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biases physical activity metrics
derived from the Actigraph GT3X
in multiple sclerosis: A rapid
review and comparative study
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and Viktor von Wyl1,2
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Background: Physical activity (PA) is reduced in persons with multiple sclerosis
(MS), though it is known to aid in symptom and fatigue management. Methods
for measuring PA are diverse and the impact of this heterogeneity on study
outcomes is unclear. We aimed to clarify this impact by comparing common
methods for deriving PA metrics in MS populations.
Methods: First, a rapid review of existing literature identified methods for
calculating PA in studies which used the Actigraph GT3X in populations with
MS. We then compared methods in a prospective study on 42 persons with
MS [EDSS 4.5 (3.5–6)] during a voluntary course of inpatient
neurorehabilitation. Mixed-effects linear regression identified methodological
factors which influenced PA measurements. Non-parametric hypothesis
tests, correlations, and agreement statistics assessed overall and pairwise
differences between methods.
Results: In the rapid review, searches identified 421 unique records. Sixty-nine
records representing 51 eligible studies exhibited substantial heterogeneity in
methodology and reporting practices. In a subsequent comparative study,
multiple methods for deriving six PA metrics (step count, activity counts,
total time in PA, sedentary time, time in light PA, time in moderate to
vigorous PA), were identified and directly compared. All metrics were
sensitive to methodological factors such as the selected preprocessing filter,
data source (vertical vs. vector magnitude counts), and cutpoint. Additionally,
sedentary time was sensitive to wear time definitions. Pairwise correlation
and agreement between methods varied from weak (minimum correlation:
0.15, minimum agreement: 0.03) to perfect (maximum correlation: 1.00,
maximum agreement: 1.00). Methodological factors biased both point
estimates of PA and correlations between PA and clinical assessments.
Conclusions: Methodological heterogeneity of existing literature is high, and
this heterogeneity may confound studies which use the Actigraph GT3X.
Step counts were highly sensitive to the filter used to process raw
accelerometer data. Sedentary time was particularly sensitive to
methodology, and we recommend using total time in PA instead. Several,
though not all, methods for deriving light PA and moderate to vigorous PA
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yielded nearly identical results. PA metrics based on vertical axis counts tended to
outperform those based on vector magnitude counts. Additional research is needed
to establish the relative validity of existing methods.
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1 Introduction

Multiple sclerosis (MS) is a neurodegenerative autoimmune

disease which affects individuals’ physical and cognitive

function, motor control, and energy levels. Physical activity

(PA) is known to aid in symptom management and improve

quality of life in individuals with MS (1, 2). However, PA is

reduced in this population compared to healthy controls (3,

4). Interventions which can increase PA in individuals with

MS, for example through rehabilitation (5), exercise training

(2), or behavior modification coaching (6), are therefore a

topic of public health and research interest (6). However, if

we are to understand PA behavior in MS populations and to

evaluate the efficacy of these interventions, we require PA

outcomes measures which are valid, responsive, and feasible

to implement.

Many outcome measures have been used to measure PA in

populations with MS (7, 8), though the optimal PA metrics for

MS populations are not yet clear (6). Patient reported measures,

such as the International Physical Activity Questionnaire

(IPAQ) (9) or Godin’s Leisure Time Exercise Questionnaire

(GLTEQ) (10), are inexpensive and validated in MS, but are

burdensome to complete regularly, subject to recall bias, and

insensitive to short bouts of light or lifestyle PA (11–14).

Further, these measures assess participants’ perceptions of

their own PA behavior, rather than the PA they objectively

completed. Alternatively, objective metrics derived from

wearable sensors can quantify PA unobtrusively during daily

life with minimal input from the wearer. The Actigraph

GT3X is the most common sensor used for PA research with

persons with MS (PwMS) (7). Unlike most other PA trackers,

the Actigraph is capable of deriving step counts, PA intensity,

and other metrics in a flexible manner, allowing researchers

substantial freedom in the way they process data and

calculate PA.

While this flexibility allows the Actigraph to be used in

many settings and patient populations, it also contributes to

substantial methodological heterogeneity in the PA literature.

In a systematic review, Migueles et al. mapped the sensor

settings and data processing methods used to derive PA

metrics from the Actigraph for healthy populations (15).

These differences included various sensor placements, data

filtering methods, wear time definitions, and cutpoints (i.e.,

thresholds which differentiate sedentary behavior, light PA

[LPA], and moderate to vigorous PA [MVPA]). These
02
methodological factors have the potential to affect the

outcomes of Actigraph-derived PA metrics at various points

throughout study conduct and data analysis (Table 1). In the

MS literature, the extent of this methodological heterogeneity

and its practical implications, both for study design and the

interpretation of existing literature, are currently unclear.

The objective of this study was to quantify the extent and

the potential confounding effects of methodological

heterogeneity on PA metrics derived from the Actigraph

GT3X in MS populations. First, we conducted a rapid review

to assess the methodological heterogeneity of the literature

and to identify common data processing methods. We then

directly compared these data processing methods by applying

them on a single dataset, quantifying the impact of

heterogeneity on six PA metrics. These analyses identified

biases arising from methodological heterogeneity and suggest

implications for the implementation, interpretation, and meta-

analysis of PA metrics in MS populations.
2 Methods

2.1 Rapid review

The purpose of this review was to rapidly identify

established data processing methods and their common

derivatives for calculating PA metrics with the Actigraph

GT3X in PwMS. It was modeled after the systematic review

conducted by Migueles et al. (15), and adhered to rapid

review conduct guidelines (22, 23). In July 2020 and again in

September 2021, we searched PubMed, Embase, IEEE Xplore

for peer-reviewed and gray literature published in the English

language during or after 2010, reflecting the release of the

Actigraph GT3X in mid-2009 (15) and its validation for MS

populations in 2012 (24, 25). We supplemented this corpus

with the first 100 hits from Google Scholar and with manual

reference searches. All search strategies are provided in the

supplementary materials. Records were eligible if they

reported using the Actigraph GT3X to measure PA in a

population which included adult PwMS in the English

language. Any study design, including research protocols and

validation studies, were eligible. Eligibility did not depend on

study setting, PA metrics, diagnostic criteria, disease severity,

or disease duration. Records were screened and managed in

DistillerSR software.
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TABLE 1 Methodological factors which can affect PA metrics derived from the Actigraph GT3X during device initialization, study conduct, and data
processing.

Implementation phase Methodological factors Description

Device Initialization Sampling frequency The Actigraph measures acceleration a set number of times per second (i.e., the sampling frequency),
generating raw data in three axes, which correspond to movement along the body’s longitudinal,
sagittal, and frontal axes. The sampling frequency is selected before the device is given to the
participant (16).

Study Conduct Sensor placement The Actigraph can be worn on either hip, wrist, or ankle. The locations do not produce equivalent
data, and data processing methods are generally validated with respect to a specific sensor
placement (17, 18).

Data Processing

Filter data Filter During processing, a bandpass filter is applied to the raw data to remove non-physiological
movement artifacts. Two settings are available: a standard filter for healthy gait and the low-
frequency extension (LFE) for populations with impaired gait. The LFE is designed to be more
sensitive to light, slow movements (16).

Aggregate into epochs Epoch length Filtered data is aggregated into epochs, which can be seconds, minutes, or longer in length. The
resulting data is expressed in terms of the number of activity counts or steps which occurred
during each epoch. Many algorithms are designed to be used with specific epoch lengths (16).

Identify non-wear time Wear time algorithm
Inactivity period

Data is then further processed through wear time algorithms to differentiate between inactive periods
when the wearer was sedentary, and those when the device was not worn. This typically consists of
identifying extended periods with zero activity counts, with or without a spike tolerance (19).

Remove invalid days Minimum daily wear time A minimum daily wear time is typically specified to ensure that PA metrics are valid representations
of the wearer’s daily activity. Days which did not reach this minimum are usually considered
invalid and removed from the dataset (16).

Remove invalid
measurements

Minimum valid days
Minimum weekdays vs. weekend

days

Daily PA metrics are frequently averaged over the course of a week to account for day-to-day
variability. A minimum number of wear days is typically specified to ensure measures are not
confounded by this variability. Studies sometimes require that measurements do or do not contain
a weekend day, as activity can differ from weekdays (20).

Calculate physical activity
metrics

Data source
Algorithms, cutpoints, and metric

definitions

Algorithms and cutpoints (i.e., limits used to differentiate between PA intensity levels) are applied to
the data to calculate PA metrics. These methods may use raw or epoch-level data, vertical axis
activity counts, vector magnitude counts, step counts, or other data sources to calculate PA
metrics. Further aggregation and processing are then applied to calculate outcome measures, such
as average daily metrics (16). Researchers may opt to adjust PA metrics for wear time if wear time
is contributing to intra- and inter-participant variability (21).
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A single reviewer screened all abstracts and full texts for

eligibility, critically appraised records, and extracted data. In

contrast to systematic reviews, single-screening may be used

for rapid reviews (22, 23). To our knowledge, no appraisal

tool exists for critically appraising technology implementation

methods. Therefore, we assessed quality through two questions:

1. Were sensor-related methods sufficiently clear to be

reproducible?

2. Did the study adhere to previously validated methods? If

not, did they provide novel evidence of validity?

The same single reviewer extracted data from each eligible

study, including a brief description of the study design, aims,

and findings, characteristics of the study population, device

placement, sampling frequency, filter settings, non-wear time

definition, derived PA metrics, cutpoints used for activity

intensity classification, and other algorithms used to calculate

PA measurements. Multiple records arising from the same

study were reported separately, as they frequently reported

different data processing and analysis methods. The
Frontiers in Rehabilitation Sciences 03
relationships between records arising from the same study are

noted in the supplementary materials. Methodological

heterogeneity was evaluated qualitatively through frequency

analysis (i.e., number of studies which used a given method)

and narrative analysis. Frequency analysis was conducted both

overall and per PA metric to identify whether methodological

heterogeneity was consistent across metrics. No further

sensitivity analyses or risk of bias analyses were conducted.

The protocol was finalized prior to study conduct, but was

not registered as systematic review repositories do not accept

rapid review protocols. No amendments were made after the

protocol was finalized.

Common data processing methods, or those repeatedly used

in the literature, were identified based on frequency analysis and

the references in included studies. For the purposes of this

study, we refer to a “method” as the unique combination of

methodological factors (i.e., filter, data source, cutpoint, wear

time definition, etc.) that were used to calculate each point

estimate of each PA “metric” (i.e., step count, time in PA,

sedentary time, etc.).
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2.2 Experimental study

2.2.1 Study participants and procedures
This study is a sub-study of BarKA-MS, a cohort study

exploring barriers to PA in PwMS during and after

neurorehabilitation (26). We recruited a convenience sample

of PwMS undergoing elective inpatient neurorehabilitation at

the Kliniken Valens between January and November 2021.

Participants were eligible if they (1) had a clinically confirmed

diagnosis of MS, (2) were 18 years of age or older, (3) had

reduced walking ability but were able to walk independently

with or without an assistive device, (4) had access to WiFi

and a mobile device in the rehabilitation center and at home,

(5) were willing to wear study devices to measure their PA,

and (6) were able to answer study questionnaires in German.

The ethics committee of the canton of Zurich approved the

study protocol (BASEC-no. 2020-02350) and all participants

provided written informed consent.

Screening, enrollment, and baseline visits were conducted at

the rehabilitation clinic. Participants then completed

personalized rehabilitation programs, which lasted between

two and four weeks. For the purposes of this analysis, we

collected the following outcome measures at the end of

participants’ rehabilitation stay: Extended disability status

scale (EDSS) score (27), the 10 meter gait speed test

(10 mWT) (28), the 6 min walk test (6 MWT) (29), the

Multiple Sclerosis Walking Scale – 12 (MSWS-12) (30), a

measure of walking ability and its impact on daily activities,

and the International Physical Activity Questionnaire (IPAQ)

(9), a self-assessment of PA in the previous seven days which

was previously validated in PwMS.

Approximately one week prior to discharge, participants

were fitted with an Actigraph GT3X accelerometer

(Manufacturing Technology, Inc., FL, USA), which was worn

on the non-dominant hip for the last week of the

rehabilitation stay. The day the device was provisioned and

the day participants were discharged were not included in the

analysis, leaving most participants with a potential

measurement duration of five to seven days. Participants

occasionally wore the devices for a longer period if their

rehabilitation was unexpectedly extended. Devices were

initialized in Actilife Version 6.0 at a sampling rate of 30 Hz.

We opted to use data collected during rehabilitation, rather

than in the home environment, in our primary analyses because

participants were expected to engage in a diverse set of

structured and unstructured physical activities during their

rehabilitation programs. This choice allowed us to study PA

metrics on a dataset which was known to capture sedentary

behavior, LPA, and MVPA, with high wear compliance. Data

collected in the home exhibited lower wear compliance and

fewer valid days, with additional participants not meeting

minimum wear requirements. However, the this also means

that the average PA metrics presented here are not necessarily
Frontiers in Rehabilitation Sciences 04
representative of participants’ normal behavior, and should

not be interpreted as such.

2.2.2 Data processing
Data were uploaded to Actilife, processed via two filters [the

standard filter and the low frequency extension (LFE)] and

aggregated into 60 s epochs. Actigraph’s proprietary step

detection algorithm counted steps per minute on data derived

from each filter. Data were then exported for processing in R

(Version 4.1.0). Individual epochs were then categorized as

sedentary, LPA, or MVPA according to the methods

identified in the review (see review results, Table 3). This

process yielded multiple sets of data for each PA metric (Step

count: 2 sets, activity counts: 4 sets, total time in PA: 12 sets,

sedentary time: 12 sets, time in LPA: 18 sets, time in MVPA:

8 sets).

Though we tested the impact of wear time definitions on PA

metrics, our primary definition of non-wear time was 60 min of

continuous zeros. Days with at least 10 h of wear time during

waking hours (6AM to 11PM) were considered valid and a

minimum of two valid days was required for inclusion (31,

32). We did not require measurements to include weekend

days. This definition was used to determine whether

participants met minimum wear time requirements, and was

the default wear time definition used in analyses which did

not assess the effects of wear time definition. We then

calculated wear time via each combination of wear time

algorithms and inactive periods (n = 10) for each data set

derived for each PA metric. Epochs during which the

Actigraph was not worn were removed. This process resulted

in a unique data set which represented each method, or

unique combination of methodological factors (Step count: 20

sets, activity counts: 40 sets, total time in PA: 120 sets,

sedentary time: 120 sets, time in LPA: 180 sets, time in

MVPA: 80 sets). For each data set, each participant’s epoch-

level data were then aggregated into daily PA metrics by

adding all epoch-level PA during valid wear time over the

course of waking hours each day. Daily metrics were then

averaged over all valid days to generate average PA metrics.

Average PA metrics were used in all analyses.

In some cases, researchers adjust PA metrics for wear time

by expressing PA either as ratio (i.e., PA per unit wear time)

which can be scaled to reflect standardized daily PA metrics

to account for unequal wear times across days and across

participants, reducing variability at the participant and

population level (21). However, if methodological

heterogeneity induces bias in wear time estimates, this

method has the potential to further bias PA metrics. To

quantify these effects, we generated a separate dataset by

dividing each daily PA metric by the wear time measured on

that day according to each of the possible wear time

estimates. To allow for comparability across adjusted and

non-adjusted PA metrics, we assumed a standard daily wear
frontiersin.org
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length of 13 h and multiplied the PA ratios by this standardized

day length. We chose 13 h as a “standard” day length because

this was approximately the average daily wear time of the

Actigraph in our study. We adopted this approach, rather

than using a proportion of wear time, to enable better

comparability across adjusted and unadjusted PA metrics.

2.2.3 Statistical analysis
The aims of the statistical analyses were twofold: (1) to

identify the methodological factors which independently

influenced PA estimates and (2) to understand the potential

confounding effects of methodological heterogeneity. All

statistical analyses were conducted in R (Version 4.1.0) using

the RStudio environment (Version 1.4.1717).

First, multivariate linear regression with participant-level

random intercepts was used to identify methodological factors

which independently influenced PA metrics. For each PA

metric, all replicate data sets were combined and the

methodological factors used to derive these sets were treated

as independent variables. Data were derived from the same

raw accelerometer data and therefore highly inter-dependent,

making models at risk for over-fitting. Therefore model

development was based on theoretical knowledge and

Bayesian Information Criterion (BIC), rather than p values.

A base model tested the effects wear time algorithm, inactivity

period definitions, data source, filter, and cutpoints, as

relevant for each metric (see review results, Table 3). Each

base model was adjusted for the participants’ MS severity,

defined as mild (EDSS < 4.0), moderate (EDSS 4.0–5.5), and

severe (EDSS 6.0–6.5) body function impairment, consistent

with previous studies (33). Interactions between

methodological factors were considered plausible, as was effect

modification by MS severity. We therefore tested for

interactions between model terms through a manual forward

stepwise procedure. Interactions between methodological

factors were tested first, followed by interactions between

methodological factors and disease severity strata. Interaction

terms were retained if the more complex model exhibited a

lower BIC than the previous, simpler model. We refer to

models containing all methodological factors and eligible

interaction terms as “fully adjusted” models. When

methodological factors did not contribute substantially to

these models, (i.e., when coefficients were smaller than 5% of

the intercept and the factor did not exhibit interactions), these

terms were removed from the model in a backward stepwise

manner according to BIC. When terms did not contribute

substantially to the fully adjusted model, the process was

repeated in a reduced dataset which excluded all combinations

of methods with these variables. The resulting models are

referred to as “reduced” models. Reduced models were

considered the primary models for this analysis, but both sets

of models are reported in the supplementary material. This

conservative model development process reduced the risk of
Frontiers in Rehabilitation Sciences 05
over-fitting and spurious findings related to the close

relationship between replicate data sets. All p-values are

reported, and were corrected for multiple testing through a

Benjamini Hochberg procedure (34). The R package lmerTest

was used to build these models. This process was repeated for

PA metrics which were adjusted for wear time.

Subsequent analyses were limited to combinations of

methodological factors which were included in unadjusted PA

metrics’ reduced models. For each PA metric, Friedman tests

identified the presence of significant differences between

methods. Subsequent pairwise analyses identified median

differences, statistically significant differences (Wilcoxon tests),

correlations (Pearson’s correlation), and agreement [Lin’s

concordance correlation coefficient (35) (CCC)] between each

pair of methods. With the exception of sedentary time

estimates, the effects of wear time algorithm and inactivity

period were not included in this analysis, as they did not

substantially affect PA estimates (see results). All p-values were

corrected for multiple testing through a Benjamini Hochberg

procedure (34). All pairwise analyses used the R package stats,

except for the CCC analyses which used the package DescTools.

To illustrate the potential confounding effects of

methodological heterogeneity, we conducted several analyses

which are relevant to recent MS literature and policy

development. First, we explored the impact of methodological

heterogeneity on the associations between PA metrics and five

clinical outcome measures (IPAQ, EDSS, 10 meter gait speed,

6MWT, and MSWS-12) which are known to associate with

PA. We calculated the Spearman correlation between these

clinical measures and all PA metrics and methods. We then

made qualitative comparisons between point estimates of the

correlations across methods for each metric. In addition,

several studies have investigated whether people with MS

meet minimum PA recommendations (36, 37). The National

MS Society recommends that ambulatory PwMS take 7,500

steps per day or engage in 150 min of MVPA per week (i.e.,

30 min per day 5 times per week) (3). We therefore compared

the proportion of the study population which met these

guidelines according to each method for deriving step count

and MVPA. The other metrics assessed here do not have

established guidelines, and were not assessed in this analysis.
3 Results

3.1 Rapid review

3.1.1 Assessing methodological heterogeneity
in the literature

Searches identified 421 unique records, of which 216 were

included in full text review. From these, 69 records from 51

unique studies were eligible (Figure 1) (20, 24, 25, 33, 38–

101). Characteristics and critical appraisals of included records
frontiersin.org
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FIGURE 1

PRISMA diagram of records screened in the rapid review.

Polhemus et al. 10.3389/fresc.2022.989658
are reported in Supplementary Table S2, and all following

results are reported in terms of the number of records which

used a given method. Most records (n = 63) used the

Actigraph with ambulatory PwMS during daily life, though

two records monitored PA of wheelchair users and 12 used

the devices during scripted, in-clinic walking tasks.
Frontiers in Rehabilitation Sciences 06
PA metrics included step counts (n = 26), activity counts

(n = 17), sedentary behavior (n = 22), time spent in LPA (n =

22), time in MVPA (n = 36), total time in PA (n = 1), and

energy expenditure (n = 1), though two records did not report

which metrics were used. Most records reported daily PA

metrics (n = 63), though they occasionally studied intra-day
frontiersin.org
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patterns (n = 7). The preprocessing filters, data sources, and

cutpoints used to derive these PA metrics varied (Table 2).

Records differed in their device placement (Hip: 43, Wrist: 7,

Unspecified: 19), epoch lengths (1 s to 1 min, 26 unspecified)

and sampling frequency settings (30 Hz–100 Hz, 44

unspecified). Most records’ methods were not sufficiently

reported to be reproducible (n = 64). Forty-nine explicitly

followed existing methods, but 42 of these had reporting gaps.

Nine studies modified established methods without further

validation. Common modifications included changing the filter

used to derive cutpoint-based metrics (n = 5) and using

methods developed for hip sensor placement on wrist-derived

data (n = 3). Three records established new methods for

deriving PA metrics. A searchable and filterable table detailing

methods used by each study is provided in Supplementary

Table S2.

Studies also varied in their wear time definitions. Most of

the 63 records which described real-world PA (as opposed to

in-clinic tasks) did not fully report their wear time definitions

(n = 35). Of those that did, studies defined inactive periods of

30 min (n = 5), 60 min (n = 17), 90 min (n = 3), or 180 min

(n = 3) as non-wear time. Inactive periods were either defined

as periods of continuous zeros (n = 18), or calculated through

two wear time algorithms: the Troiano algorithm (n = 8) or

the Choi algorithm (n = 2). The Troiano algorithm allows for

2-minute spikes before an inactive period is broken, while the

Choi algorithm allows for 2 min spikes but also requires

30 min of continuous zeros before and after spikes to qualify

as a non-wear period (19, 107). One additional study defined

valid days as those with 300 or more steps, and did not

differentiate between wear and non-wear time. Minimum

daily wear time ranged from 10 to 16 h (20 unspecified) and

several studies (n = 16) considered days invalid if they

contained any non-wear periods. Studies also differed in the

minimum number of valid days required to consider a

participant’s measurement valid (1 to 6 days, 31 unspecified),

and whether they differentiated between weekdays and

weekend days in their assessments of measurement validity

(57 unspecified). This information is provided in greater detail

in Supplementary Table S2.
3.1.2 Method selection
Based on review findings, we selected established methods

and their common derivatives to quantify the potential effect

of methodological heterogeneity on six PA metrics: step

count, activity counts, total time in PA, sedentary time, time

in light PA, and time in MVPA (24, 25, 33, 64, 85, 104–106).

Due to the characteristics of our study population, we limited

this comparison to methods which were designed for

ambulatory individuals, rather than those who regularly use

wheelchairs. In addition, we limited our analysis to methods

designed for a hip sensor location as this was both the most
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commonly-used location and the location for which most

methods were designed.

In particular, we assessed the effects of preprocessing filter

(Standard filter or LFE), data source (Vertical axis counts,

VM counts, or in some cases step count), three cutpoints to

differentiate between sedentary and non-sedentary behavior

(100, 150, and 200 cpm), and seven methods to differentiate

between MVPA and non-MVPA (Tables 3, 4). We also

assessed the effect of wear-time definitions on these metrics,

considering three wear time algorithms [continuous zeros

(Zeros), Troiano, Choi] (19, 107) and four inactivity periods

(30, 60, 90, and 180 min) which were commonly used by

included studies. Other methodological factors, such as the

definition and number of valid days required for a valid

reading (Table 1), have been addressed previously and were

not studied here (31, 32).
3.2 Experimental study

3.2.1 Participant characteristics
Of the 47 enrolled participants, 2 left rehabilitation early

and were excluded from the study. One additional Actigraph

data file was corrupted and two participants did not meet

minimum wear time requirements, leaving 42 datasets for

analysis. Participant characteristics are presented in Table 5.

According to our primary non-wear time definition (60 min

of continuous zeros), participants wore the Actigraph devices

for a median of 13.7 h on 5.8 days. However, wear time

estimates varied according to wear time algorithm and

inactivity period length (p < 0.001), and estimates ranged from

an average of 4.4 valid days with 12.1 h of wear time per day

(Troiano algorithm, 30 min of inactivity) to 5.9 days with

14.2 h of wear time per day (180 min of continuous zeros).
3.2.2 Wear time
According to our primary non-wear time definition (60 min

of continuous zeros), participants wore the Actigraph devices

for a median of 13.7 h on 5.8 days. However, linear regression

showed that wear time estimates were affected by choice of

filter (Standard vs. LFE), wear time algorithm (Zeros, Choi,

Troiano), and inactivity period (30, 60, 90, or 180 min). Filter

and algorithm terms exhibited interactions with inactivity

period. Specifically, the wear time estimates substantially

decreased when a 30 min inactivity period was used with the

Troiano algorithm, though use of the LFE decreased this

effect. Model coefficients are provided in Supplementary

Table S3 for wear time and all PA metrics. Estimates ranged

from an average of 4.4 valid days with 12.1 h of wear time per

day (Troiano algorithm, 30 min of inactivity) to 5.9 days with

14.2 h of wear time per day (180 min of continuous zeros).
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TABLE 2 Frequency table of the methods used to derive physical activity metrics identified in the rapid review.

Step count
(n = 26)

Activity count
(n = 17)

Time in PA
(n = 1)

Sedentary behavior
(n = 22)

Time in LPA
(n = 22)

Time in MVPA
(n = 36)

Sensor location

Hip 14 8 1 15 14 23

Wrist 3 5 0 2 2 6

Unspecified/Unclear 9 4 0 5 6 7

Preprocessing filter

Standard (88) 0 0 0 0 0 1

LFE (88) 6 3 0 9 9 10

Unspecified/Unclear 20 14 1 13 13 25

Data source

Vertical axis – 3 0 15 15 20

Vector magnitude – 9 0 5 5 7

Step counts – – – – – 1

Unspecified/Unclear – 5 1 2 2 8

Cutpoint – Sedentary behavior vs. LPA

100 Vertical cpm (102) – – 0 15 15 –

150 VM cpm (102) – – 0 4 4 –

200 VM cpm – – 0 1 1 –

Unspecified/Unclear – – 1 2 2

Cutpoint – Light PA vs. MVPA

1,584 vertical cpma (24) – – – – 5 8

1,722 vertical cpma (24) – – – – 5 5

1,745 vertical cpma (23) – – – – 0 2

EDSS 0-5.5: 1,980 vertical cpma (23)
EDSS 6.0+: 1,185 vertical cpma

– – – – 2 4

1,952 vertical cpm (103) – – – – 3 3

2,690 VM cpm (104) – – – – 5 5

EDSS 0-3.5: 99 step/min (105)
EDSS 4.0-5.5: 89 steps/min
EDSS 6.0+: 79 steps/min

– – – – – 1

3,644 VM cpm (69)b – – – – – 2

Unspecified/Unclear – – – – 2 8

Wear time algorithm

Continuous zeros 8 4 0 6 6 7

Troiano 2 1 0 4 4 4

Choi 1 1 0 1 0 1

Not used/Not applicable 1 0 0 0 0 3

Unspecified/Unclear 11 11 1 11 12 21

Wear time inactivity period

30 min 0 0 0 3 2 2

60 min 10 3 0 4 5 5

90 min 1 1 0 1 0 2

180 min 0 2 0 3 3 3

Not used/Not applicable 1 0 0 0 0 3

Unspecified/Unclear 11 11 1 11 12 21

The table reflects the number of records which reported using each method. Some records used multiple methods, therefore sums may exceed the total number of

records using each PA metric.
aMultiple cutpoints were developed in a single study. Often, studies reference the original paper without designating which cutpoint or Actigraph settings were used.
bDerived for MVPA during wheelchair propulsion. All other cutpoints were derived for ambulatory individuals.

LFE, low frequency extension, VM, vector magnitude; cpm, counts per minute; PA, Physical activity; EDSS, Expanded disability status scale; LPA, Light physical activity;

MVPA, Moderate to vigorous physical activity.
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TABLE 3 Methodological factors with the potential to affect six PA metrics derived from the Actigraph GT3X.

Step count Activity counts Time in PA Sedentary time Time in LPA Time in MVPA

Filter
• Standard
• LFE

X X X X Xa Xa

Data source
• Vertical axis
• Vector magnitude
• Steps

X X X X Xa Xa

Cutpoint – Sedentary
• 100 cpm
• 150 cpm
• 200 cpm

X X X

Cutpoint – MVPA
• Sandroff-1584
• Sandroff-1722
• Sandroff-1745
• Sandroff-Severity
• Freedson
• Sasaki
• Agiovlasitis (Standard filter)b

• Agiovlasitis (LFE)b

X X

Wear time algorithm
• Zeros
• Choi
• Troiano

X X X X X X

Inactivity period
• 30 min
• 60 min
• 90 min
• 180 min

X X X X X X

aMVPA cutpoints are designed to be used with specific filters and data sources, therefore the independent effect of these factors on PA metrics which utilize MVPA

cutpoints were not directly assessed. Rather, these factors are implicit to the employed MVPA cutpoints as described in Table 4.
bStep count based methods are not available to differentiate between sedentary and non-sedentary minutes, therefore the Agiovlasitis cutpoints cannot be used to

estimate LPA.

LFE, low frequency extension; cpm, counts per minute; PA, Physical activity; LPA, light physical activity; MVPA, moderate to vigorous physical activity.
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3.2.3 Step count
Linear mixed effects modeling showed that choice of filter

(Standard vs. LFE) affected raw daily step count estimates,

whereas wear time algorithm and inactivity period did not. MS

severity acted as an effect modifier with respect to the impact of

the filter; the LFE disproportionately increased step counts in

severe MS compared to mild and moderate MS (Supplementary

Table S3). When step counts were adjusted for wear time, they

became independently affected by wear time algorithm and

inactivity period, with the Troiano algorithm and a 30 min

inactivity period imparting the largest biases.

Step counts derived from the two filtering methods differed

(p < 0.001), with population medians of 5,852 and 11,695 steps

per day when the Standard filter and LFE were used,

respectively (Figure 2A). The correlation (Pearson’s r) and

agreement (CCC) between methods were 0.89 and 0.31,

respectively (Supplementary Table S4).

3.2.4 Activity counts
Regression showed that preprocessing filter (Standard vs.

LFE) and data source (Vertical axis vs. VM) independently
Frontiers in Rehabilitation Sciences 09
affected activity counts, but wear time algorithm and

inactivity period did not. Activity counts decreased with

increasing MS severity. Fully adjusted models identified

interactions between filter and data source and effect

modification due to disease severity, but these terms were not

retained in reduced models. When adjusted for wear time,

activity counts became independently affected by wear time

algorithm and inactivity period. The Troiano algorithm and a

30 min inactivity period imparted the largest biases

(Supplementary Table S3).

Unadjusted activity counts derived from the resulting four

methods differed (p < 0.001) with population medians ranging

from 179,324 to 533,753 counts per day (Figure 2B). In

pairwise analysis (n = 6 pairs), all methods differed from one

another (each p < 0.001) (Supplementary Table S4).

Correlations between pairs ranged from 0.90 to 1.00.

Agreement was high when methods used the same data

source (CCC: 0.94–0.97) and very weak when data source

differed (0.24–0.37). All pairwise differences, correlations, and

agreement, including confidence intervals, are reported in

Supplementary Table S4.
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TABLE 4 Methods for deriving moderate to vigorous activity metrics in ambulatory people with multiple sclerosis.

Metric & Method Filter Data source Cutpoint Original target population

Sandroff-1,584 (24) Standard Vertical axis 1584 cpm Individuals with MS

Sandroff-1,722 (24) LFE Vertical axis 1722 cpm Individuals with MS

Sandroff-1,745 (23) LFE Vertical axis 1745 cpm Individuals with MS

Sandroff-Severity (23) LFE Vertical axis EDSS 0-5.5: 1980 cpm Individuals with MS
EDSS 6.0+: 1185 cpm

Freedson (103) LFE Vertical axis 1952 cpm Healthy adults

Sasaki (102, 104) Standard VM 2690 cpm Healthy adults

Agiovlasitis (105) Standard or LFE Steps EDSS 0-3.5: 99 steps/min Individuals with MS
EDSS 4.0-5.5: 89 steps/min
EDSS 6.0+: 79 steps/min

LFE, low frequency extension; VM, vector magnitude; cpm, counts per minute; PA, Physical activity; EDSS, Expanded disability status scale.

TABLE 5 Participant characteristics.

Participants 42

Age 46 [40–51]

Sex (Females) 27 (64.3)

EDSS score 4.5 [3.5–6]

Mild 13 (31)

Moderate 17 (40)

Severe 12 (29)

MSWS-12 score 52 [27–67]

6MWT (m) (n = 33) 345 [242–428]

No walking aid 22 (67)

2 Sticks 9 (27)

Rollator 1 (3)

Other 1 (3)

10 mWT (s) (n = 40) 9 [7–13]

No walking aid 26 (65)

2 Sticks 8 (20)

Rollator 2 (5)

Other 4 (10)

10 m Gait speed (n = 41)

>1.0 m/s 25 (61)

0.6–0.9 m/s 11 (27)

<0.6 m/s 5 (12)

Characteristics reported as N (%) or Median [Q2–Q4].
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3.2.5 Total time in physical activity
Preprocessing filter, data source, and sedentary cutpoint

independently affected estimates of time in PA. The Troiano

wear time algorithm and 30 min inactivity period yielded

statistically significant, but negligible increases in time in PA.

Regardless of method, time in PA decreased with increasing

MS severity. The LFE increased estimates of time in PA

compared to the standard filter, while increasing the sedentary

cutpoint reduced time in PA. Though the use of VM counts

increased time in PA for all levels of MS severity, it

disproportionately increased time in PA for participants with
Frontiers in Rehabilitation Sciences 10
severe MS. When time in PA was adjusted for wear time, it

became dependent on wear time algorithm and inactivity

period. In this analysis, the inactivity period term also

exhibited interactions with filter, data source, and wear time

algorithm terms. These interactions were mostly attributed to

the sensitivity 30 min inactivity period to other methods

(Supplementary Table S3).

Unadjusted total time in PA derived from the 12 resulting

methods differed (p < 0.001), with population medians

ranging from 3.3 to 7.5 h of PA per day (Figure 2C). In

pairwise analysis (n = 66 pairs), all pairs except two differed

significantly from one another (each p < 0.001)

(Supplementary Table S4). In these two cases, differences

caused by the filter and sedentary cutpoint offset each other.

Correlations between methods ranged from 0.61 to 1.00, while

agreement ranged from 0.10 to 1.00. Agreement tended to be

highest for pairs which (1) used the same data sources and

(2) used a higher cutpoint with the LFE compared to the

standard filter (Supplementary Table S4).
3.2.6 Sedentary behavior
Unlike other PA metrics, regression showed that the

preprocessing filter, data source, cutpoint, wear time

algorithm, and inactivity period definition all independently

affected sedentary time estimates. Data source, wear time

algorithm, and inactivity period exhibited interactions (i.e.,

effect modification) by disease severity. The effects of the

filters exhibited interactions with wear time algorithm and

inactivity period, and inactivity period and wear time

algorithm exhibited interactions with each other. Adjusting

for wear time reduced, but did not eliminate, the dependency

of sedentary time on wear time algorithm and inactivity

period (Supplementary Table S3).

Unadjusted sedentary time estimates stemming from the

120 possible combinations of methods significantly differed

from each other (p < 0.001), ranging from 5.2 to 10.9 h of

sedentary time per day (Figure 3). In pairwise analysis, 6,718
frontiersin.org

https://doi.org/10.3389/fresc.2022.989658
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


FIGURE 2

Physical activity metrics derived from the Actigraph GT3X. (A) Average daily step count derived through 2 methods, (B) Average daily activity counts
derived through 4 methods, (C) Average daily time in PA derived through 12 methods. Methodological factors which affected each metric are noted
as colored bars and labels on the x axis, including the data source [vertical vs. vector magnitude (VM) counts], filter [standard vs. low frequency
extension (LFE)], and sedentary cut point [100 counts per minute (cpm), 150 cpm, 200 cpm].

Polhemus et al. 10.3389/fresc.2022.989658
of the 7,140 pairs significantly differed from each other

(Supplementary Table S4). Correlations between methods

ranged from 0.15 to 1.00, whereas agreement (CCC) ranged

from 0.03 to 0.99 (Supplementary Table S4).

3.2.7 Time in light physical activity
Time spent in LPA was independently affected by sedentary

cutpoint and MVPA cutpoint. The Troiano wear time algorithm

and 30 min inactivity period yielded statistically significant, but

negligible increases in time in LPA. Estimates of LPA decreased

with increasing sedentary cutpoint. Vertical axis-based MVPA

cutpoints which used LFE (Sandroff 1,722, Sandroff 1,745,

Sandroff Severity, Freedson) registered more time in LPA than

the Sandroff-1,584 cutpoint, which uses the standard filter.

The Sasaki cutpoint, which is based on VM counts, yielded

the highest time LPA. Time in LPA decreased in moderate

and severe MS compared to mild MS, though MS severity was

an effect modifier for some MVPA cutpoints (Sandroff 1,584,

Sasaki, Sandroff Severity). In addition to these dependencies,
Frontiers in Rehabilitation Sciences 11
adjustment for wear time made time in LPA dependent on

wear time algorithm and inactivity period. These terms

exhibited interactions both with each other, and multiple

other methodological factors (Supplementary Table S3).

The 18 methods of calculating time in LPA significantly

differed from each other (p < 0.001), with population medians

ranging from 2.8 to 6.1 h per day (Figure 4A). In pairwise

analysis, 141 of the 153 resulting pairs significantly differed

from each other (p < 0.001) (Supplementary Table S4).

Correlations between methods ranged from 0.61 to 1.00 and

agreement ranged from 0.09 to 1.00. The Sasaki method,

which was the only VM-based method, consistently exhibited

the lowest correlations and agreement with all other vertical

axis based methods.

3.2.8 Time in moderate to vigorous physical
activity

Cutpoint, but not wear time algorithm or inactivity period

definition, independently affected estimates of time in MVPA.
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FIGURE 3

Sedentary time derived from the actigraph GT3X. Sedentary time estimates derived though 120 methods. Methodological factors which affected
estimates of sedentary time are noted as colored bars and labels on the x axis, including the data source [vertical vs. vector magnitude (VM)
counts], filter [standard vs. low frequency extension (LFE)], sedentary cutpoint [100 counts per minute (cpm), 150 cpm, 200 cpm], inactivity
period (30, 60, 90, or 180 min), and wear time algorithm (Zeros, Troiano, or Choi).
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Vertical axis based methods which were developed for MS

populations (Sandroff 1,584, Sandroff 1,722, Sandroff 1,745,

Sandroff Severity) did not differ from each other at the

population level. The Freedson method, which was developed

for healthy adults, and the Agiovlasitis method, which was

based on step cadence, registered less time in MVPA than

these methods. The Sasaki method, which was based on VM

counts, yielded the highest time in MVPA. Time in MVPA

decreased in moderate and severe MS compared to mild MS,

but MS severity was not an effect modifier. Adjustment for

wear time caused statistically significant, though negligible

increases to time in MVPA (Supplementary Table S3).

The eight methods of calculating time in MVPA

significantly differed from each other (p < 0.001), ranging

from population medians of 5 to 36 min per day (Figure 4B).

Twenty-two of the 27 pairs significantly differed from each

other in pairwise analysis (Supplementary Table S4). The

four vertical axis based methods (Sandroff-1584, Sandroff-

1722, Sandroff-1745, Freedson) demonstrated almost perfect

correlation and agreement with each other (r: 0.99–1.00, CCC:

0.96–1.00), and pairings of these methods and the Sasaki

method (VM-based) or the Sandroff-Severity method (applied

different cutpoints across MS severity strata) also exhibited

high correlation and agreement (r: 0.79–0.91; CCC: 0.72–

0.88). The Agiovlasitis method, which was based on step
Frontiers in Rehabilitation Sciences 12
cadence, consistently exhibited the lowest correlation and

agreement with other methods (r: 0.59–0.79, CCC: 0.23–0.52)

(Supplementary Table S4).

3.2.9 How can methodological heterogeneity
bias PA research?
3.2.9.1 Meeting PA recommendations
Using this study as an illustrative example, 92.9% of participants

would have met a 7,500 step target using the LFE, whereas only

33.3% would have met this threshold with the standard filter

(Table 6). Similarly, the percentage of the population which

met an MVPA target of 30 min per day ranged from 14.3%

with the Agiovlasitis method with the standard filter to 59.5%

using the Sasaki method (Table 6).

3.2.9.2 Relationships between PA and clinical outcomes
Correlations with clinical measures varied across methods for all

PA metrics (Supplementary Table S5). Both step count

methods exhibited moderate to strong correlations with the

EDSS, 6 MWT, 10 mWT, and MSWS-12, though point

estimates tended to be higher for the standard filter than for

the LFE. For all other metrics, vertical axis based methods

tended to exhibit stronger correlations with clinical measures

than VM based methods. Time in LPA did not consistently

correlate with clinical measures via any method. No
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FIGURE 4

Time in light and moderate to vigorous physical activity derived from the actigraph GT3X. (A) Average time in light physical activity (LPA) derived
through 18 methods, and (B) Average daily time in moderate to vigorous physical activity (MVPA) derived through eight methods. Methodological
factors which affect each metric are noted as colored bars and labels on the x axis, including the data source [vertical vs. vector magnitude (VM)
counts], filter [standard vs. low frequency extension (LFE)], sedentary cut point [100 counts per minute (cpm), 150 cpm, 200 cpm], and MVPA
cutpoint.

TABLE 6 Percentage of study participants meeting physical activity
guidelines according to multiple methods.

Method % meeting PA guidelines

7,500 steps per day

Standard filter 33.3%

LFE 92.9%

30 min of MVPA per day

Sandroff 1584 40.5%

Sandroff 1722 40.5%

Sandroff 1745 38.1%

Freedson 31.0%

Sasaki 59.5%

Agiovlasitis (Standard filter) 14.3%

Agiovlasitis (LFE) 26.2%

Polhemus et al. 10.3389/fresc.2022.989658
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objectively-measured PA metric correlated with the IPAQ.

Adjustment for wear time did not consistently affect the

associations between PA metrics and clinical outcome measures.
4 Discussion

In this rapid review and comparative analysis, we found that

existing literature on PA in MS populations exhibited high

methodological heterogeneity, and methods were often poorly

reported. Through direct comparison, we found that all PA

metrics were sensitive to methodological heterogeneity,

though the degree and uniformity of this sensitivity varied.

Heterogeneity affected the outcome of analyses relevant to the

MS literature, demonstrating potential confounding effects on
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population-level findings and meta-analyses. Though this study

was not designed to assess the relative accuracy or validity of

included methods and metrics, our results suggest several PA

metrics and methods which should be used and interpreted

with caution in MS populations. We therefore make the

following recommendations to guide future research with the

Actigraph GT3X:

• Improved reporting and adherence to validated methods are

needed

• Vertical axis counts may be preferable to VM counts for all

PA metrics

• Step counts derived from hip-worn Actigraph GT3X are not

recommended

• Time in PA may be preferable to sedentary time as an

indicator of sedentary behavior

• Sedentary cutpoints require further research to accurately

characterize light PA

• MVPA derived from different data sources are not

comparable

• The Troiano algorithm and 30 min inactivity periods are not

recommended

4.1 Improved reporting and adherence to
validated methods are needed

Our comparative analysis demonstrated that methodological

factors have the potential to confound common PA metrics.

However, we also showed that the reporting of Actigraph data

processing methods is both limited and inconsistent in existing

literature. These findings demonstrate that our ability to

interpret and compare studies is limited, and highlight the

need for improved methodological reporting in studies which

use the Actigraph GT3X. At a minimum, authors should report

the data source, filter, wear time algorithm, cutpoints, and

sensor placement they used to derive their PA metrics. We also

identified several instances in which established methods were

altered when deriving PA metrics (eg, using the LFE when the

method was developed for use with the standard filter). We

have shown that these alterations may affect the validity of the

resulting PA metrics, and recommend that authors adhere to

the filters, sensor placements, and data sources for which

specific cutpoints were developed. Finally, given the relatively

large impact of methodological factors on study outcomes, data

processing methods should also be specified a-priori.
4.2 Vertical axis counts may be preferable
to VM counts for all PA metrics

Of the methodological factors assessed here, discrepant data

sources consistently yielded the largest differences in PA

estimates. PA metrics derived from vertical axis and VM counts
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exhibited low agreement and correlation with each other, with

VM counts yielding significantly higher PA estimates than

vertical axis based methods. Metrics derived from these data

sources behaved differently across disease severity strata, with

VM based metrics disproportionately increasing PA estimates in

those with severe MS. As a result, vertical axis based methods

consistently exhibited stronger correlations with clinical

measures, suggesting superior construct validity. We therefore

do not recommend direct comparisons between studies which

derive PA from different data sources, and recommend the use

of vertical axis based methods over VM based methods for all

PA metrics evaluated here.
4.3 Step counts derived from hip-worn
Actigraph GT3X are not recommended

Daily step count was one of the most common PA metrics

studied in our review, though methods used to derive step count

were not commonly reported. In our review, only six of the 26

studies which measured step count reported whether they used

the standard filter or the LFE. However, we showed that filter

selection strongly affected step count estimates, with the LFE

nearly doubling step counts relative to the standard filter. This

effect was inconsistent across disease severity strata,

disproportionately increasing PA estimates in those with severeMS.

The manufacturer of the Actigraph recommends using the

LFE in populations which move slowly or take very light steps,

though they do not define a specific threshold below which the

LFE should be used (16). In an independent study,

Bezuidenhout et al. showed that the standard filter and LFE

perform similarly when walking speeds exceed 1.0 m/s during

scripted, over-ground walking tasks, whereas the LFE is more

accurate at walking speeds below 1.0 m/s (18). However, Feito

et al. showed that the standard filter underestimates step count

by 25%–30% and the LFE overestimates step count by 30%

when daily step counts are evaluated under free-living conditions

(108). Feito et al. hypothesized that these biases were due to

reduced sensitivity to slow walking and mischaracterization of

non-walking movement, respectively (108).

In this study, 16 of the 42 participants (38%) exhibited

normal walking speeds slower than 1.0 m/s, suggesting that the

LFE may be preferable in our population based on

Bezuidenhout et al.’s findings (18). However, like Feito et al.,

we found that step counts derived with the LFE were

unrealistically high for those of all MS severity levels (108). In

addition, we found that step counts derived using the standard

filter exhibited stronger correlations with clinical measures.

However, due to the standard filters’ propensity to

underestimate step count in slow walkers, it is probable that

these relationships are confounded by the relationship between

MS severity and walking speed. For these reasons, we caution

researchers against using an Actigraph GT3X worn on the hip
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to measure step counts. If step counts are desired as PA

outcomes, other devices or ankle placement of the Actigraph

have been shown to provide higher accuracy (18, 108, 109).
4.4 Time in PA may be preferable to
sedentary time as an indicator of
sedentary behavior

Sedentary behavior is a relevant outcome in MS populations

(110) and was the second most frequently studied PA metric in

our review. However, we found that sedentary time estimates

are highly sensitive to data processing methodology and wear

time definitions, consistent with findings in a healthy

population (111). Adjustment for daily wear time has been

used to account for the relationship between sedentary time

and wear time, reducing inter-personal variability arising from

differences in wear time (21, 38–40). We found that such

adjustment reduced, but did not eliminate, the biases

imparted by sedentary time’s dependency on wear time or

other methodological factors. In addition, the methods

affecting sedentary time estimates exhibited interactions and

were poorly reported in the literature. This reporting gap and

the multiple interactions exhibited between methodological

factors in our models make it nearly impossible to account

for independent effects of individual factors or control for

differences across studies.

We found that total time in PA, which is effectively the

inverse of sedentary time, is not sensitive to wear time

definition and exhibits fewer interactions between

methodological factors. Though our rapid review showed that

time in PA is not widely used as an outcome in the MS

literature, it may nevertheless be a preferable, albeit indirect,

indicator of sedentary behavior until the relative validity of

sedentary time methods is clarified. In addition, we

recommend using vertical axis counts rather than VM counts

to derive time in PA, as this method consistently exhibited

stronger relationships with clinical measures.
4.5 Sedentary cutpoints require further
research to accurately characterize light
PA

Kozy Keadle et al. previously assessed the validity of

multiple sedentary cutpoints in overweight adults using

vertical axis counts and the LFE, recommending 150 cpm in

that population with those sensor settings (112). In a healthy

population, Carr and Mahar found that 100 cpm is an

appropriate cutpoint for single-axis measurements with the

Actigraph GT1M (113), which is roughly equivalent to the

vertical axis based measures using the LFE on the GT3X (25).

They also found that a cutpoint of 150cpm provides higher
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accuracy in VM based measurements without the LFE (113).

However, both of these studies aimed to assess accuracy with

respect to sedentary behavior, and both cutpoints exhibited

lower accuracy when identifying light physical activity. We

cannot recommend one cutpoint over the others based on

this study. However, given our recommendation to use time

in PA rather than sedentary time, we do recommend further

study of sedentary cutpoints to identify thresholds which

accurately identify time in light physical activity. During this

research, cutpoints should be confirmed for both the standard

filter and the LFE. We also suggest that researchers more

readily report their cutpoints, data sources, and filters to

enable comparisons across studies.
4.6 MVPA derived from vertical axis, VM,
and step counts are not comparable

Time in MVPA was the most frequently-used PA metric

identified by our rapid review. Though eight methods were used

to derive MVPA, four methods derived from vertical magnitude

counts performed similarly (Sandroff-1584, Sandroff-1722,

Sandroff-1754, and Freedson). Three of these methods –

Sandroff-1584, Sandroff-1722, and Sandroff-1754 – were

essentially equivalent and exhibited strong, consistent correlations

with clinical measures. The Freedson method employed a higher

cutpoint originally developed for a healthy population, and

therefore yielded lower estimations of PA (104). However, it

yielded nearly identical correlations with clinical measures as the

other vertical axis based methods. Together, these four methods

were used in the majority of records identified in our review.

The Sandroff-Severity method applies different cutpoints to

data from individuals with mild, moderate, and severe MS, as

individuals with severe MS exert more energy than those with

mild and moderate MS to complete the same tasks, thereby

lowering the threshold at which activities qualify as “moderate

to vigorous” PA (24, 33, 106). It is therefore unsurprising that

this method demonstrated lower agreement and lower

correlations with clinical measures compared to other

methods. Sandroff et al. derived these cutpoints for sub-

populations in MS, but did not necessarily intend for them to

be used as a single method (24). It is currently unclear which

of these approaches – uniform cutpoints or severity-specific

cutpoints – yield more valid population-level and individual-

level representations of MVPA. Direct comparisons with a

gold standard may be beneficial in future research.

The Agiovlasitis method, which is based on step cadence,

yielded the lowest estimations of MVPA and exhibited the

lowest correlation and agreement with other methods. MVPA

estimates made though this method were highly sensitive to

choice of filter, since they were derived from step counts.

However, both implementations of this method yielded

similar correlations with clinical measures as the vertical axis
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based measures. This method is therefore not directly

comparable to vertical axis based methods, but nevertheless

demonstrates evidence of construct validity.

The Sasaki method, which is based on VM counts, exhibited

only moderate correlations with clinical measures, moderate

correlations with other methods, and yielded by far the highest

estimate of MVPA time. Similar to other PA metrics derived

from VM counts, we cannot recommend the use of the Sasaki

method until additional research establishes its validity.
4.7 The Troiano algorithm and 30 min
inactivity periods are not recommended

When PA metrics were affected by wear time methods, they

were consistently the most strongly biased by the Troiano

algorithm and the use of a 30 min inactivity period. These

methodological options enable shorter inactivity bouts, with or

without activity spikes, to be counted as non-wear time. While

this bias only affected sedentary time estimates in unadjusted

PA metrics, it affected all PA metrics which were adjusted for

wear time. The Troiano algorithm continues to be widely used

in the physical activity literature (15), though it has been found

to substantially underestimate wear time when it is used with

hip-worn Actigraphs (107). This is consistent with our own

findings, as the wear time estimates produced by the Troiano

algorithm were substantially lower than those produced by the

Choi algorithm or continuous zeros. The remaining two

algorithms – Choi algorithm and continuous zeros – were not

equivalent. However, they imparted smaller relative biases on

both unadjusted and adjusted PA metrics compared to the

Troiano algorithm. For these reasons, we recommend that

researchers adopt either the Choi algorithm or the continuous

zeros method to calculate wear time. We further recommend

that wear time is calculated with an inactivity period of at least

60 min due to the level of bias induced and the number of

interactions exhibited by the 30 min wear period.
4.8 Future research

These findings highlight that further research is needed to

establish both the absolute and relative validity, reliability,

responsiveness of PA metrics derived through different data

processing methods. This research should include not only

clinical assessments of scripted PA, but also validation

compared to a reference standard during free-living

assessments (114), as many of the methods studied here were

developed and validated only during scripted walking tasks in

clinical settings (23, 32, 69, 104). Once the relative validity,

reliability, and responsiveness of these methods are

established, an optimal set of PA metrics derived from the

Actigraph GT3X can be defined for MS populations.
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4.9 Strengths and limitations

This study reviews existing literature, quantifies

methodological heterogeneity associated with the most widely-

used PA monitor in MS, and illustrates the potential

consequences of this heterogeneity on PA metrics through

direct, pairwise comparisons. We offer a comprehensive

exploration of the impact of methodological heterogeneity on

Actigraph-based PA metrics in MS populations.

However, this study is not without its limitations. The

summary of the existing literature is based on a rapid review

rather than a systematic review, and therefore made

compromises to ensure feasibility. However, the methods

identified in the review appeared to reach saturation, defined as

the point at which new data are unlikely to alter conclusions,

and it is unlikely that we missed any commonly-used data

processing methods. For PA metrics which rely on cutpoints,

such as LPA and MVPA, we found that studies often deviated

from the filters and data sources for which specific cutpoints

were developed. We did not assess the effects of every possible

combination of filter, data source, and cutpoint on these metrics.

However, deviations from established methods are likely to

further increase variability in PA literature. In our analysis, PA

metrics were derived through various methods from the same

raw data, introducing dependencies which could introduce over-

fitting and bias standard errors or p values. However, we

mitigated this risk by adjusting for participant-level random

effects, using BIC values (rather than p values or AIC) to guide

model development, using paired analysis methods where

appropriate, and adjusting analyses for multiple testing.

Quantitative comparisons were conducted based on data

collected during and immediately after inpatient rehabilitation,

which included structured exercise training and physiotherapy.

The PA behavior described here is therefore not necessarily

representative of free-living PA. Finally, PA monitors other than

the Actigraph GT3X are not considered here, and care should

be taken when comparing findings between devices.
5 Conclusions

Though the Actigraph GT3X is widely used and is often

considered well-validated in MS populations, the PA metrics

derived from this device are sensitive to methodological choices

during data processing. Methodological heterogeneity of existing

literature is high, and additional research is needed to establish

the relative validity and responsiveness of existing methods.

Researchers should consider the impact of methodological

heterogeneity on PA metrics when selecting and reporting their

methods, as these decisions may limit the responsiveness,

interpretability, and cross-study comparability of PA outcomes.
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