24.000

aMedian of all scale scores.

Table 7 Ground truth and estimated values for each subject with RMSE abov

Fold Ground truth

Psychosocial Motivation and
Energy

Symptoms and
Side-effects

P

2 27.000 25.000 38.000

4 28.000 39.000 25.000

6 80.000 82.000 78.000

7 62.000 79.000 53.000

8 72.000 64.000 22.000

9 15.000 21.000 0.000

11 62.000 61.000 44.000

14 55.000 61.000 22.000

Median of all
foldsa

46.000 50.000 24.000

aMedian of all folds in all scales.
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RMSE and MAE of the model with k-NN were 14.361 for the

training data and 13.304 for the test data. Better test scores than

the training suggest that the trained k-NN model could estimate

the subscale scores on unseen subjects.

In each fold, the closer the ground truth was to the median, the

lower the RMSE and MAE. On the other hand, 8 folds had RMSE

and MAE above 10. Among them, fold6 had a high RMSE and MAE

of 38.200 (Table 7). Subjects were unable to perform daily activities

such as housework due to delusions. fold 9 had RMSE and MAE of

32.867. The subject was hospitalized in a psychiatric ward after the

first measurement. In both cases, the scores of subjects who required

the most medical intervention tended to deviate from the overall trend.
4.2. Estimation of scale scores by
longitudinal measurement

Comparing the average RMSE of the three scale scores among the

10 algorithms, k-NNwas the best with 13.301. The RMSE andMAE for

the cross-sectional scales (“Psychosocial” 14.644, “Motivation, and

Energy” 13.633, “Symptoms and Side-effects” 11.633) were above 10

for all subscales. However, the RMSE and MAE for the model with
than 10.

Estimated value RMSE MAE

sychosocial Motivation and
Energy

Symptoms and
Side-effects

45.200 46.400 26.400 3.267 3.267

37.800 39.800 21.400 5.933 5.933

49.200 51.400 23.200 8.467 8.467

38.000 37.800 11.800 7.133 7.133

46.800 51.600 29.400 3.400 3.400

42.800 45.800 25.800 6.200 6.200

40.000 50.000 18.800 9.067 9.067

38.200 42.000 19.000 7.600 7.600

42.400 43.600 22.000 6.600 6.600

34.800 37.800 21.400 5.133 5.133

e 10.

Estimated value RMSE MAE

sychosocial Motivation and
Energy

Symptoms and
Side-effects

49.200 51.400 23.200 21.133 21.133

49.200 51.400 23.200 11.800 11.800

47.200 52.000 26.200 38.200 38.200

44.800 44.800 19.400 28.333 28.333

40.400 46.400 23.800 17.000 17.000

51.600 52.200 30.800 32.867 32.867

43.200 48.600 30.600 14.867 14.867

38.400 41.400 23.200 12.467 12.467
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FIGURE 5

(A) Examination of significant differences between ground truth and estimates of RMSE and MAE above 10. *P, psychosocial; M, motivation and energy; S,
symptoms and side–effects. (B) Examination of significant differences between ground truth and estimates of RMSE and MAE less than 10. *P,
psychosocial; M, motivation and Energy; S, symptoms and side–effects.

Table 9 RMSE and MAE scores for each scale on longitudinal
measurements.

Scale Mean Std.
Dev.

Variance Median Range

Psychosocial 9.607 6.226 38.757 10.085 2.030–17.000

Motivation and
Energy

4.767 3.990 15.924 5.020 0.140–9.060

Symptoms
and
Side-effects

9.508 5.734 32.883 8.465 2.770–17.050

Shibata et al. 10.3389/fresc.2023.1121034
longitudinal measures were less than 10 for “Psychosocial” at 9.607,

“Motivation and Energy” at 4.767, and “Symptoms and Side-effects”

at 9.508.

In addition, in the model with cross-sectional measurement,

10 out of 18 folds had RMSE less than 10, while in the model

with longitudinal measurement, 5 out of 6 folds had RMSE

less than 10. In developing the model with the cross-sectional

measurement, 1 fold was used as test data and 17 folds as

training data. On the other hand, the longitudinal

measurement used all data from 18 subjects as training data,
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Table 10 First and second measurements (ground truth), and estimation scoresa from longitudinal measurements.

Fold First measurement Second measurement RMSE MAE

Psychosocial Motivation and
Energy

Symptoms and
Side-effects

Psychosocial Motivation and
Energy

Symptoms and
Side-effects

1 30.000 50.000 13.000 37.000 (+7) 36.000 (+14) 22.000 (+9) 7.380 7.380

2 62.000 61.000 44.000 60.000 (−2) 54.000 (−7) 47.000 (+3) 13.540 13.540

3 47.000 57.000 34.000 40.000 (−7) 54.000 (−3) 25.000 (−9) 4.577 4.577

4 52.000 50.000 31.000 35.000 (−17) 46.000 (−4) 28.000 (−3) 6.513 6.513

5 55.000 61.000 22.000 58.000 (+3) 43.000 (−18) 16.000 (−6) 8.360 8.360

6 45.000 36.000 9.000 47.000 (+2) 43.000 (+7) 3.000 (−6) 7.393 7.393

Median 50.000 54.000 27.000 44.000 45.000 24.000

aRMSE and MAE are calculated from the ground truth and estimated values of the second measurement.

Shibata et al. 10.3389/fresc.2023.1121034
which may be partly responsible for the increase in the number

of training data.
4.3. Speech features that contributed to the
estimation of scale scores

MFCC commonly contributed to the estimation of the scores of

the three subscales. MFCC has many advantages, such as high

discriminative power and noise immunity (39). Furthermore,

MFCC can accurately characterize the vocal tract and accurately

represent the phonemes produced by the vocal tract (40). The

JSQLS response options are “Always,” “Often,” “Sometimes,”

“Rarely,” and “Never”. Therefore, it would have been possible to

use the vocalization patterns of the different choices for identification.

Finally, as issues and future perspectives of this study, the

number of patients diagnosed with schizophrenia eligible to

subjects was small at the collaborating institutions. Therefore, it is

necessary to seek the participation of more subjects who use

medical institutions and welfare services. In addition, the study

found that the scores for “Symptoms and Side-effects” were the

lowest among the subscales. The fact that the subjects in this

study were not hospitalized patients may be a factor. Therefore, it

is necessary to examine whether there is a difference in scores

between hospitalized and non-hospitalized patients and to

consider model building. Next, the model was developed using

data from 18 subjects. Attempts were made to estimate six

subjects’ scale scores for the second measurement. The baseline of

the scale scores differs depending on the individual conditions.

Although only two measurements were used in this study,

developing individual models based on continuous measurements

may be helpful. In addition, it may be a more straightforward

method to estimate subjective QoL by examining the possibility of

estimating the scale scores using speech features of daily

conversation with conversational agents (e.g., greetings).

A 3-year follow-up of schizophrenia patients in a previous

study found that non-remitting patients had worse QoL

and increased healthcare costs than remitting patients (41).

The results of this study are considered a severe issue in

psychiatric treatment in Japan, where the readmission rate is

high and the length of hospital stay is extended. As one

strategy, evaluating QoL using voice features enables
Frontiers in Rehabilitation Sciences 10
continuous monitoring by applications and can be applied to

telemedicine.
5. Conclusion

In this study, a model was developed to estimate the three scale

scores of the Japanese Schizophrenia Quality of Life Scale (JSQLS)

using speech features. The ten different machine learning algorithms

were compared, with k-NN being the best. The RMSE of the training

data was 14.361 and the MAE of the test data was 13.361, suggesting

the generality of the model. In the estimation for scale scores on

individual subjects, the RMSE and MAE were higher if the scale scores

were far from the median. In this study, RMSE and MAE values were

higher in subjects with psychiatric symptoms that interfered with daily

life and in subjects hospitalized after the measurement. In the

longitudinal measurement, a model was developed using data from 18

subjects, and scale scores were estimated for six subjects measured

twice. The results showed that RF was the best, with RMSE and MAE

less than ten in five of the 6 folds. The speech feature most involved in

model development was MFCC, which may be the result of

identifying speech patterns according to question choice. Future

studies should analyze more data sets and consider model

development based on longitudinal measurements of individuals.
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Hyperparameters

Ridge
 alpha = 1.0 tol = 0.0001
Lasso
 alpha = 1.0 tol = 0.0001
Elastic Net
 alpha = 1.0 tol = 0.0001 L1 ratio = 0.5
K-nearest neighbors (k-NN)
 n neighbors = 5 weights = uniform
leaf size = 30 metric =Minkowski
power parameter for metric, p = 2
Decision Tree (DT)
 criterion = squared error, min sample split = 2
max depth = None, min sample leaf = 1
min weight fraction leaf = 0
min impurity decrease = 0.0
ccpp alpha = 0.0
Support Vector Regression (SVR)
 kernel = RBF, degree = 3, gamma = scale
coef0 = 0.0, tol = 0.001, C = 1.0, epsilon = 0.1
Linear SVR (L.SVR)
 epsilon = 0.0, tol = 0.0001, C = 1.0
loss = epsilon insensitive, intercept scaling = 1.0
Random Forest (RF)
 n estimators = 100, criterion = squared error
min sample split = 2, max depth = None
min sample leaf = 1, min weight fraction leaf = 0
min impurity decrease = 0.0, ccpp alpha = 0.0
AdaBoost
 estimator = Decision Tree Regressor, max depth = 3
n estimators = 50, learning rate = 1.0, loss = linear
Gradient Boosting
 loss = squared error, learning rate = 0.1
n estimators = 100, subsample = 1.0
criterion = Friedman MSE, min samples split = 2
min samples leaf = 1, max depth = 3, alpha = 0.9
Tol, tolerance.

All hyperparameters are available on the Scikit learn website.
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