Community-dwelling, ambulatory stroke survivors fall at very high rates in the first 3–6 months. Current inpatient clinical assessments for fall risk have inadequate predictive accuracy. We found that a pre-discharge obstacle-crossing test has excellent specificity (83%) but lacks acceptable sensitivity (67%) for identifying would-be fallers and non-fallers post discharge.
We assessed the hypothesis that combining the obstacle-crossing test with other highly discriminatory fall risk factors would compensate for the obstacle test’s fair sensitivity and yield an instrument with superior prediction accuracy.
45 ambulatory stroke survivors (60 ± 11 years old, 15 ± 11 days post stroke) being discharged home completed a battery of physical performance-based and self-reported measures 1–5 days prior to discharge. After discharge, participants were prospectively followed and classified as fallers (≥1 fall) or non-fallers at 3 months. Pre-discharge measures with the largest effect sizes for differentiating fallers and non-fallers were combined into a composite index. Several variations of the composite index were examined to optimize accuracy.
A 4-item discharge composite index significantly predicted fall status at 3-months. The goodness of fit of the regression model was significantly better than the obstacle-crossing test alone,
This study provides convincing proof-of-concept that strategic aggregation of performance-based and self-reported mobility measures, including a novel and demanding obstacle-crossing test, can predict post-discharge fallers with excellent accuracy. Further instrument development is warranted to construct a brief aggregate tool that will be pragmatic for inpatient use and improve identification of future post-stroke fallers before the first fall.